A new characterization of the generalized
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Abstract

We show that the Generalized Hermite linear form H (), which is sym-
metric D-semiclassical of class one, is the unique Dg-Appell classical where
Dy is the Dunkl operator.

1 Introduction and Preliminaries

The (MOPS) {HW},~o of generalized Hermite was introduced by G. Szegé
(see [2]) who also gave the differential equation, for n > 0

PHE @) + 2000~ ) AL (@) + (200430 = (14 (1)) ) EEL @) = 0.

Some other characterizations such that
the recurrence formula

DY B0, = oW, (o) S (0414 (1 (1)) ) (@), 02 0

the structure relation

:L'/ﬁ,(fjr);(:)s) =— (1 + (—1)") N,(fﬁl(:)s) + (n +1+ u(l + (—1)"))&7?7&“)(1'), n>0
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were recovered by T. S. Chihara in [2,3]. He also established a sort of Rodrigues’
type formula by using the Kummer’s transformation [3]. Also in [3], the same author
showed that the generalized Hermite polynomials of the odd and even degrees are
expressed in a simple manner through the classical Laguerre polynomials. Indeed,
we have

— (L - ~(utl 1
) (@) = L2 @) s B (@) = oL @) p# —n = 5 n 20

where {L{®},>¢ is the D-classical (MOPS) of Laguerre (a # —n — 1, n. > 0).

The generalized Hermite polynomials have been mentioned in connection with
Gauss quadrature formulas in [12] and with the heat equation for Dunkl opera-
tor in [11]. This sequence appears as a solution of polynomials sequences having
generating functions of the Brenke type in [4]. Moreover, all technique of the one
dimensional Dunkl operator with respect to generalized Hermite polynomials was
developed extensively in [10].

In [7] and from another point of view, P. Maroni observed that the linear form
H(p) associated with the generalized Hermite polynomials is symmetric D-semiclas-
sical of class one for 1 # 0, u# —n—3, n > 0 (see also [1]) satisfying the functional
equation

(M ()’ + (227 = 1 = 2) H(p) = 0

from which he derived an integral representation and the moments

). f) = s [ P esp(—at)f(@)e, [ € P, R > 3
1 T(p+1)I@2n+2p+1)
(M) = G P s M Ty 2 1)

(H(1))2n+1 =0, n > 0.

In that work, it was proved that any polynomial ﬁ,(fi)l have simple zeros.

__Lastly, it is an old result that the D-classical sequence of Hermite polynomials
{H®},50 is the unique D-Appell classical one. So the aim of this contribution is
to give another characterization of the generalized Hermite sequence based on the
Dy-Appell classical character where Dy is the Dunkl operator [5]. This first section
contains preliminary results and notations used in the sequel. In the second section
we determine all symmetric Dy-Appell classical orthogonal polynomials; there’s a
unique solution, up to affine transformations, it is the sequence of generalized Her-
mite orthogonal polynomials.

Let P be the vector space of polynomials with coefficients in C and let P’ be its
topological dual. We denote by (u, f) the effect of u € P’ on f € P. In particular,
we denote by (u), := (u,2™), n > 0. Let us introduce some useful operations in
P’. For any linear form u, any a € C — {0} and any ¢ # 1, we let Du = «’, h,u and
H,u, be the linear forms defined by duality [6,8,9]

<U/,f> = _<u7f/>af€73>
(hau, f) == (u, haf) = (u, f(az)) ,u € P", f € P,

and

<Hqu7f> = _<u7H¢If> 7f cP
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where (H,f)(z) = W

The linear form w is called regular if we can associate with it a sequence of
polynomials { P, },,>o such that (u, P,,P,) = rn0nm, n,m >0; 1, #0, n > 0. The
sequence { P, },>o is then said orthogonal with respect to u. Therefore {P,},>o is
an (OPS) such that any polynomial can be supposed monic (MOPS). The (MOPS)
{P, }n>0 fulfils the recurrence relation

n+2( )= (z 5n+1) Poi1(x) — 1 Pal(®) s a1 #0, n > 0.

The (MOPS) {P,},>0 is symmetric if and only if 5, = 0, n > 0. Furthermore, the
orthogonality is kept by shifting. In fact, let

(13) {ﬁn = a_n(hapn)}nzo , @ 7& 07
then the recurrence elements Bn, Ynt1, n > 0 of the sequence {ﬁn}nzo are

(1.4) A

Lastly, let us recall the following result useful for our work [1]

Lemma 1.1. Let {P,},>0 be a (MOPS) and M(xz,n) , N(z,n) two polynomials
such that
M(z,n)P,11(x) = N(x,n)P,(z), n > 0.

Then, for any index n for which deg N(x,n) < n, we have
N(z,n) =0 and M(x,n) = 0.

Let us introduce the Dunkl operator in P by [5]

DQZD+9H_1:fo'(x)+9%2;f@),97&0,feP.

We have D} = —D — 0H_; where D} denotes the transposed of Dy. We can define
Dy from P’ to P’ by Dy = —Dj so that

<D9u>.f> = —<U,D9f> y U 673/’ f €P.
In particular this yields
(Deu)n = _en(u)n—l , N > Oa

where (u)_; := 0 and

(1.5) 9n:n—|—9ﬂ,n20.

(16) 92n22n,92n+1:2n+1—0—9,n20.
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It is easy to see that [6,9]

(1.7) Do(fg) = (h-1f)(Dog) + g(Dof) + (f —h-1f)g", f,g€P.

Now consider a (PS) {P,},>0 as above and let

1

9n+1

PY(;0) = ——(DyP,y1)(x), 0 # —2n—1, n > 0.

Definition 1.2. The sequence {P,},>¢ is called Dy-Appell classical if PU(.;0) =
P,, n >0 and {P,},>0 is orthogonal.

2 Determination of all symmetric Dy,-Appell classical orthogo-
nal polynomials

Lemma 2.1. Let {P,},>0 be a symmetric Dy-Appell classical sequence. The follow-
ing formulas hold

(2.1)

Q@Aﬂﬂﬂﬂz{%H—ZEMW—%Rwa+(&H%—ﬂwﬂxﬁwxnZL
2

(2.2) V2= T

Proof. From (1.2) and the fact that {P, },>0 is symmetric we have
(2.3) Poio(z) = 2P1(2) — g1 Pa(x), n > 0.

Applying the operator Dy in (2.3), using (1.7) and in accordance of the Dy-Appell
classical character we obtain

(2.4)

OpsoPryi(z) = —bp12Py(x) + (14 0)Pyyy(z) + 22P) 4 (x) — Y10 P (x), n > 1.

From definition of the operator Dy and the recurrence relation in (1.2), formula (2.4)
becomes
Onv2Pni1(2) = Op12 P () + Poya(z)+

+0(h_1 Po1) (x) — 2220, (2P, — Poa(2)), n > 1.
Consequently (2.1) is proved.
On the other hand, taking n =1 in (2.1) and on account of P;(z) = x and Ps(x) =
2?2 — 71, we get (2.2) after identification. n

Now, we are able to give the system satisfied by 7,,+1, n > 0 written in terms of
Tni1, n > 0 where 7,11 is given by

On
(2.5) i1 = = 0 > 0.
Tn+1
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Proposition 2.2. The sequence {r,11}n>0 fulfils the following system

(26) Tn+1 = Tn—1, n Z 2,
(2.7) %%@H—%iazaw—&ﬂ,nzz
n+ n
1
2.8 — =1.
(2.8) -

Proof. Applying the dilatation h_; for (2.3) and multiplying by 6, according to (2.1),
we get successively

(h-1Pai2)(2) = —2(h-1Poi1)(®) = Wsr(hoa P)(2), n =0,
O0(h-1Poi2)(x) = —2b(h_1 Ppy1)(2) — Yar6(ho1 o) (2), n =0,

(9n+3 — 2 4 — 1)Pn+2($) + (V"H Ons1 — 9n+2)$Pn+1(I)

TYn+1 Tn+1

:_QK@H—WQWW—QRHmm+(%ﬁﬁ—ﬂnga@ﬁ

_’Yn—i-l{ <9n+1 - ,YZ:len—l - 1>Pn(x) + <,yzn19n—l - 9n>xpn—l($)}>
n > 2.

But from (2.3) another time we obtain
(2.9) M(z,n)P,i1(x) = N(x,n)P,(z), n>2

where for n > 2

0,
M(ZL’,TL) = <9n+3_7n+1 . —2>£L’,
n—1
N en—l 2 6)n—l
(ZL’, n) = 9n+1 - ’}/n-i-l,y -+ Tn+1 (9n+3 - 9n+1) - 7n+29n+1 + 7n+17n7

n— n—1

Next, according to Lemma 1.1., for n > 2, M(z,n) = 0, N(z,n) = 0, that is to say

0,,—
(2.10) Opit — sl —— =0, n>2
n—1
6)n—l
(211> Tn+1 (9n+3 - 9n+1) - 7n+29n+1 + 7n+1f7n,y— = 07 n Z 2.
n—1

According to (2.5) relations (2.10)-(2.11) give the desired results (2.6)-(2.7).
Also, from (2.5) and (1.6) we get

1+0 2
r = 5 g = —.
N 2

Therefore, taking into account (2.2) we obtain (2.8). n
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Now we are going to solve the system (2.6)-(2.8).
By virtue of (2.6) and (1.5), (2.7) becomes

Il 1, n>o2

Tn
Consequently
(212) Tn+1 = T1, TLZO
and (2.6), (2.8) are valid.
From (2.5) and (1.5) (2.12) give

gil 1+ (—1)")
. ] = ——— 140———), n>0.

(2.13) T+l 1+9(n—|— + 5 n >0

Corollary 2.3. The unique symmetric Dg-Appell classical linear form, up to affine

transformations, is the generalized Hermite H(u) <,u 40, p#-n—3, n> O>.
Proof. Let {P, },>0 be a symmetric Dyp-Appell classical sequence. By virtue of (2.13)
and (2.2) we get

Bn =0, n>0,
24 {%+11119<n—|—1+«91+<21>n), n>0.
With the choice a = 12% in (1.3)-(1.4), and putting p := £ we are led to the
following canonical case
Bn=0, n20,
(219) { Yn+1 = %<n+1+u(1+(—1)")), n 2> 0.

Thus (see (1.1))
o 1
Pn:H,(L“),u%O,u#—n—i,nZO n
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