
The Higher-Order-Logic Formath

Pieter Audenaert

Abstract

We introduce a new formalization of Higher-Order-Logic (abbreviated
Hol), which we baptized Formath, an acronym for FORMAl MATHemat-
ics. We discuss the syntax, semantics, deduction-rules, axioms and principles
of extension, after which we prove soundness and consistency. The seman-
tics are comparable to other systems for Hol, such as Hol-4 and Hol-Light,
but other parts differ from the traditional way of working, for example the
deduction-rules and axioms. We discuss these differences in large extent. We
also talk about porting theorems to the Formath library, provide examples
and discuss the applications.

1 Introduction and Overview

Higher-Order-Logic is an extension of the well-known propositional and predicate
logic, which is very suitable to formally prove significant parts of high-level mathe-
matics. Other applications include soft- and hardware specification and verification.
It is a general framework in which virtually anything can be specified, after which
one can prove properties of the investigated objects.

In our PhD-thesis [6], we used Higher-Order-Logic to prove software correct.
Therefore we designed a new functional programming language from scratch, which
we called Alfred. Practical restrictions of some systems for Hol made us consider new
alternative logics, of which Formath is the result. Of course, Formath and Alfred
match each other well, which facilitates the burden of proving software correct.
Moreover, we took this opportunity to rework the core of Hol. We introduced a
syntactical distinction between free and bound variables, which solves some technical
difficulties during instantiation or substitution. Also, a sequent-style using multiple
consequent-formulas allows building proofs in an intuitive way. Most important, the

Received by the editors March 2006 - In revised form in January 2007.
Communicated by A. Hoogewijs.

Bull. Belg. Math. Soc. Simon Stevin 15 (2008), 335–367

336 P. Audenaert

structure behind the deduction-rules and axioms has been changed. An extended
rationale for the development of Formath is included at the end of the paper, where
we discuss from our point of view the necessity of creating a new version of Higher-
Order-Logic.

This text contains a formal introduction to Formath, discussing syntax, seman-
tics, deduction-rules and axioms, principles of extension and proofs of soundness
and consistency. Moreover, we compare our rules and axioms in large detail with
those of other systems for Hol. Sections on proof-porting, some examples and the
main applications of Formath finish the paper.

2 Syntax and Semantics

In our discussion of Formath, based on the Hol-4 documentation [17], we first de-
velop the syntactic elements called type and term, and provide simultaneously a
set-theoretic interpretation using the universe. Types will be interpreted as ele-
ments in this universe. These elements are type-sets, and terms will be interpreted
as elements in these type-sets.

2.1 Universe

We define a “universe” U to be a certain set of sets. The axiomatizations are
different, but the standard-universe which we will immediately describe, corresponds
to the universe of other well-known Hol-systems such as Hol-4 [16] and Hol-Light
[18], which are themselves modified versions of the original “simple theory of types”
[12], which was developed by Church. In writing down the formulas below, we
assume the implication ⇒ to be right-associative. All symbols have their usual
meaning. We discuss the axioms immediately after their listing.

2.1.1 Basic-universe

A “basic-universe” fulfills the following axioms.

• Axiom 1: ∀X. (X ∈ U) ⇒ ∃Y. (Y ∈ X)

• Axiom 2: ∀X. (X ∈ U) ⇒ ∀Y. (∅ 6= Y ⊆ X) ⇒ (Y ∈ U)

• Axiom 3: ∀X. (X ∈ U) ⇒ ∀Y. (Y ∈ U) ⇒ (X → Y ∈ U)

• Axiom 4: 2 ∈ U ∧ 2 = {0, 1}

2.1.2 Standard-universe

A “standard-universe” is a basic-universe which also fulfills the following axioms.

• Axiom 5: Choice ∈
∏

X∈U X

• Axiom 6: I ∈ U ∧ Infinite(I)

The Higher-Order-Logic Formath 337

Theorem: There exists a formalization of U in ZFC [17].

We always assume universes to be standard, except when noted otherwise. The
division between the basic-system and the standard-system will be strictly kept up.
The first listing of axioms results in a minimal universe for Higher-Order-Logic. The
second listing of axioms results in a universe for a logic which is equivalent to the
traditional systems such as Hol-4 and Hol-Light. The explicit division results in an
elegant formalization of Higher-Order-Logic.

Informally, the basic-axioms express the following.

• Every element in the universe is a non-empty set. Thus, we assume that every
type contains at least one element. Empty types don’t exist.

• Every non-empty subset of an element in the universe is itself also an element
in the universe. Thus, we assume that every non-empty subtype of an existing
type is also a type.

• The function-set of two elements in the universe is itself also an element in
the universe. The “function-set” of two types X and Y is the set of all total
functions from X to Y , written down as X → Y . A total function from X to
Y maps every element in X to exactly one element in Y .

• There exists an element in the universe which contains exactly two elements.
We traditionally and confusingly write down this set as 2 = {0, 1}. This set
will provide an interpretation of the booleans.

Informally, the standard-axioms express the following.

• There is a choice-function available. We write down the product-set of all
elements in the universe as

∏

X∈U X. An element herein can be seen as a tuple,
which contains exactly one element from every type-set. These elements exist,
because of the first axiom. Thus, such a tuple can also be seen as a function:
for all X ∈ U we have that Choice(X) ∈ X is an element in X.

• There exists an infinite set in the universe, which we will write down as I (i.e.
Individuals). An intuitive approach to the concept infinity will suffice for this
moment, as we will provide a formal axiomatization in a later section.

2.2 Types

Types are interpreted in Formath as elements in the universe. The syntax of the
types is given by so-called type-structures. Thereafter we discuss the semantics.

2.2.1 Type syntax

Traditionally one distinguishes between four different syntactical classes of types;
namely type-variables, atomic types, compound types and function-types. But
atomic types are specific sets in the universe, and can be defined as compound types
having arity 0. Also, the function-operator → is a specific compound type, having
arity 2. Consequently, we include the atomic types as well as the function-types in
the compound types and get a simpler definition.

338 P. Audenaert

Compound types will be written down using type-operators. These are some-
times called type-constants, to explicit the difference with type-variables. We assume
an infinite set of names for type-constants, written as “TyConsts”. Also, we assume
an infinite set of names for type-variables, written as “TyVars”. Assume these two
sets to be disjunct.

A “type-structure” Ω is a set of type-constants. A type-constant is specified by a
tuple (ν, n), where ν ∈ TyConsts is a constant-name, and n ∈ N is a natural number,
which denotes the arity of the constant (or operator). Thus Ω ⊆ TyConsts×N. Two
different type-constants never get the same name; thus if (ν, n1) ∈ Ω and (ν, n2) ∈ Ω
then n1 = n2. The set of “types” corresponding to a certain structure Ω is written
as TypesΩ and is defined as the smallest set which fulfills the following conditions.

• If σ ∈ TyVars, then σ ∈ TypesΩ. Thus, a type can be a “type-variable” α.
Type-variables denote any set in the universe. They are written as α, β, γ, . . .

• If (ν, n) ∈ Ω and σi ∈ TypesΩ for all 1 ≤ i ≤ n, then (σ1, . . . , σn)ν ∈ TypesΩ.
The special case (ν, 0) ∈ Ω results in ()ν ∈ TypesΩ. Thus, a type can be a
“compound type” (σ1, . . . , σn)ν. Here, the σi are argument-types for the type-
operator ν, which has arity n. Using type-operators we can construct sets: the
type (σ1, . . . , σn)ν denotes the set which results from applying the operator ν
to the sets σ1, . . . , σn. Of course, the arity has to be exact.

To make things clear we provide a few examples of compound types. A com-
pound type of arity 0 is always a certain set in the universe. For example, the
type of booleans called “bool” will be interpreted as a set having two elements.
The type-operator called “list” is a compound type with arity 1. It constructs or-
dered sequences of elements from a certain set, which corresponds to our intuition.
An example of a type-operator with arity 2 is the compound type “→”. It con-
structs function-sets, as defined above. This operator is assumed to be infix and
right-associative, such that σ1 → σ2 → . . . → σn−1 → σn is an abbreviation for
σ1 → (σ2 → . . . → (σn−1 → σn) . . .).

We define the set of type-variables which appear in a type σ recursively and we
write it down as tyvars(σ).

2.2.2 Type semantics

Assume Ω is a type-structure. A “model M for Ω” is defined by specifying a n-ary
function for every type-constant (ν, n) ∈ Ω, written down as M(ν) : Un → U . This
is the so-called interpretation of ν by M. Thus, when given the sets X1, . . . , Xn

in the universe, M(ν)(X1, . . . , Xn) will also be a set in the universe. For a nullary
type-operator ν this results in pointing out a certain set M(ν) ∈ U .

Types, built up without using type-variables, are called “monomorphic”. In con-
trast, types containing type-variables are called ”polymorphic”. Polymorphic types
can’t be interpreted directly, but only after the appearing type-variables are effec-
tively instantiated with other types. Thus, a polymorphic type does not correspond
with exactly one set in the universe, but with a function, taking sets as arguments.
Such a function Un → U returns a set for every choice of sets for the appearing

The Higher-Order-Logic Formath 339

type-variables. Of course, n corresponds to the number of different type-variables.
An example of a monomorphic resp. polymorphic type is given by bool resp. (α)list.

Now we will build up a semantics in which a type σ is interpreted, making use
of any type-variables αi, whether or not appearing in σ. This way of working leads
to the introduction of so-called types-in-context. A “type-context” αs is a finite,
possibly empty list of different type-variables. A “type-in-context” is a pair, written
as αs.σ, with αs a type-context and σ a type, both for a certain type-structure Ω,
such that all type-variables appearing in σ also appear somewhere in the list αs.
But the list αs may also contain some other type-variables, not appearing in σ. If
αs = α1, . . . , αn, then we can write down αs.σ as α1, . . . , αn.σ.

For every σ there are of course some minimal type-contexts αs, such that αs.σ
is a type-in-context, and these minimal type-contexts differ only in the order in
which the type-variables appear in the list. We assume a certain total ordering on
the set TyVars and define a “canonical type-context” for a type σ to be a minimal
type-context αs, such that the type-variables in αs are ordered.

We now define the semantics of types. Assume M is a model for a type-structure
Ω. For every type-in-context αs.σ we define a function [[αs.σ]]M : Un → U , where n
is the length of the type-context αs = α1, . . . , αn, by induction on the structure of
σ in the following way.

• If σ is a type-variable, then σ = αi for a certain i ∈ {1, . . . , n}. This i is unique,
because all αi are different by definition of a type-context. Then [[αs.σ]]M is
the ith projection, which will map (X1, . . . , Xn) ∈ Un to Xi ∈ U .

• If σ = (σ1, . . . , σn)ν is a compound type, then define Si = [[αs.σi]]M(Xs) for
i = 1, . . . , n. Then [[αs.σ]]M maps the list Xs to M(ν)(S1, . . . , Sn).

We now define the “interpretation” of a type σ for a model M as the function
[[σ]]M : Un → U , given by [[αs.σ]]M, where αs is the canonical type-context of σ. If
σ is monomorphic, then n = 0 and [[σ]]M is identified with the element [[σ]]M() in U .
We write [[]]M as [[]], whenever the model M is clear out of the context.

To summarize, assume a model M for a type-structure Ω. Then the interpre-
tation, using the above semantics, will result to certain sets in U for monomorphic
types, and n-ary functions Un → U for polymorphic types having n different type-
variables.

A few examples to illustrate this. Assume that Ω contains the type-constants
(bool, 0) and (→, 2). Assume that the model M maps the first type-constant bool to
the set of booleans, written as 2 ∈ U . Assume that the interpretation of the second
type-constant, the function-operator →, for two sets X ∈ U and Y ∈ U results in
the function-set from X to Y , also written using →. Then the following holds.

• [[bool → bool]] = 2 → 2 ∈ U

• [[α.(α → bool) → α]] : U → U is the function which maps X ∈ U to
(X → 2) → X ∈ U .

• [[α, β.α → bool → bool]] : U2 → U is the function which maps (X, Y) ∈ U2 to
X → 2 → 2 ∈ U .

340 P. Audenaert

We conclude this section on type-semantics with discussing “type-instantiation”.
Assume that σ is a type with type-context αs, where αs = α1, . . . , αn. Assume that
for all i = 1, . . . , n the types σi are given. We then write σ[α1, . . . , αn/σ1, . . . , σn]
as the result of the simultaneous instantiation of all type-variables αi by the types σi

in σ. The result is called an “instantiation” of σ. The following holds by structural
induction on σ.

• Given the type-in-context αs.σ, assume σ′ = σ[α1, . . . , αn/σ1, . . . , σn] to be an
instantiation of σ. Then α1, . . . , αn and σ1, . . . , σn are precisely specified by σ
and σ′.

• Given the type-in-context αs.σ, with n the length of αs, and the types-in-
context βs.σi, with i = 1, . . . , n and m the length of βs. Assume σ′ =
σ[αs/σs] to be an instantiation of σ. Then βs.σ′ is also a type-in-context
and this type is related to αs.σ for all Xs ∈ Um as follows: [[βs.σ′]](Xs) =
[[αs.σ]]([[βs.σ1]](Xs), . . . , [[βs.σn]](Xs)).

2.3 Terms

Terms in Formath are interpreted as elements in the type-sets. The syntax of terms
is given using so-called term-structures. After that, semantics is discussed.

2.3.1 Term syntax

Traditionally, one distinguishes between four different syntactical classes of terms;
namely term-variables, constant terms, function-applications and λ-abstractions.
However, remark that the implementation of λ-abstractions is not always that easy,
for example when instantiating. In that case, one has to take into account free
variables, which can suddenly get bound after the instantiation, which is clearly
not wanted. Thus, we propose an alternative syntax, which avoids the problems in
se: we will make a syntactical distinction between free and bound variables, using
a far analogue of the so-called “de Bruijn-indices”. This way of working makes
the theoretical discussion a little bit more laborious, and uses the new notion of
preterms. An in-depth discussion of this issue is included in a later section.

We assume an infinite set called “TeConsts” of names for preterm-constants.
Analogously, assume an infinite set “TeVars” of names for free preterm-variables.
Assume these two sets to be disjunct. Let Ω be a type-structure. Then a preterm-
constant for Ω is a tuple (c, σ), with c ∈ TeConsts and σ ∈ TypesΩ. A “signature”
for Ω is then a set ΣΩ of these constants. The set of “preterms” for a certain ΣΩ

is now written as PreTermsΣΩ
and is defined as the smallest set which fulfills the

following conditions.

• If x ∈ TeVars and σ ∈ TypesΩ, then xσ ∈ PreTermsΣΩ
. A preterm can thus

be a “free preterm-variable” x. A free preterm-variable denotes any element
in its type-set. They are written using x, y, z, . . .

• If n ∈ N and σ ∈ TypesΩ, then @n
σ ∈ PreTermsΣΩ

. A preterm can thus be a
“bound preterm-variable” @n.

The Higher-Order-Logic Formath 341

• If (c, σ) ∈ ΣΩ and σ′ ∈ TypesΩ is an instantiation of σ, then cσ′ ∈ PreTermsΣΩ
.

A preterm can thus be a “preterm-constant” c.

• If tσ′→σ ∈ PreTermsΣΩ
and t′σ′ ∈ PreTermsΣΩ

, then (tσ′→σt
′
σ′)σ ∈ PreTermsΣΩ

.
A preterm can thus be a “preterm-function-application” t t′.

• If tσ ∈ PreTermsΣΩ
and σ′ ∈ TypesΩ, then (λσ′ .tσ)σ′→σ ∈ PreTermsΣΩ

. A
preterm can thus be a “preterm-λ-abstraction” λ.t. Remark that we don’t
write the abstracted preterm-variable behind the λ, but we do keep the type
of that variable as a subscript.

Every preterm tσ is linked to a type σ, out of which type-set the term is assumed
to be taken. However, in practice we don’t write the type-indication, whenever it
is clear out of the context. Then, we write just t instead of the more accurate tσ.
This remark also holds for terms (cf. infra).

Now we define the set of “terms” TermsΣΩ
as a certain subset of the preterms.

There have to be fulfilled some additional conditions, before a preterm is lifted to
be a term. These concern the use of bound variables, which we are going to look at
more closely now.

Bound variables have their own syntactical representation, to explicit bindings
in a term. Assume a preterm t, having a certain subpreterm @n. Now we look for
the binding λ of this bound variable. Therefore, first write down the syntax-tree,
associated with the preterm t. Now locate the chosen subpreterm @n. Walk through
the syntax-tree upward and choose the n +1-th λ above. This one binds the chosen
variable. The figure below makes everything clear; it is the syntax-tree of the term
λ.z@0(λ.@0@1). An empty circle ◦ represents a function-application, and a filled
circle • a λ-abstraction. The dashed arrows show how the binding λ for any @n can
be found.

Of course, we assume that for every appearing @n there indeed are at least
n + 1 upward λ’s, otherwise we consider the term not well-formed. This is the first
condition to select terms in the set of preterms.

z @

@@

0

0 1

Now consider the set of all subpreterm-variables which are bound by the same
upward λσ. It is clear that we assume the types of all elements in this set to be
equal to σ, which is the second condition to select terms in the set of preterms.

342 P. Audenaert

Our analysis of Hol-4, Hol-Light and Formath (cf. infra) contains a discussion
and rationale for introducing this syntactical distinction between free and bound
variables, so we will suffice here by providing some illustrative examples.

• The expression, traditionally written as λx.x, is now written down as λ.@0.
Indeed, the bound preterm-variable @0 points to the first upward λ in the
syntax-tree, which is of course the only possibility.

• The expression, traditionally written as λx.zx(λy.yx), is now written down as
λ.z@0(λ.@0@1). Here, the first @0 points to the outer λ, as is the @1, which
is located one level deeper, and consequently gets an incremented index. The
second @0 is a bound variable which differs from the first @0. Indeed, the
second @0 is bound by the inner λ. By the second condition, the types of the
first @0 and the @1 have to be equal.

• Ambiguous expressions such as λx.z(λx.x) (the variable x is bound by the first
or the second λ?) do not appear, because we have to make a choice between
λ.z(λ.@0) and λ.z(λ.@1), which is unambiguous.

• The application of a λ-expression on an argument and working out the result
is called “β-reducing” the term. We will then have to keep track of the number
of encountered λ’s while descending the syntax-tree, in order to know which
bound variable has to be changed and which not. For example, we have
(λ.z@0(λ.@0@1))x = zx(λ.@0x). The reduction is represented by the thick
arrow.

z

x

z x

x

@

@

0

0

0@

1@

• Traditionally, one encounters problems when instantiating terms. If we want
to instantiate x for y in the expression λx.zxy, we get the naive and wrong
answer λx.zxx. Using the new indices we have to instantiate x for y in the ex-
pression λ.z@0y, which results naturally in λ.z@0x. This answer is equivalent
to the translation of the traditional λv.zvx, in which the name of the bound
variable had to be changed in a new, unused variable-name, before the act of
instantiation.

The Higher-Order-Logic Formath 343

We end this section with a few remarks.

• Two free variables with the same name but with different types are, of course,
different. However, we avoid the repeated use of names for variables, to prevent
confusion. We also often don’t write the types, to improve readability, as
already remarked.

• Function-applications are assumed to be left-associative. This way, we write
down t1t2 . . . tn−1tn as shorthand for (. . . (t1t2) . . . tn−1)tn.

• A term is called monomorphic resp. polymorphic if it does contain no resp. at
least one type-variable, analogously to monomorphic resp. polymorphic types
(cf. supra). Remark that a term tσ can be polymorphic, even when σ is
monomorphic, for example (fα→boolxα)bool, where bool is the monomorphic type
of booleans. We define the set of type-variables which appear in a term t
recursively and write it down as tyvars(t).

• We define the set of free term-variables which appear in a term t recursively
and write it down as tevars(t). We call a term closed if there are no free
term-variables in the term.

2.3.2 Term semantics

Assume ΣΩ to be a signature for a type-structure Ω. A “model M for ΣΩ” is
specified by a model for the type-structure Ω, and by choosing, for every term-
constant (c, σ) ∈ ΣΩ, an element M(c, σ) ∈

∏

Xs∈Un [[σ]]M(Xs). Here we consider
the Cartesian product of dimension n, where n is the number of different type-
variables in σ. This means that we can consider M(c, σ) as a function which lets
correspond, with every Xs ∈ Un, an element in [[σ]]M(Xs). In the case that n = 0
one simply chooses an element in [[σ]]M().

We now define a “context” αs, xs to be a type-context αs, combined with a
finite, possibly empty list xs of different free term-variables. A “term-in-context”
αs, xs.t is then a context, together with a term t, such that all type-variables in xs
or in t appear in the list αs, and all free term-variables in t appear in the list xs.
The context αs, xs may contain type-variables and/or free term-variables which do
not appear in t. If xs = x1, . . . , xm we can write down αs, xs.t as αs, x1, . . . , xm.t.

We assume a certain total ordering on the set TeVars, and thus there exists, for
every term t, a “canonical context”, which is minimal for αs and xs, and in which
the type- and free term-variables appear ordered.

We now define the semantics of terms. Assume that αs, xs.t is a term-in-context
for ΣΩ. Assume that t has the type τ , and assume that αs = α1, . . . , αn and also
xs = x1, . . . , xm, in which every xi has the type σi.

Because αs, xs.t is a term-in-context, both αs.τ and all αs.σi are types-in-
context. Thus we get the Un → U functions [[αs.τ]]M and [[αs.σi]]M. The interpreta-
tion of αs, xs.t for ΣΩ is then given by an element [[αs, xs.t]]M ∈

∏

Xs∈Un(
∏m

i=1[[αs.σi]]M
(Xs)) → [[αs.τ]]M(Xs). Thus, given Xs = (X1, . . . , Xn) ∈ Un and ys = (y1, . . . , ym)
∈ [[αs.σ1]]M(Xs) × . . . × [[αs.σm]]M(Xs) we get an element [[αs, xs.t]]M(Xs)(ys) in
[[αs.τ]]M(Xs).

We now define [[αs, xs.t]]M by induction on the structure of t as follows.

344 P. Audenaert

• If t is a free variable, then t = xj for a certain j ∈ {1, . . . , m}. We then define
[[αs, xs.t]](Xs)(ys) as yj.

• If t is a constant cσ′ , with (c, σ) ∈ ΣΩ and σ′ an instantiation of σ, then σ′ =
σ[β1, . . . , βp/τ1, . . . , τp] for certain types τ1, . . . , τp, with β1, . . . , βp the type-
variables which appear in σ. Define [[αs, xs.t]](Xs)(ys) as M(c, σ)([[αs.τ1]](Xs),
. . . , [[αs.τp]](Xs)).

• Assume t is a function-application t1t2, such that t1 has the type τ ′ → τ and
t2 has the type τ ′. Then [[αs, xs.t1]](Xs)(ys) is an element in [[αs.τ ′ → τ]](Xs),
and thus a function which maps elements in the set [[αs.τ ′]](Xs) to elements in
the set [[αs.τ]](Xs). We apply this function to the element [[αs, xs.t2]](Xs)(ys)
and define this way [[αs, xs.t]](Xs)(ys) as ([[αs, xs.t1]](Xs)(ys))([[αs, xs.t2]]
(Xs)(ys)).

• Assume t is a λ-abstraction λ.t′, such that the abstracted variable has the type
τ1 and t′ has the type τ2. Choose a new free variable-name x, which does not
appear in xs. Suppose τ = τ1 → τ2, then [[αs.τ]](Xs) is the set of functions
from [[αs.τ1]](Xs) to [[αs.τ2]](Xs). Now define [[αs, xs.t]](Xs)(ys) as the func-
tion in this set which maps y ∈ [[αs.τ1]](Xs) to [[αs, xs, x.t′[@i/x]]](Xs)(ys, y).
Some notational clarification concerning @i has to be given now. The vari-
ables, bound by the outer λ of t, can appear on different levels in the term
t′, and thus can have different indices. We therefore have to refer to these
variables using @i. The expression t′[@i/x] then denotes the instantiation of
these bound variables @i by x in t′.

Remark that in the above case-analysis only the syntactical classes of terms were
considered. We do not have to consider bound variables, as these are not terms,
only preterms.

Now define the “interpretation” of a term tτ in a model M as the function
[[tτ]] ∈

∏

Xs∈Un(
∏m

i=1[[αs.σi]](Xs)) → [[αs.τ]](Xs), given by [[αs, xs.tτ]], where αs, xs
is the canonical context of tτ . Here, n is the number of different type-variables in
tτ , and αs is the list of these type-variables. Also, m is the number of different free
variables in tτ , given by the list xs, and the σi are their respective types. Remark
that the list αs, part of the canonical context of t, can be strictly greater than the
canonical type-contexts of τ and/or the σi. Therefore we can’t just write down [[τ]]
or [[σi]] in the above expression.

An example to illustrate this. To be unambiguous, we will write out all de-
tails. Suppose we want to interpret the term (λ.@0)x. Then we have to start
with [[α, xα.(λα.@0

α)α→αxα]](X)(y). We can rewrite this interpretation using the
above rules as ([[α, xα.(λα.@0

α)α→α]](X)(y))([[α, xα.xα]](X)(y)). The λ-abstraction
[[α, xα.(λα.@0

α)α→α]](X)(y) will map its argument [[α, xα.xα]](X)(y) to
[[α, xα, zα.zα]](X)(y, [[α, xα.xα]](X)(y)), which is equal to [[α, xα.xα]](X)(y) itself. This
is the function which maps two arguments X ∈ U and y ∈ X to y. Thus, we have
shown that the interpretation of (λ.@0)x is equal to the interpretation of x.

We conclude this section on term-semantics with a discussion of “term-instantia-
tion”. Suppose that t is a term with canonical context αs, xs, where αs = α1, . . . , αn,
and xs = x1, . . . , xm. Suppose that for all i = 1, . . . , n the types-in-context αs′.τi

are given, and that for all j = 1, . . . , m the types of the free variables xj are given
by σj . If we instantiate, in the list xs, the types τi for the type-variables αi, we get a

The Higher-Order-Logic Formath 345

new list xs′. The types of the new variables x′
j in this new list, for all j = 1, . . . , m,

are given by σ′
j = σj [αs/τs]. We consider here only instantiations which do not

identify different free variables in the list xs after instantiation of the αs by the
τs. Such can happen if two free variables have the same name but a different type,
but such that these types become identical after instantiation. This condition is
not really restrictive, because we can assume that the variables in xs all have a
different name. Indeed, it is easy to rename the free variables, without bothering
the semantics. The conditions imply that αs′, xs′ effectively is a context. We then
get a new term-in-context αs′, xs′.t′ by instantiating the types τi for the αi in t,
which we write down as t′ = t[αs/τs].

The interpretations of t and t′ are related as follows: [[αs′, xs′.t′]](Xs′) =
[[t]]([[αs′.τ1]](Xs′), . . . , [[αs′.τn]](Xs′)), where Xs′ ∈ Un′

and the length of αs′ is equal
to n′. This can be proved by induction on the structure of t.

Now assume that t is a term with canonical context αs, xs, where αs = α1, . . . , αn,
and xs = x1, . . . , xm. Suppose that for all j = 1, . . . , m the types of the free variables
xj are given by σj . Suppose that for all j = 1, . . . , m we have the terms-in-context
αs, xs′.tj , with the type of tj also σj . If we instantiate the terms tj for the free
variables xj in t then we get a new term-in-context αs, xs′.t′, which we write down
as t′ = t[xs/ts].

The interpretations of t and t′ are related as follows: [[αs, xs′.t′]](Xs)(ys′) =
[[t]](Xs)([[αs, xs′.t1]](Xs)(ys′), . . . , [[αs, xs′.tm]](Xs)(ys′)), where Xs ∈ Un and ys′ ∈
[[αs.σ′

1]]× . . .× [[αs.σ′
m′]], where m′ is the length of xs′ and σ′

j is the type of x′
j . This

can be proved by induction on the structure of t.

2.4 Models

At this point we have to put a certain structure in the model, if we want to use
our logic later on. Some basic- and standard-types and -terms are needed therefore.
Attention has to be paid to the atypical constants CEXT , also CIND and F IND.
The first one will be used to characterize whether or not two functions are equal.
The last one is some kind of successor-function, which will have the initial constant
CIND. We quickly discuss these constants, as an extended explication for their
introduction follows in a later section. They will allow us to define Higher-Order-
Logic more elegant. In this section we will write down the equality of two elements
x ∈ X and x′ ∈ X as x =X

U x′, to avoid confusion.

2.4.1 Basic- and standard-type-structures and -models

A type-structure Ω is a “basic-type-structure” if the type of booleans (bool, 0) and
the function-type (→, 2) are available. If we also have the type of Individuals
(ind, 0) we call the structure “standard”. A model M is called a “basic-model”
for Ω if M(bool) = 2 and M(→) =→. We call a model “standard” for Ω if also
M(ind) = I. These are the so-called standard-interpretations of bool, → and ind.
We always assume type-structures and their models to be standard, except when
noted otherwise.

346 P. Audenaert

2.4.2 Basic- and standard-term-signatures and -models

A signature ΣΩ is a “basic-term-signature” if the constant =α→α→bool is available.
If we also have the constants ε(α→bool)→α, CEXT

(α→β)→(α→β)→α, CIND
ind and F IND

ind→ind we
call the structure “standard”. A model M is called a “basic-model” for ΣΩ if the
following holds.

• The interpretation of M(=, α → α → bool) ∈
∏

X∈U X → X → 2 is the
function which returns for every X ∈ U the function =X

U .

We call a model “standard” for ΣΩ if also the following holds.

• The interpretation of M(ε, (α → bool) → α) ∈
∏

X∈U(X → 2) → X is the
function which returns for every X ∈ U the function εX

U . The function εX
U

takes a f ∈ (X → 2) as argument and is defined as follows.

εX
U f =

{

Choice(X) if f−1{1} = ∅
Choice(f−1{1}) if f−1{1} 6= ∅

Here we defined f−1{1} = {x ∈ X : fx =2
U 1}. Thus, if there exists an x

which fulfills f , then the result is an x′ which fulfills f . In the other case the
result can be anything.

• We interpret M(CEXT , (α → β) → (α → β) → α) ∈
∏

X1,X2∈U
(X1 → X2) →

(X1 → X2) → X1 to be the function which, for every X1 ∈ U and every X2 ∈
U , returns the function extX1,X2

U . The function extX1,X2

U takes a f ∈ (X1 → X2)
and a g ∈ (X1 → X2) as arguments and is defined as follows.

extX1,X2

U fg =

{

Choice(X1) if h−1{0} = ∅
Choice(h−1{0}) if h−1{0} 6= ∅

Here we defined h−1{0} = {x ∈ X1 : fx 6=X2

U gx}. Thus, if there exists an x
such that fx is not equal to gx, then the result is an x′ such that fx′ is not
equal to gx′. In the other case the result can be anything.

• The interpretation of M(CIND, ind) ∈ I is any element in I ∈ U .

• Construct an infinite, ordered sequence of elements in I which starts with
M(CIND, ind), and in which all elements are different. This is possible, be-
cause I is assumed to be infinite, and thus we can always choose a new ele-
ment, different from all previous ones. The interpretation of M(F IND, ind →
ind) ∈ I → I is the function which gives, when iterated on the argument
M(CIND, ind), exactly the above constructed infinite, ordered sequence of
elements in I. If we abbreviate M(CIND, ind) resp. M(F IND, ind → ind)
by C resp. F , we thus write down the infinite, ordered sequence of elements
in I, starting with C and not containing any element more than once, as
C, F (C), F (F (C)), F (F (F (C))), . . .

These are the so-called standard-interpretations of =, ε, CEXT , CIND and F IND.
We always assume term-signatures and their models to be standard, except when
noted otherwise. From now on we simplify the notation =X

U back to =.

The Higher-Order-Logic Formath 347

3 Logic

This section describes the deduction-rules, axioms and extensional principles of For-
math, which are at times quite different from the ones traditionally used. We build
a formal logic, and show that the deductive system is sound for the set-theoretic
semantics given in the previous section. We show that Formath is consistent.

3.1 Sequents

Given a signature ΣΩ, we define a “formula” as a term of type bool. A “sequent” is
then defined as a pair (Γ, Γ′), with Γ and Γ′ two finite sets of formulas over ΣΩ. We
call Γ the “antecedent”, and Γ′ the “consequent”. Traditionally one assumes that
Γ′ contains exactly one element. We deviate from this line of working, as we can
define our deduction-rules and axioms more elegant this way.

Assume a model M for ΣΩ, assume that Γ = {t1, . . . , tp} and that Γ′ = {t′1, . . , t
′
p′}.

Suppose that αs, xs is a context which contains all type-variables and all free
term-variables appearing in t1, . . . , tp, t

′
1, . . . , t

′
p′. Assume that αs = α1, . . . , αn,

and xs = x1, . . . , xm. Also assume that the type of xj is given by σj , for j =
1, . . . , m. We say that M is a “model for (Γ, Γ′)” and write down Γ |=M Γ′

if for every Xs ∈ Un and every ys ∈
∏m

j=1[[αs.σj]]M(Xs) the following holds.
If [[αs, xs.tk]]M(Xs)(ys) = 1 for all k = 1, . . . , p then there exists at least one
l ∈ {1, . . . , p′} such that [[αs, xs.t′l]]M(Xs)(ys) = 1. In the case that p = 0 we
write |=M Γ′, which means that there exists a t′l with l ∈ {1, . . . , p′} such that the
function [[t′l]]M ∈

∏

Xs∈Un(
∏m

j=1[[αs.σj]]M(Xs)) → 2 is constant with value 1 ∈ 2.

3.2 Deduction-rules

A “deductive system” D is a set of pairs (L, (Γ, Γ′)) where L is a list of sequents,
possibly empty, and (Γ, Γ′) is also a sequent. A sequent (Γ, Γ′) can be deduced from
a set of sequents ∆ using a deductive system D if and only if there exist sequents
(Γ1, Γ

′
1), . . . , (Γn, Γ

′
n) such that the following two conditions hold.

• (Γ, Γ′) = (Γn, Γ
′
n)

• For all i such that 1 ≤ i ≤ n either (Γi, Γ
′
i) ∈ ∆ or (Li, (Γi, Γ

′
i)) ∈ D holds for

a certain set Li of elements in ∆ ∪ {(Γ1, Γ
′
1), . . . , (Γi−1, Γ

′
i−1)}.

The sequence (Γ1, Γ
′
1), . . . , (Γn, Γ

′
n) is a “proof” of (Γ, Γ′) from ∆ using D. We

write this down as Γ ⊢D,∆ Γ′, but often drop the subscripts D and ∆.
In practice a deductive system is often specified by giving a few schematic

inference-rules, in the following form.

Γ1 ⊢ Γ′
1 . . . Γn ⊢ Γ′

n

Γ ⊢ Γ′

The sequents above the line are called the “hypotheses” of the rule and the se-
quent below the line the “conclusion”. In this notation meta-variables can appear,
which stand for any term of the correct type. If we instantiate these meta-variables

348 P. Audenaert

by concrete terms we get a specific deduction-rule of our deductive system. Some-
times the use of such an inference-rule is constrained by expressing conditions on
the possible meta-instantiations.

We now introduce the five deduction-rules of Formath. The set of rules we use
is different from the sets traditionally used. We use the notation Γ − Γ′ for the
set-theoretic difference of Γ and Γ′.

• Equality Introduction:
Γ1 ⊢ Γ2 Γ3 ⊢ Γ4

Γ1 − {p}, Γ3 − {q} ⊢ p = q, Γ2 − {q}, Γ4 − {p}

• Equality Elimination:
Γ1 ⊢ Γ2 Γ3 ⊢ Γ4

Γ1, Γ3 ⊢ q, Γ2 − {p}, Γ4 − {p = q}

• Type Instantiation:
Γ1 ⊢ Γ2

Γ1[α/σ] ⊢ Γ2[α/σ]

• Term Instantiation:
Γ1 ⊢ Γ2

Γ1[x/t] ⊢ Γ2[x/t]

• Beta-Reduction: ⊢ (λ.t1)t2 = t1[@
i/t2]

Concerning the β-reduction, we remind about the remark we made about the
notation @i. If we apply the function λ.t1 to the argument t2, we have to instantiate
some bound variables in t1 by t2. These bound variables can appear on different
levels in the term t1, and thus can have different indices. Again, we write very
generally @i to refer to these bound variables. It is then clear that the above rule
indeed specifies β-reduction.

3.3 Axioms

In this section we provide a short introduction to the axioms of Formath, as a large
discussion is included in a later section. We distinguish between basic-axioms and
standard-axioms. The first ones are the axioms, needed to define Higher-Order-Logic
in se. The last ones are the axioms, needed to get a standard Hol-system.

3.3.1 Basic-axioms

The “basic-axioms” are the following.

• Assumption: x ⊢ x

• Reflexivity: ⊢ x = x

• Combination: f = g, x = y ⊢ fx = gy

Remark that x, y, f and g are normal free variables, and not meta-variables,
in contrast to, for example, p and q in the deduction-rules. In the Assumption-
axiom, the type of x is bool, in the Reflexivity-axiom the type of x is α, and in the
Combination-axiom the types of f and g resp. x and y are α → β resp. α.

The Higher-Order-Logic Formath 349

3.3.2 Standard-axioms

The “standard-axioms” are the following.

• Choice: Px ⊢ P (εP)

• Extensionality: f(CEXTfg) = g(CEXTfg) ⊢ f = g

• Individuals1: F INDx = F INDy ⊢ x = y

• Individuals2: CIND = F INDx ⊢ y

In the Choice-axiom, we can be more accurate by writing Pα→bool, xα and
ε(α→bool)→α. The Choice-axiom expresses the following. For all predicates P the
term εP will fulfill P whenever there exists a term x which fulfills P .

In the Extensionality-axiom the free variables f and g are both of the type α → β.
The constant CEXT has the type (α → β) → (α → β) → α. Applying CEXT to f
and g results in a term CEXT fg. If there exists a term t such that ft is different from
gt, then also f(CEXTfg) will be different from g(CEXTfg), because of the standard-
interpretation of CEXT . The Extensionality-axiom expresses, paradoxically, the
following: two functions are equal if they have the same image for an argument for
which they have a different image, if such an argument exists.

In the Individuals-axioms the constants F IND and CIND are of the respective
types ind → ind and ind. The free variable x always has the type ind, but the
free variable y in the first Individuals-axiom has the type ind, while in the second
Individuals-axiom it has the type bool. The first Individuals-axiom expresses the
following: two terms x and y are equal if their images after applying F IND are
equal. The second Individuals-axiom expresses the following: any formula y holds
if there exists a term x, such that applying F IND to it gives CIND.

The standard-model is thus axiomatized rather exceptionally. A rationale for
this set of axioms is given in a section below.

3.4 Theories

A “theory” T is a quadruple T = (StrucT , SigT , AxiomsT , TheoremsT). Here StrucT
is a type-structure, which we call the type-structure of T , and SigT is a term-
signature, which we call the term-signature of T . The set of sequents AxiomsT is
called the axioms of T , and the set of sequents TheoremsT is called the theorems
of T . All elements in the set of theorems can be deduced from the set of axioms by
the deductive system, or by theory-extensions (cf. infra).

We define TypesT = TypesStrucT

and TermsT = TermsSig
T

to be the set of

constructible types using the type-structure of T , and the set of constructible terms
using the term-signature of T .

A “model of a theory” is specified by a model for the underlying type-structure,
term-signature, axioms and theorems.

3.4.1 Basic-theory

The “basic-theory” is the quadruple ({(bool, 0), (→, 2)}, {(=, α → α → bool)},
{Assumption, Reflexivity, Combination}, {}).

350 P. Audenaert

3.4.2 Standard-theory

The “standard-theory” is the quadruple ({(bool, 0), (→, 2), (ind, 0)}, {(=, α → α →
bool), (ε, (α → bool) → α), (CEXT , (α → β) → (α → β) → α), (F IND, ind →
ind), (CIND, ind)}, {Assumption, Reflexivity, Combination, Choice, Extensionality,
Individuals1, Individuals2}, {}).

We always assume theories to be standard, except when noted otherwise.

3.5 Extensions

A theory T ′ is called a “theory-extension” of a theory T if the following conditions
hold.

• StrucT ⊆ StrucT ′

• SigT ⊆ SigT ′

• AxiomsT = AxiomsT ′

• TheoremsT ⊆ TheoremsT ′

The extension of the type-structure and term-signature is discussed extensively
later on. We only accept definitional extensions, which means that new types and
terms can be introduced only by defining them using already constructed types
and terms. The proof of consistency becomes very clear this way, without losing
expressivity in the logic. Extending the set of axioms is not allowed, if we want
to guarantee consistency. The only way the set of theorems can be extended is by
deducing new sequents using the deduction-rules or by type-/term-extensions.

3.5.1 Type-structure-extension

It is useful to characterize new types using other already constructed types. A new
type is defined as a subset of an already existing type, and that subset is specified by
a predicate. To guarantee that the new type contains at least one element, we have
to provide a so-called witness, which fulfills the predicate. Under certain conditions
we can allow type-variables during this process.

We discuss the “type-extension” in greater detail. Assume a theory
T = (StrucT , SigT , AxiomsT , TheoremsT), and assume a type σ, a new type-name
ν and a list of type-variables αs = α1, . . . , αn. Assume a term-constant Pσ→bool and
a term tσ. Assume that the following conditions are fulfilled.

• tyvars(σ) ⊆ αs

• ⊢ Pt ∈ TheoremsT

We now define two new term-constants which we will call TOν
σ→(α1,...,αn)ν and

FROMν
(α1,...,αn)ν→σ. These map elements from one type to elements in the other

type. Consider the following two new sequents.

• Type Extensionν
1 : ⊢ Px = (FROMν(TOνx) = x)

The Higher-Order-Logic Formath 351

• Type Extensionν
2 : ⊢ TOν(FROMνx) = x

These sequents relate σ and (α1, . . . , αn)ν. The first theorem expresses that
we can map elements from the old type to elements in the new type, and af-
terwards return to the old type. We will get the original element back, if and
only if this element fulfills the predicate. The second theorem expresses that we
can map an element in the new type to an element in the old type, and after-
wards map this result back to the new type, always getting the original element
back. The new theory can be written as T ′ = (StrucT ∪ {(ν, n)}, SigT ∪ {(TOν,
σ → (α1, . . . , αn)ν), (FROMν , (α1, . . . , αn)ν → σ)}, AxiomsT , TheoremsT ∪
{TypeExtensionν

1, T ypeExtensionν
2}).

3.5.2 Term-signature-extension

It is useful to characterize new constant terms using other already constructed terms.
A new constant term is defined to be equal to another term. Under certain conditions
we can allow type-variables during this process.

We discuss the “term-extension” in greater detail. Assume a theory
T = (StrucT , SigT , AxiomsT , TheoremsT), and assume a type σ, a new term-name
c and a term tσ. Assume that the following conditions are fulfilled.

• tyvars(tσ) = tyvars(σ)

• tevars(tσ) = ∅

We then define the new term-constant cσ. Consider the following new sequent.

• Term Extensionc: ⊢ c = t

This sequent relates c and t. The new theory is T ′ = (StrucT , SigT ∪ {(c, σ)},
AxiomsT , TheoremsT ∪ {TermExtensionc}).

3.6 Soundness and Consistency

A theory is called “consistent” if not every sequent can be deduced. The existence
of a model of the theory is sufficient to get consistency. We thus start with the
standard-model and the standard-theory, and extend these by deducing sequents
and defining types/terms. We now have to show that these operations are “sound”,
which means that there will exist a model of the new theory, under condition that
there existed a model of the old theory. It is of prime importance that we consider
a standard-model, where type- and term-constants are interpreted standardly, as
already discussed.

352 P. Audenaert

3.6.1 Deduction-rules

We start by showing that the deduction-rules are sound.

Theorem: The deduction-rules are sound.
Proof:

• Equality Introduction. We have to show that from Γ1 |= Γ2 and Γ3 |= Γ4

follows that Γ1 − {p}, Γ3 − {q} |= p = q, Γ2 − {q}, Γ4 − {p}. Take some model
M such that for all t ∈ (Γ1−{p})∪(Γ3−{q}) holds that [[αs, xs.t]](Xs)(ys) = 1.
We distinguish four cases.

◦ It holds that [[αs, xs.p]](Xs)(ys) = [[αs, xs.q]](Xs)(ys) = 1. Then also
[[αs, xs.p = q]](Xs)(ys) = ([[αs, xs. =]](Xs)(ys))([[αs, xs.p]](Xs)(ys))
([[αs, xs.q]](Xs)(ys)) = 1, because the equality is interpreted standardly.

◦ It holds that [[αs, xs.p]](Xs)(ys) = [[αs, xs.q]](Xs)(ys) = 0. Then also
[[αs, xs.p = q]](Xs)(ys) = ([[αs, xs. =]](Xs)(ys))([[αs, xs.p]](Xs)(ys))
([[αs, xs.q]](Xs)(ys)) = 1.

◦ It holds that [[αs, xs.p]](Xs)(ys) = 1 and [[αs, xs.q]](Xs)(ys) = 0. Then
for all t ∈ Γ1 it also holds that [[αs, xs.t]](Xs)(ys) = 1. Thus there
will exist a t′ ∈ Γ2 such that [[αs, xs.t′]](Xs)(ys) = 1. Moreover, from
[[αs, xs.q]](Xs)(ys) = 0 it follows that t′ will be different from q and thus
t′ ∈ Γ2 − {q}.

◦ It holds that [[αs, xs.p]](Xs)(ys) = 0 and [[αs, xs.q]](Xs)(ys) = 1. Then
for all t ∈ Γ3 it also holds that [[αs, xs.t]](Xs)(ys) = 1. Thus there
will exist a t′ ∈ Γ4 such that [[αs, xs.t′]](Xs)(ys) = 1. Moreover, from
[[αs, xs.p]](Xs)(ys) = 0 it follows that t′ will be different from p and thus
t′ ∈ Γ4 − {p}.

• Equality Elimination. We have to show that from Γ1 |= Γ2 and Γ3 |= Γ4

follows that Γ1, Γ3 |= q, Γ2−{p}, Γ4−{p = q}. Take some model M such that
for all t ∈ Γ1 ∪ Γ3 it holds that [[αs, xs.t]](Xs)(ys) = 1. Then there will exist
a t′ ∈ Γ2 and a t′′ ∈ Γ4 such that [[αs, xs.t′]](Xs)(ys) = [[αs, xs.t′′]](Xs)(ys) =
1. If there does not exist a t′′′ ∈ (Γ2 − {p}) ∪ (Γ4 − {p = q}) such that
[[αs, xs.t′′′]](Xs)(ys) = 1 then t′ has to be equal to p and t′′ has to be equal
to p = q, and thus [[αs, xs.p]](Xs)(ys) = [[αs, xs.p = q]](Xs)(ys) = 1. Thus
follows [[αs, xs.q]](Xs)(ys) = 1.

• Type Instantiation. We prove the more general result that from Γ1 |= Γ2 it
follows that Γ1[αs/τs] |= Γ2[αs/τs]. Take some model M such that for all t′ ∈
Γ1[αs/τs] it holds that [[αs′, xs′.t′]](Xs′)(ys′) = 1. These t′ are related to the
corresponding t ∈ Γ1 as follows: [[αs′, xs′.t′]](Xs′)(ys′) = [[t]]([[αs′.τ1]](Xs′), . . . ,
[[αs′.τn]](Xs′))(ys′) = 1. Thus there exists a t′′ ∈ Γ2 such that [[t′′]]([[αs′.τ1]](Xs′),
. . . , [[αs′.τn]](Xs′))(ys′) = [[αs′, xs′.t′′′]](Xs′)(ys′) = 1 for the corresponding
t′′′ ∈ Γ2[αs/τs].

• Term Instantiation. We prove the more general result that from Γ1 |= Γ2

it follows that Γ1[xs/ts] |= Γ2[xs/ts]. Take some model M such that for
all t′ ∈ Γ1[xs/ts] it holds that [[αs, xs′.t′]](Xs)(ys′) = 1. These formulas
t′ are related to the corresponding formulas t ∈ Γ1 in the following way:

The Higher-Order-Logic Formath 353

[[αs, xs′.t′]](Xs)(ys′) = [[t]](Xs)([[αs, xs′.t1]](Xs)(ys′), . . . , [[αs, xs′.tm]](Xs)
(ys′)) = 1. Thus there exists a t′′ ∈ Γ2 such that [[t′′]](Xs)([[αs, xs′.t1]](Xs)(ys′),
. . . , [[αs, xs′.tm]](Xs)(ys′)) = [[αs, xs′.t′′′]](Xs)(ys′) = 1 for the corresponding
t′′′ ∈ Γ2[xs/ts].

• Beta-Reduction. We show that |= (λ.t1)t2 = t1[@
i/t2]. Take some model M,

then there holds [[αs, xs.(λ.t1)t2]](Xs)(ys) = ([[αs, xs.(λ.t1)]](Xs)(ys))
([[αs, xs.t2]](Xs)(ys)). Because λ-abstractions are interpreted standardly we
can rewrite this as [[αs, xs, x.t1[@

i/x]]](Xs)(ys, [[αs, xs.t2]](Xs)(ys)) =
[[αs, xs.t1[@

i/t2]]](Xs)(ys). Thus [[αs, xs.(λ.t1)t2 = t1[@
i/t2]]](Xs)(ys) = 1.

3.6.2 Axioms

We also have to show that the basic-axioms are fulfilled in the basic-model.

Theorem: The basic-axioms are sound.
Proof:

• Assumption. We have to show that x |= x. Take some model M such that
[[αs, xs.x]](Xs)(ys) = 1, then [[αs, xs.x]](Xs)(ys) = 1 trivially holds.

• Reflexivity. We have to show that |= x = x. Take some model M, then it
trivially holds that [[αs, xs.x = x]](Xs)(ys) = 1.

• Combination. We have to show that f = g, x = y |= fx = gy. Take some
model M such that [[αs, xs.f = g]](Xs)(ys) = [[αs, xs.x = y]](Xs)(ys) = 1.
Then also [[αs, xs.f]](Xs)(ys) = [[αs, xs.g]](Xs)(ys) and [[αs, xs.x]](Xs)(ys) =
[[αs, xs.y]](Xs)(ys). Thus ([[αs, xs.f]](Xs)(ys))([[αs, xs.x]](Xs)(ys)) =
([[αs, xs.g]](Xs)(ys))([[αs, xs.y]](Xs)(ys)). Thus [[αs, xs.fx]](Xs)(ys) =
[[αs, xs.gy]](Xs)(ys). Thus [[αs, xs.fx = gy]](Xs)(ys) = 1.

We also have to show that the standard-axioms are fulfilled in the standard-
model.

Theorem: The standard-axioms are sound.
Proof:

• Choice. We have to show that Px |= P (εP). Take some model M such
that [[αs, xs.Px]](Xs)(ys) = 1. This means that there exists an element
[[αs, xs.x]](Xs)(ys) that fulfills the predicate [[αs, xs.P]](Xs)(ys). Thus
[[αs, xs.εP]](Xs)(ys) is an element that fulfills the predicate [[αs, xs.P]](Xs)(ys),
because ε is interpreted standardly. It follows that [[αs, xs.P (εP)]](Xs)(ys) =
1.

• Extensionality. We have to show that f(CEXTfg) = g(CEXTfg) |= f = g.
Take some model M for the antecedent [[αs, xs.f(CEXT fg) = g(CEXTfg)]]
(Xs)(ys) = 1. Assume there exists a [[αs, xs.x]](Xs)(ys) for which it holds that
([[αs, xs.f]](Xs)(ys))([[αs, xs.x]](Xs)(ys)) 6= ([[αs, xs.g]](Xs)(ys))([[αs, xs.x]]
(Xs)(ys)). Then [[αs, xs.CEXT fg]](Xs)(ys) also has to be such an element, be-
cause CEXT is interpreted standardly. Thus follows that ([[αs, xs.f]](Xs)(ys))
([[αs, xs.CEXT fg]](Xs)(ys)) 6= ([[αs, xs.g]](Xs)(ys))([[αs, xs.CEXTfg]](Xs)(ys)),

354 P. Audenaert

and thus also [[αs, xs.f(CEXT fg) = g(CEXTfg)]](Xs)(ys) = 0, which is con-
tradictory. Thus there does not exist a [[αs, xs.x]](Xs)(ys) for which
([[αs, xs.f]](Xs)(ys))([[αs, xs.x]](Xs)(ys)) 6= ([[αs, xs.g]](Xs)(ys))([[αs, xs.x]]
(Xs)(ys)), thus [[αs, xs.f]](Xs)(ys) = [[αs, xs.g]](Xs)(ys). It follows that
[[αs, xs.f = g]](Xs)(ys) = 1.

• Individuals1. We have to show that F INDx = F INDy |= x = y. Take some
model M such that [[αs, xs.F INDx = F INDy]](Xs)(ys) = 1. Then holds that
[[αs, xs.F INDx]](Xs)(ys) = [[αs, xs.F INDy]](Xs)(ys), and thus ([[αs, xs.F IND]]
(Xs)(ys))([[αs, xs.x]](Xs)(ys)) = ([[αs, xs.F IND]](Xs)(ys))([[αs, xs.y]](Xs)(ys)),
thus also [[αs, xs.x]](Xs)(ys) = [[αs, xs.y]](Xs)(ys), because F IND is inter-
preted standardly. It follows that [[αs, xs.x = y]](Xs)(ys) = 1.

• Individuals2. We have to show that CIND = F INDx |= y. Take some
model M such that [[αs, xs.CIND = F INDx]](Xs)(ys) = 1. Thus follows
[[αs, xs.CIND]](Xs)(ys) = ([[αs, xs.F IND]](Xs)(ys))([[αs, xs.x]](Xs)(ys)), which
is contradictory, because CIND is interpreted standardly. Thus there does not
exist a model M for which [[αs, xs.CIND = F INDx]](Xs)(ys) = 1. For all
these non-existent models of course also [[αs, xs.y]](Xs)(ys) = 1.

3.6.3 Extensions

We also have to show that the type- and term-extensions are sound.

Theorem: The extensions are sound.
Proof:

• Type-extension. We have to show that the theory T ′ is consistent. Take some
model M of the theory T . We construct a model M′ of the new theory by
interpreting the new type- and term-constants in the universe.

We have ⊢ Pt ∈ TheoremsT . Thus the subset of [[αs.σ]](Xs) which is defined
by [[αs.P]](Xs) is not empty, and thus it exists in the universe U . We interpret
[[αs.(α1, . . . , αn)ν]](Xs) as this subset. This is possible because tyvars(σ) ⊆
αs.

Consider the set of functions which map elements in [[αs.σ]](Xs) to elements
in [[αs.(α1, . . . , αn)ν]](Xs). Consider the functions in this set which map all
elements in the subset of [[αs.σ]](Xs) defined by [[αs.P]](Xs) canonically to
[[αs.(α1, . . . , αn)ν]](Xs). We interpret TOν as any such function. We interpret
FROMν as the function which maps all elements in the set [[αs.(α1, . . . , αn)ν]]
(Xs) canonically to [[αs.σ]](Xs).

We now prove the two additional theorems about the constants TOν and
FROMν . Take some element [[αs, xs.x]](Xs)(ys) ∈ [[αs.σ]](Xs). The function
[[αs.TOν]](Xs) will map this element canonically to the element [[αs, xs.TOνx]]
(Xs)(ys) ∈ [[αs.(α1, . . . , αn)ν]](Xs) if and only if the element fulfills the pred-
icate [[αs.P]](Xs), i.e. [[αs, xs.Px]](Xs)(ys) = 1. The function [[αs.FROMν]]
(Xs) maps [[αs, xs.TOνx]](Xs)(ys) canonically to the element
[[αs, xs.FROMν(TOνx)]](Xs)(ys) ∈ [[αs.σ]](Xs). Thus follows that [[αs,
xs.FROMν(TOνx)]](Xs)(ys) = [[αs, xs.x]](Xs)(ys) if and only if it holds that

The Higher-Order-Logic Formath 355

[[αs, xs.Px]](Xs)(ys) = 1. Thus it holds that [[αs, xs.Px = (FROMν(TOνx) =
x)]](Xs)(ys) = 1.

Now take some element [[αs, xs.x]](Xs)(ys) ∈ [[αs.(α1, . . . , αn)ν]](Xs). The
function [[αs.FROMν]](Xs) maps this element canonically to the element
[[αs, xs.FROMνx]](Xs)(ys) ∈ [[αs.σ]](Xs). This element of course fulfills
the predicate [[αs.P]](Xs), i.e. [[αs, xs.P (FROMνx)]](Xs)(ys) = 1. Thus
the function [[αs.TOν]](Xs) maps this element canonically to the element
[[αs, xs.TOν(FROMνx)]](Xs)(ys) ∈ [[αs.(α1, . . . , αn)ν]](Xs).Thus it holds that
[[αs, xs.TOν(FROMνx)]](Xs)(ys) = [[αs, xs.x]](Xs)(ys). Thus follows that
[[αs, xs.TOν(FROMνx) = x]](Xs)(ys) = 1.

• Term-extension. We have to show that the theory T ′ is consistent. Take some
model M of the theory T . We construct a model M′ of the new theory by in-
terpreting the new term-constant c as M′(c, σ) = [[t]]. This is possible because
tyvars(tσ) = tyvars(σ) and tevars(tσ) = ∅. Thus [[αs, xs.c = t]](Xs)(ys) = 1.

We thus get that the Formath-logic is sound, and the deduced theories are con-
sistent.

4 Discussion

In this section we discuss a few traditional systems for Higher-Order-Logic. We
compare these with Formath, at the same time highlighting both positive and neg-
ative aspects of the new rules and axioms. In general, we can say that Formath was
not meant to be a competitor to other systems, but rather an alternative formaliza-
tion of Higher-Order-Logic: we tried to rework Hol to obtain a clean and beautiful
definition which is appealing to the mathematician. As such, we hope that the nice
structure of our formalization will attract the reader’s attention. As will become
clear below, main principles while designing Formath were orthogonality and sym-
metry of rules and axioms, cleanliness of code, a very small core, and equiconsistency
with the other main-stream Hol distributions.

To ensure readability and a consistent notation for all systems, we make use of
the traditional way of writing terms, i.e. without the syntactical distinction between
free and bound variables.

4.1 Hol-4 and Hol-Light

We inspect the systems Hol-4 and Hol-Light in depth, to get insight in the structure
of Higher-Order-Logic. Hol-4 is the best-known Hol-implementation. Hol-Light is a
reworked version of Hol-4.

356 P. Audenaert

4.1.1 Definition of Hol-4

The tool Hol-4 [16] is the latest version in a series of automatized proofsystems for
Higher-Order-Logic. In this environment we can deduce theorems and declare proof-
strategies. Lots of built-in procedures can be used to prove automatically simple
theorems. The tool uses traditional λ-calculus: there is no syntactical distinction
between free and bound variables. Consequents contain exactly one formula. The
environment is developed in Moscow-ML [25].

Deduction-rules

Hol-4 uses the following deduction-rules.

• Disch:
Γ ⊢ q

Γ − {p} ⊢ p ⇒ q

• Mp:
Γ1 ⊢ p Γ2 ⊢ p ⇒ q

Γ1, Γ2 ⊢ q

• Inst Type:
Γ ⊢ p

Γ ⊢ p[αs/σs]
None of the αi ∈ αs may occur in Γ, and we possibly have to rename some
variables in p, to avoid identifying distinct variables after instantiation.

• Subst:
Γ1 ⊢ t1 = t′1 . . . Γn ⊢ tn = t′n Γ ⊢ p[t1, . . . , tn]

Γ1, . . . , Γn, Γ ⊢ p[t′1, . . . , t
′
n]

The term p[t1, . . . , tn] is a formula p in which we choose a few occurrences of
t1, . . . , tn. The term p[t′1, . . . , t

′
n] is the formula p in which the chosen occur-

rences of t1, . . . , tn are replaced by t′1, . . . , t
′
n. We possibly have to rename some

bound variables in p, to avoid that some free variables in t′1, . . . , t
′
n suddenly

get bound after substitution.

• Beta Conv: ⊢ (λx.t1)t2 = t1[x/t2]
We possibly have to rename some bound variables in t1, to avoid that some
free variables in t2 suddenly get bound after substitution.

• Assume: p ⊢ p

• Refl: ⊢ t = t

• Abs:
Γ ⊢ t1 = t2

Γ ⊢ (λx.t1) = (λx.t2)
Here the variable x may not occur free in Γ.

The actual implementation of the system includes other deduction-rules as well.

Axioms

Hol-4 uses the following axioms.

• Select Ax: ⊢ ∀Px.Px ⇒ P (εP)

• Eta Ax: ⊢ ∀f.(λx.fx) = f

• Infinity Ax: ⊢ ∃f.One Onef ∧ ¬Ontof

• Imp Antisym Ax: ⊢ ∀pq.(p ⇒ q) ⇒ (q ⇒ p) ⇒ (p = q)

• Bool Cases Ax: ⊢ ∀p.(p = T) ∨ (p = F)

The Higher-Order-Logic Formath 357

One has, since introducing this logic, shown that the axiom Imp Antisym Ax
is dependent from the other parts of the system, and in fact this axiom is now
proved in the Hol-4 system. The logical operators have their usual interpretation,
and One One resp. Onto are predicates expressing injectivity resp. surjectivity of
functions.

Extensions

Hol-4 permits theory-extensions by type-definition, term-definition and term-specifi-
cation. The first two are analogous to the permitted extensions in Formath. Term-
specification permits the introduction of new term-constants by specifying properties
of these new constants.

4.1.2 Definition of Hol-Light

The tool Hol-Light [18] is an entirely new reimplementation of Higher-Order-Logic.
In comparison with the other systems for Hol we can mention that Hol-Light’s core
is cleaner, but has equal power. The tool also uses traditional λ-calculus and con-
sequents also contain exactly one formula. The version 1.0 of Hol-Light, which we
used, is developed in Caml-Light [11]. Currently, a new and improved version 2.20
is available.

Deduction-rules

Hol-Light uses the following deduction-rules.

• Deduct Antisym Rule:
Γ1 ⊢ p Γ2 ⊢ q

Γ1 − {q}, Γ2 − {p} ⊢ p = q

• Eq Mp:
Γ1 ⊢ p Γ2 ⊢ p = q

Γ1, Γ2 ⊢ q

• Inst Type:
Γ ⊢ p

Γ[αs/σs] ⊢ p[αs/σs]

• Inst:
Γ ⊢ p

Γ[xs/ts] ⊢ p[xs/ts]

• Beta: ⊢ (λx.t)x = t

• Assume: p ⊢ p

• Refl: ⊢ t = t

• Mk Comb:
Γ1 ⊢ f = g Γ2 ⊢ x = y

Γ1, Γ2 ⊢ fx = gy

• Abs:
Γ ⊢ t1 = t2

Γ ⊢ (λx.t1) = (λx.t2)
Here the variable x may not occur free in Γ.

• Trans:
Γ1 ⊢ t1 = t2 Γ2 ⊢ t2 = t3

Γ1, Γ2 ⊢ t1 = t3

It is known that the rule Trans is dependent from the other parts of the system
[14], but the system slows down by ±10% without it, which explains its inclusion.

358 P. Audenaert

Axioms

Hol-Light uses the following axioms.

• Select Ax: ⊢ ∀Px.Px ⇒ P (εP)

• Eta Ax: ⊢ ∀f.(λx.fx) = f

• Infinity Ax: ⊢ ∃f.One Onef ∧ ¬Ontof

Extensions

Hol-Light permits theory-extensions by type- and term-definition. These are analo-
gous to the permitted extensions in Formath.

4.1.3 Analysis of Hol-4, Hol-Light and Formath

After having described the different systems, we now examine them in more detail.
We developed the insights below by experimenting with lots of different sets of rules
and axioms, to learn which are dependent from others and to get an idea of their
expressivity. Some ideas developed from corresponding with J. Harrison [14], the
designer of Hol-Light, and L. Théry [28].

• The usual systems for Higher-Order-Logic do not make a syntactical distinc-
tion between free and bound term-variables. Consequently, one has to check
whether free variables do not suddenly get bound during instantiation or sub-
stitution. Moreover, in any implementation these checks have to be built in
the core of the logic system, which is to be avoided. In Formath, we make a
syntactical distinction between free and bound variables. Let us have a closer
look at this decision.

The problem of free-variable-capture is well-known, although it has taken a
long time before it was understood how it could be tackled. Most formal
languages do not make a syntactical distinction between free and bound vari-
ables, which sometimes leads to awkward situations and misleading formulas.
“Famous logicians have made embarrassing errors here” [1]. Some people
suggested using “de Bruijn-indices”, which are in this context an implemen-
tation issue: they are covered by code. Working internally with pointers or
object-references can be more efficient than performing the necessary syntac-
tical checks. However, this solution is not entirely satisfactory because pure
“de Bruijn-indices” often make life difficult while implementing them.

To get rid of the problem of free-variable-capture, without having to implement
traditional “de Bruijn-indices”, we decided to make a syntactical distinction
between free and bound variables using explicit indices. We consider this
a handy way of avoiding any problems during instantiation or substitution.
For example, to type-check a term using a recursive descent it is sufficient to
maintain a simple list (containing the types of the bound variables), and to
β-reduce a term all one needs is a simple counter (to count the number of λ-
abstractions). In our opinion, the implementation was quite straightforward;
at least easier than implementing pure “de Bruijn-indices”, or the necessary
syntactical checks during instantiation or substitution using the conventional
notation.

The Higher-Order-Logic Formath 359

Debates about the (dis-)advantages of the respective approaches often rely on
subjective arguments, as the recent comparison by S. Berghofer and C. Urban
[10] shows. They conclude that the merits of the different approaches depend
on which goal one pursues. Another study was done by F. Kamareddine and
A. Rios [23].

Concluding, we can say that both approaches have arguments pro and contra.
Moreover, the choice made does not influence the power of the logic in se at
all. In our opinion, it is a matter of personal taste. In fact, the first versions
of Formath used the conventional style, but at some point we decided to take
the current approach.

• There exist lots of different calculi for logic systems, such as natural-deduction-
style, sequent-style and tableaux-style. In Formath, we opt for a sequent-style
using several consequent-formulas. This is an extension of the traditional
way of working, which is quite intuitive compared to permitting only a sin-
gle consequent-formula. It integrates easily in a prover for building proofs
backwards, and also provides a nice symmetry between antecedent and con-
sequent. Our deduction-rules are based on traditional rules, but tuned to the
new sequent-style (e.g. Equality Introduction or Equality Elimination).

• In Hol-4, the link between antecedent- and consequent-formulas follows from
Disch and Mp, using implication. This term-constant is added to the system as
a basic constant. The corresponding rules in Hol-Light resp. Formath, namely
Deduct Antisym Rule and Eq Mp resp. Equality Introduction and Equality
Elimination use equality instead of implication, nicely achieving the same ex-
pressivity. Note that Imp Antisym Ax from Hol-4, Deduct Antisym Rule from
Hol-Light and Equality Introduction from Formath express the same idea.

• Type- and term-instantiations using Inst Type and Inst allow to instantiate
several different variables simultaneously, which might complicate the code
for these rules. We allow only single instantiations in the Formath-rules Type
Instantiation and Term Instantiation. This slows down the process of checking
theorems, but speed is not of prime importance to us if we can achieve simpler
code.

• The rule Subst in Hol-4 is quite complicated, and is, in our opinion, too com-
plex for being a basic rule. Both Hol-Light and Formath use instantiation
instead of substitution, which appears cleaner because term-variables are re-
ally schematic. Implementing instantiation is easy. This approach is analogous
to type-instantiation, serving the symmetry of the system.

• However, due to exchanging Subst by Term Instantiation we have to add
the extra axiom Combination to Formath. Hol-Light uses the rule Mk Comb
to the same purpose. In Hol-4 the link between equal functions and equal
arguments after function-application is trivial by Subst, but both Hol-Light
and Formath have to express that the results are equal too. This is a basic
statement following from the semantics, and thus we chose to axiomatize this
fact, instead of deducing it from a rule.

• In the systems Hol-4 and Hol-Light the rules Assume, Refl, Mk Comb,. . . are
implemented using ML-functions. If you call the function “Assume” with
some formula p as argument, it returns the sequent p ⊢ p. In some sense

360 P. Audenaert

these functions generate theorems. The number of functions which are able
to generate theorems is to be minimized, in order to obtain maximal safety
for any implementation of our logic. Formath uses an axiom x ⊢ x, and every
time we want to deduce a sequent p ⊢ p, we just instantiate the term p for the
variable x in the axiom. We can do this using the rule for term-instantiation,
which is to be kept in the system anyway. Instead of a piece of code which
is executed time after time with different arguments and which dynamically
generates lots of theorems, we keep one single theorem, which can be inspected
statically for errors. This way we try to limit the total number of lines of code
which can be executed, but have to accept a slow-down of the system.

• We chose for a straightforward introduction of the set of Individuals instead
of using the Dedekind-definition of an infinite set, axiomatized by Infinity Ax,
as done in Hol-4 and Hol-Light. Using the constants CIND and F IND we
have the two axioms Individuals1 and Individuals2 defining together a denu-
merable/countable infinite subset of the set Individuals which itself might be
non-denumerable/not countable.

• Both Hol-4 and Hol-Light introduce a few elementary and general definitions
before writing down the axioms which use these constants, for example Se-
lect Ax. This approach is certainly correct, but did not appear flexible to
us; what if we want to use an alternative definition for some basic connec-
tives? In Formath we start with a basic-model, from which the definitions for
the standard-model are strictly separated. To express the Formath-axioms we
only have to specify the relevant constants without additional general defini-
tions. Introducing the constants is always strictly linked to introducing the
respective axioms, and as such we are able to choose very accurately which
constants and properties we assume and which we do not. This way of working
needed a reformulation of the axioms, and resulted in a separation between
the basic- and standard-system throughout the whole design of Formath. One
can contrast this approach to the one of Hol-4, where, for example, one defines
the existential quantor ⊢ ∃ = (λP.P (εP)), mixing a traditional constant and
the axiom of choice.

• Of course, the entire Higher-Order-Logic can be built up using only combina-
toric terms, without λ-expressions, which are in this sense “syntactic sugar”:
they are useful only because they improve readability. Traditional systems
use the rule Abs, apart from the rule Beta Conv in Hol-4 and the Beta-rule
in Hol-Light, which can be seen as definitions for λ-expressions. By reformu-
lating the principle of extensionality via the axiom Extensionality, it becomes
possible to deduce Abs itself. Thus, in axiomatizing Formath we only need a
single λ-expression in the rule Beta-Reduction. One can remove this rule, if
one also adjusts the theorem Term Extension accordingly.

• The axiom Extensionality needs some additional explanation. The principle
of extensionality says that two functions are equal to each other if the result
of applying one of these functions to some argument is always equal to the
result of applying the other function to the same argument. Traditionally
this is expressed by Eta Ax using η-reductions. In Formath we want to avoid
the use of λ, aiming at one single λ-expression in the entire logic (namely in

The Higher-Order-Logic Formath 361

Beta-Reduction). Using Eta Ax it is also not possible to express extensionality
between any two functions: we have to link a λ-function to its defining term.
We now explain how we developed our axiom Extensionality, and also discuss
some alternatives.

◦ We can introduce extensionality using a rule, instead of the axioms Eta Ax
or Extensionality. We write down this rule for example as follows.

Γ ⊢ fx = gx
Γ ⊢ f = g

Here x may not occur in Γ, f or g. The symbols Γ, f , g and x are of course
meta-variables, together with the restriction that x has to be instantiated
by a variable. We do not consider this way of working because we want to
try to minimize the amount of executable code, instead of adding another
deduction-rule.

◦ We can introduce extensionality using an axiom, instead of a rule. We
also don’t want to use any λ, but on the opposite side we want to ex-
press extensionality between any two functions f and g. We can think
of some new, unspecified constant CEXT which is used in the new ax-
iom fCEXT = gCEXT ⊢ f = g. Indeed, we can’t deduce anything about
CEXT because we don’t know this constant, and thus if fCEXT = gCEXT

it also has to hold that f = g. However, this axiom, taken together with
the other rules and axioms, results in an inconsistent system. Indeed,
suppose that we instantiate f resp. g by the bool → bool-functions λx.T
(here T means the value True) resp. λx.(x = CEXT). We then get
(λx.T)CEXT = (λx.(x = CEXT))CEXT ⊢ (λx.T) = (λx.(x = CEXT)).
Thus follows T = (CEXT = CEXT) ⊢ (λx.T) = (λx.(x = CEXT)) and
thus ⊢ (λx.T) = (λx.(x = CEXT)). The constant CEXT is interpreted
as T or F (here F means False), because our semantics interprets the
set of booleans as a set containing only two elements. A case-analysis
gives on one side ⊢ (λx.T)F = (λx.(x = T))F and analogously on the
other side ⊢ (λx.T)T = (λx.(x = F))T by function-application using the
argument F resp. T . Thus follows in the first case ⊢ T = (F = T) and
in the second case ⊢ T = (T = F), which is inconsistent twice.

◦ A consistent solution is found by parameterizing CEXT by f and g them-
selves, which invalidates the scheme above and results in the axiom Ex-
tensionality which was already introduced.

• In Hol-Light one can deduce that the logic is classical by means of the axiom
of choice Select Ax. To that aim, one has to use the infinitary version of the
disjunction ⊢ ∨ = (λpq.∀r.(p ⇒ r) ⇒ (q ⇒ r) ⇒ r) to define the existential
quantor ⊢ ∃ = (λP.∀q.(∀x.(Px ⇒ q)) ⇒ q). In Hol-4, an additional axiom
Bool Cases Ax is introduced. In Formath, classicality of the logic automat-
ically follows from using sets of consequent-formulas. We deduce this in a
semi-formal way, as the entire proof is rather long.

362 P. Audenaert

1 x ⊢ x Assumption −
2 F ⊢ F TermInstantiation 1
3 ⊢ x = F, x, F EqualityIntroduction 1, 2
4 x ⊢ x, F EqualityElimination 1, 3
5 ⊢ x, x ⇒ F Discharge 4
6 ⊢ x,¬x ¬ − Definition 5

This means, of course, that Formath does not let you choose between working
classically or constructively.

As is clear from the discussion above, we tried to stick to our main principles as
much as possible while designing Formath. We believe that we achieved our goals,
although by times we had to make some hard decisions while extracting the best
ideas from both Hol-4 and Hol-Light.

4.2 Porting theorems

The usability of a logic not only depends on the syntax, semantics, deduction-rules,
axioms or principles of extension. The availability of a large library of many useful
theorems is at least as important. Therefore we ported the entire Hol-Light library
to Formath. Indeed, this library is structured very well and contains lots of inter-
esting types (booleans, pairs, lists, natural numbers,. . .) and deductions (amongst
which the Fundamental Theorem of Calculus). Checking these 2178 theorems takes
exactly 3126636 inferences using the Hol-Light-logic, in contrast to 8399559 using
the Formath-logic, resulting in a factor ±2.7.

Maybe it is worthwhile to explain how we ported the Hol-Light library to For-
math. Above the core of Hol-Light we defined functions which implement the
deduction-rules from Formath, and we proved the Formath-axioms, using the deduc-
tion-rules and axioms from Hol-Light. Next, we reimplemented the deduction-rules
from Hol-Light, and proved the Hol-Light axioms, using only the already imple-
mented Formath-rules and Formath-axioms. After this, we could run all the proofs
from the Hol-Light library, through both the Hol-Light layer and the Formath
layer. In the Formath layer we could write out all inferences, to check them in
a separate/stand-alone implementation of Formath. Moreover, this way of working
immediately gives a proof of the equiconsistency of Hol-Light and Formath. Indeed,
these systems are equivalent.

Porting entire libraries of theorems is a rare thing. Only a few prooftools are
able to import deductions from other systems. That is a pity, because it saves a lot
of work, and can provide a nice addition to a system. The latest version of Hol-Light
facilitates the process of porting theorems, using “proofrecording”. At the time we
performed above experiments this package was not included in the distribution yet,
so we had to write our own code to extract the theorems. Some other more recent
work on porting Hol-theorems was done by S. McLaughlin [24] and S. Obua [26].

The Higher-Order-Logic Formath 363

4.3 Examples

We will now give a few example definitions and derivations in Formath. First we pro-
vide the definitions of a few typical logical constants. We assume an infix-notation
for the equality, and we have omitted the types to ensure readability, although these
can sometimes be quite complicated, e.g. the definition of T actually is

⊢ Tbool =bool→bool→bool

(=bool→bool→bool=(bool→bool→bool)→(bool→bool→bool)→bool=bool→bool→bool)
instead of the short form below.

• ⊢ T = (===)

• ⊢ ∧ = (λpq.(λf.fpq) = (λf.fTT))

• ⊢⇒= (λpq.p ∧ q = p)

• ⊢ ∀ = (λP.(P = λx.T))

• ⊢ ∨ = (λpq.∀r.(p ⇒ r) ⇒ (q ⇒ r) ⇒ r)

• ⊢ F = (∀p.p)

• ⊢ ¬ = (λp.(p ⇒ F))

• ⊢ ∃ = (λP.¬∀x.¬Px)

Of course, other definitions are possible as well.
As a first example derivation we provide the proof for the following rule which

allows to add any formula to the consequent of a sequent.

Γ1 ⊢ Γ2

Γ1 ⊢ Γ2, p

Of course, this does not make sense in the case that already p ∈ Γ2, so in the
following proof we assume that Γ2 − {p} = Γ2.

1 Γ1 ⊢ Γ2 Hypothesis −
2 ⊢ x = x Reflexivity −
3 ⊢ p = p TermInstantiation 2
4 Γ1 ⊢ Γ2, p EqualityElimination 1, 3

The next example proves the symmetry of equality, namely x = y ⊢ y = x. From
this it is easy to prove that ⊢ ∀xy.(x = y) = (y = x). The deduction is presented in
a semi-formal way, as the entire proof is rather long (e.g. we dropped applications
of the rule Type Instantiation). Moreover, to avoid ambiguity we do not use the
infix-notation for the equality.

1 = fg,= xy ⊢ = (fx)(gy) Combination −
2 ===,= xy ⊢ = (= x)(= y) TermInstantiation 1
3 ⊢ = xx Reflexivity −
4 ⊢ === TermInstantiation 3
5 = xy ⊢ = (===)(= (= x)(= y)) EqualityIntroduction 2, 4
6 = xy ⊢ = (= x)(= y) EqualityElimination 4, 5
7 = (= x)(= y),= xx ⊢ = (= xx)(= yx) TermInstantiation 1
8 = (= x)(= y) ⊢ = (= xx)(= (= xx)(= yx)) EqualityIntroduction 3, 7
9 = (= x)(= y) ⊢ = (= xx)(= yx) EqualityElimination 3, 8
10 = (= x)(= y) ⊢ = yx EqualityElimination 3, 9
11 = xy ⊢ = (= (= x)(= y))(= yx) EqualityIntroduction 6, 10
12 = xy ⊢ = yx EqualityElimination 6, 11

364 P. Audenaert

As a last example, we carve out the naturals from the Individuals using the
inductive definition λx.∀P.((PC ∧ ∀y.(Py ⇒ P (Fy))) ⇒ Px), which is nothing but
a characteristic predicate with witness C. More information about inductive type-
and term-definitions in Hol can be found in the paper by J. Harrison [13]. This way
we developed all usual types and constants in Formath.

4.4 Applications and Rationale for Formath

We will now proceed by discussing the main application of our new logic. Formath
was developed for our PhD-thesis [6], which was about proving software correct.

We wanted to develop a new environment for building software which can’t fail.
Therefore, we designed a new functional programming language from scratch, which
we baptized Alfred, an acronym for Another Language for Lazy Functional REDuc-
tion. This language has some unique features, e.g. it has only one built-in function,
which is used to steer the order of evaluation. All data-types (booleans, pairs, lists,
natural numbers,. . .) and functions operating on these data (for evaluating boolean
expressions, comparing pairs, appending lists, adding numbers,. . .) are built up us-
ing user-defined combinators, much in the style of Combinatory Logic [9]. This way,
all data and functions are constructed in layers, one above the other. A complete
hierarchy was built, and at this moment Alfred is a fully-fledged general-purpose
programming language.

We started proving that our Alfred-library contains only correct code, by speci-
fying and verifying all layers using the prooftool PVS [27]. Therefore we designed an
Alfred-compiler, which on one side can translate Alfred-sources to executable bina-
ries, and on the other side translate the same sources to PVS-specifications. For sim-
ple combinators the compiler also provides correctness proofs, i.e. PVS-proofscripts.
Needless to say that it is not possible to compile every Alfred-function to a decent
logical specification of that function, let alone generate the accompanying proof of
correctness. . .

So although this way of working was more or less fine, there were some de-
fects to our approach, e.g. we did not have access to the full PVS-sources, which
obstructed developing a fine-tuned environment. Even more, PVS allows on-the-
fly axioms, which implies that not all types and terms are effectively constructed.
The system seemed big and inflexible to us, so eventually we decided to migrate to
other prooftools. After looking at Hol-4 and Hol-Light, which are open-source and
more safe, we thought about developing our own proofchecker. Indeed, Hol-4 and
Hol-Light are very decent systems, but instead of relying on Moscow-ML or Caml-
Light, why not implementing a verifier for Higher-Order-Logic in our programming
language Alfred, and maybe verify the verifier itself [15]? We started coding this
proofchecker, but after some time it became clear that some parts of the Hol-logic
could be reworked, at the same time heading towards some of our principles of de-
sign which we mentioned above. We ended by redesigning the total core, using lots
of ideas from both PVS, Hol-4 and Hol-Light.

It is a good question to ask whether it was worthwhile and necessary to spend
time to rework the core of Hol, considering the excellent systems Hol-4 and Hol-
Light. We hope that the above discussion of the structure underlying Formath has
convinced the mathematical reader of our system’s own merits.

The Higher-Order-Logic Formath 365

At this moment we work on an integrated environment, which allows writing
Alfred-code, together with Formath-annotations, and immediately proving the nec-
essary theorems to establish the correctness of the code, much in the spirit of ACL2
[2]. Although the system is still in an experimental phase, the results seem to be
promising. Indeed, both Alfred and Formath are built up using layers, which of
course are tuned to each other. The tools match each other well, which facilitates
the burden of proving software correct. Starting from a very small core in both Al-
fred and Formath, the code-library and proof-library are built up next to each other,
providing a tight coupling between formal specifications and actual implementations
in every layer. This way we hope to develop a nice environment to design and verify
source-code for large software-projects.

5 Conclusion

We introduced a new formalization of Hol, called Formath, and discussed the syn-
tax, semantics, deduction-rules, axioms and principles of extension, after which we
proved soundness and consistency. We discussed the main similarities and differ-
ences between the systems Hol-4, Hol-Light and Formath, provided example proofs,
and talked about porting theorems to the Formath library and its applications to
verifying software.

Main principles while designing Formath were orthogonality and symmetry of
rules and axioms, cleanliness of code, a very small core, and equiconsistency with
the other main-stream Hol distributions. We believe that we achieved these goals,
and hope to attract the mathematician’s interest by having designed an appealing
definition of Higher-Order-Logic.

Currently we are developing an integrated environment which allows construction
of correct software in a straightforward manner using Formath. Building up both
formal specifications and actual implementations, layer above layer, makes it possible
to develop an entirely checked library of source-code, which will allow us to design
and verify source-code for large software-projects.

Acknowledgment

The author wants to thank Ghent University for funding his work, and H. Blontrock,
A. Hoogewijs and the anonymous referees for their suggestions.

References

[1] H. Abelson, G. Sussman, J. Sussman, Structure and Implementation of Com-
puter Programs, Second Edition, The MIT Press, 1996.

[2] ACL2, http://www.cs.utexas.edu/users/moore/acl2

[3] P. Audenaert, Formele Specificaties in PVS, Master-Thesis, Ghent University,
2000.

366 P. Audenaert

[4] P. Audenaert, Higher-Order Partial Predicates in PVS, Proceedings of the Sixth
Dutch Prooftool Day, Utrecht, 2002.

[5] P. Audenaert, Memory Modeling in PVS, Invited Contribution, Proceedings of
the Fifth Dutch Prooftool Day, Ghent, 2000.

[6] P. Audenaert, Specificatie en Verificatie van Functionele Programmatuur in
Hogere-Orde-Logica, PhD-Thesis, Ghent University, 2004.

[7] P. Audenaert, Toward a Generic Verified Prooftool, Supplemental Proceedings
of the Fourteenth International Conference on Theorem Proving in Higher Or-
der Logics, Edinburgh, 2001.

[8] P. Audenaert, Verifying Alfred-Code in PVS, Proceedings of the Seventh Dutch
Prooftool Day, Amsterdam, 2003.

[9] H. Barendregt, The Lambda Calculus, its Syntax and Semantics, Studies in
Logic, Volume 103, North-Holland Publishing Company, 1981.

[10] S. Berghofer, C. Urban, A Head-to-Head Comparison of de Bruijn Indices and
Names, Proceedings of the International Workshop on Logical Frameworks and
Meta-Languages: Theory and Practice, Seattle, 2006.

[11] Caml-Light, http://caml.inria.fr

[12] A. Church, A Formulation of the Simple Theory of Types, Journal of Symbolic
Logic, Volume 5, 1940.

[13] J. Harrison, Inductive Definitions: Automation and Application, Proceedings
of the Eighth International Workshop on Higher Order Logic Theorem Proving
and its Applications, Utah, 1995.

[14] J. Harrison, Private Communication, 2003.

[15] J. Harrison, Towards Self-Verification of HOL Light, Proceedings of the Third
International Joint Conference on Automated Reasoning, Seattle, 2006.

[16] Hol-4, http://hol.sourceforge.net

[17] Hol-4 System Description, http://hol.sourceforge.net

[18] Hol-Light, http://www.cl.cam.ac.uk/users/jrh/hol-light

[19] A. Hoogewijs, P. Audenaert, A PVS-Proof for a Memory Modeling Problem is
a Proof!, The Bulletin of Symbolic Logic, Volume 8, Number 1, 2002.

[20] A. Hoogewijs, P. Audenaert, Combinatory Logic, a Bridge to Verified Programs,
The Bulletin of Symbolic Logic, Volume 10, Number 2, 2004.

[21] A. Hoogewijs, P. Audenaert, Formath: Higher-Order Logic Revised, The Bul-
letin of Symbolic Logic, Volume 11, Number 2, 2005.

The Higher-Order-Logic Formath 367

[22] A. Hoogewijs, P. Audenaert, Implementing Undefinedness in a Two-Valued
Prooftool through a Four-Valued Kleene Logic, The Bulletin of Symbolic Logic,
Volume 9, Number 1, 2003.

[23] F. Kamareddine, A. Rios, Pure Type Systems with de Bruijn Indices, The
Computer Journal, Volume 45, Number 2, 2002.

[24] S. McLaughlin, An Interpretation of Isabelle/HOL in HOL Light, Proceedings
of the Third International Joint Conference on Automated Reasoning, Seattle,
2006.

[25] Moscow-ML, http://www.dina.dk/˜sestoft/mosml.html

[26] S. Obua, S. Skalberg, Importing HOL into Isabelle/HOL, Proceedings of the
Third International Joint Conference on Automated Reasoning, Seattle, 2006.

[27] PVS, http://pvs.csl.sri.com

[28] L. Théry, Private Communication, 2003.

Department of Pure Mathematics and Computer Algebra
Ghent University
Galglaan 2, S22
9000 Ghent
Belgium
email : paudenae@cage.ugent.be

