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Abstract

In [4], Ochsenius and Schikhof ask the following question. Given a totally
ordered group G with a cofinal sequence, if every element of its Dedekind
completion G# is the supremum of a sequence in G, does it follow that G#

is metrizable? We answer their question by studying topological properties
of a family of totally ordered groups, Γα, and their completions Γ#

α . Further-
more we obtain for this family conditions both necessary and sufficient for the
metrizability of Γ#

α .

Introduction

Nowadays, Normed Hilbert Spaces is one of the principal lines of development in non-
Archimedean analysis of infinite rank (see [5]). In that theory G-modules, introduced
by H. Ochsenius and W. Schikhof in [4] play a fundamental role as the natural range
of the norms of vectors. Prominent among them is G#, the Dedekind completion of
G.
In this infinite rank theory there is a strong connection between the properties of the
ordered value group, the valued field and the normed space. The next proposition
states this fact with regard to absolutely convex subsets of the field K and the
existence of sequences with given properties in G and G#.
Proposition 1.4.4 [4] Let K be a valued field with value group G. The following
are equivalent.
(α) Each absolutely convex subset of K is countably generated as a BK-module.
(β) G has a cofinal sequence. For each s ∈ G# there are g1, g2, . . . ∈ G, gn < s for

∗Supported by DIUFRO 120520.
2000 Mathematics Subject Classification : Primary 06F30, 54E35. Secondary 06F15, 22B99.
Key words and phrases : Metrizability. Topological ordered groups. Topological G-modules.

Bull. Belg. Math. Soc. Simon Stevin 14 (2007), 969–977



970 E. Olivos – H. Soto – A. Mansilla

all n, such that supG#{t ∈ G# : t < s} = supG#{g1, g2, . . .}.
(γ) G has a coinitial sequence. For each s ∈ G# there are g1, g2, . . . ∈ G, gn > s for
all n, such that infG#{t ∈ G# : t > s} = infG#{g1, g2, . . .}.
(δ) The interval topology on G# satisfies the first axiom of countability. G# has a
cofinal sequence.

These statements suggest that topological properties of ordered groups and their
completions will have a strong bearing in the structure of fields with infinite rank
valuations. In particular, Ochsenius and Schikhof ask in that paper if the prop-
erties described in Proposition 1.4.4. are necessary and/or sufficient to ensure the
metrizability of G#.

In this paper we will prove that this is not the case, that metrizability of G# is
independent of them. For this we will refer to a canonical family of totally ordered
groups which have any prescribed ordinal α as their rank, they are the so-called
Γα groups (for details see [6]). In fact the construction can easily be generalized to
groups with arbitrary rank I (for instance I = Q or I = R).

The structure of this paper is as follows. In the Preliminaries we describe the groups
Γα as well as their Dedekind completions Γ#

α . In section 2 it is shown that totally
ordered multiplicative groups are in fact topological groups, and that every Γα is
metrizable. In section 3 we prove that a G-module is continuous (see [5]) if and only
if it is a topological G-module. We deal with separability conditions for Γα and Γ#

α

in section 4. With all this work done, we can derive conditions both necessary and
sufficient for the metrizability of Γ#

α , thus giving an answer to the question posed in
[4].

1 Preliminaries

Let G be a nontrivial totally ordered multiplicatively written group with unit 1. We
denote the (Dedekind) completion of G by G#. We can extend the multiplication
of G to a map G×G# → G# by

gx = sup
G#

{gh ∈ G : h ≤ x} = inf
G#
{gh ∈ G : h ≥ x}

for each g ∈ G and x ∈ G#. This defines an action of g on G# which is increasing
in both variables and such that any orbit Gx is cofinal in G#. That is, G# becomes
a G-module (see [4]).

It is also possible to extend the multiplication of G to a binary operation on G#. In
[4] this is done in two different ways, and in both cases G# becomes a commutative
unitary semigroup. It is well known that no extension that makes G# a group can
be defined.

A totally ordered group G is quasidiscrete if min{g ∈ G : g > 1} exists and it is
quasidense if inf{g ∈ G : g > 1} = 1G (See [5], Definition 1.2.1.).

In this paper we will work with the class of the groups Γα, which were defined in [6]
as follows.

Let α 6= 0 be an ordinal. For each β < α, let Gβ be a totally ordered group of rank 1
(that is to say each group Gβ is isomorphic to a multiplicative subgroup of (0,∞)).
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The group Γα associated to the family {Gβ}β<α is given by

Γα := {f : α →
⋃

β<α

Gβ : f(β) ∈ Gβ and

supp(f) = {β < α : f(β) 6= 1Gβ
} is finite}

with componentwise multiplication and antilexicographical ordering.
If f ∈ Γα, then the degree of f is deg(f) := max supp(f).
Every element b ∈ Gβ is represented by the element χ(β,b) ∈ Γα as

χ(β,b)(γ) :=

{
b if γ = β
1Gγ if γ 6= β

The convex subgroups of Γα are easily described. For each β < α, there exist two
convex subgroups associated, Hβ := {f ∈ Γα : deg(f) ≤ β} and H∗β := {f ∈ Γα :
deg(f) < β}. Furthermore, Hβ always is a principal convex subgroup. On the other
hand, if β = δ + 1 is a successor ordinal, H∗δ+1 = Hδ, and if β is a limit ordinal, H∗β
is a limit convex subgroup (union of a chain of principal convex subgroups). Note
that H∗0 = {1Γα}, because 0 is the first limit ordinal. Moreover, if H is a convex
subgroup of Γα then there exists an ordinal β < α such that either H = Hβ or
H = H∗β (See [6] Proposition 2.1). We denote by sβ and tβ (respectively s∗β and t∗β),
the supremum and infimum of Hβ (respectively H∗β) in Γ#

α .
The next theorem gives a complete description of the elements of Γ#

α (see [7]).

Theorem 1.1 Let {Gβ}β<α be an arbitrary family of totally ordered groups of rank
1. For each β < α, let G′β be the (Dedekind) completion of Gβ. Let Γα the group
associated with the family {Gβ}β<α. Then, each element x ∈ Γ#

α satisfies one of the
following sentences.

1. x = gs, with g ∈ Γα and s the supremum of some convex subgroup (s may be
1Γα).

2. x = gt, for some g ∈ Γα and t the infimum of a convex subgroup H, such that
G/H is quasidense.

3. x = gχ(β,b)t
∗
β, for some g ∈ Γα and β < α such that Gβ 6= G′β and b /∈ Gβ.

Remark. The above construction can be generalized to any totally ordered set I
and any family {Gi}i∈I of totally ordered groups of rank 1 written multiplicatively.
The group ΓI associated to the family {Gi}i∈I is formed by all f : I → ⋃

i∈I Gi such
that f(i) ∈ Gi and supp(f) = {i ∈ I : f(i) 6= 1Gi

} is finite with componentwise
multiplication and antilexicographical ordering. The rank of ΓI is the order-type of
I.

2 Topological ordered groups

We shall start by showing that, for totally ordered groups as well as for their comple-
tion, the order (or interval) topology has “nice properties”. For instance it is known
that in that topology compact subsets are Dedekind complete subsets, in particular,
closed bounded intervals are compact (so complete) subsets in that topology. We
will now prove that totally ordered groups are, in fact, ordered topological groups.
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Proposition 2.1 Every quasidiscrete totally ordered group provided with the order
topology is metrizable.

Proof.
It is enough to prove that the order topology in a quasidiscrete group is precisely the
discrete topology. Note first each element in a quasidiscrete group has an immediate
successor and predecessor. Indeed, let g0 = min{g ∈ G : g > 1} and let g ∈ G,
then gg0

−1 < g < gg0. Now, if there were g′ ∈ G such that g < g′ < gg0, then
we would have that 1 < g′g−1 < g0, a contradiction. Hence, gg0

−1 and gg0 are the
predecessor and successor of g, respectively. Therefore the open interval (gg0

−1, gg0)
is a singleton, the order topology is the discrete topology and the group has the
trivial metric. �

For quasidense groups, we have two previous lemmas. It is clear that singletons are
closed in the order topology, the next lemma shows that they are not open.

Lemma 2.1 If G is a quasidense totally ordered group, then each open interval
contains an infinite number of elements of G, hence, singleton are not open in
quasidense groups.

Proof.
If a < b, there exists h > 1 such that ah = b. The quasidensity of G implies that
there are infinitely many elements k such that 1 < k < h. Since a < ak < b, this
also the case for the interval (a, b).

Lemma 2.2 If G is a quasidense totally ordered group, then for each h > 1 in G,
there exists l ∈ G such that 1 < l2 < h.

Proof.
Let x ∈ G with 1 < x < h. Then there exists y ∈ G such that xy = h. It is
clear that y > 1, (if not h ≤ x), therefore the statement is true for any l ∈ G with
1 < l < min{x, y}, since l2 < ly < xy = h. �

Proposition 2.2 Every totally ordered group endowed with the order topology is a
topological group.

Proof.
Let (G, ·) be a non trivial totally ordered group. By [3] p.105, it is enough to prove
that for each x, y ∈ G, and for any open interval W containing xy−1, there are
neighbourhoods U of x and V of y such that UV −1 ⊆ W .

It is enough to suppose G is quasidense. The “open intervals” (a, b) with a, b ∈ G
and a < b are the basic open subsets in the order topology. Let x, y ∈ G and
let W = (a, b) a neighbourhood of xy−1. Then a < xy−1 < b and, since G is a
group, there are two elements h1, h2 ∈ G greater than 1G such that ah1 = xy−1 y
xy−1h2 = b.
Let l ∈ G such that 1G < l2 < min{h1, h2} (Lemma 2.2) and let U = (l−1x, lx) and
V = (l−1y, ly) be neighbourhoods of x and y respectively.
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Let z ∈ UV −1. Then, there are u ∈ U and v ∈ V such that z = uv−1. We have

l−1x < u < lx
l−1y−1 < v−1 < ly−1

a = h1
−1xy−1 < l−2xy−1 < uv−1 < l2xy−1 < h2xy−1 = b

Hence, UV −1 ⊆ W and we are done. �

Remark. From the fact that a topological group is metrizable if and only if it is
first countable (see [1]), it follows immediately

1. Each Γα is metrizable because the identity 1Γα has a countable base of neigh-
bourhoods and therefore Γα is first countable.

2. For an arbitrary totally ordered set I, ΓI is metrizable if and only if either I
has a least element 0 or I has a coinitial sequence.

3. The condition given in [4], Proposition 1.4.4 (δ) implies that G is metrizable,
but the converse is not true. For example, Γω1 is metrizable but it has not a
cofinal sequence (see [6] Proposition 2.4).

4. There exist totally ordered groups which are non metrizable as the following
example shows.

Example 2.3 Let α be an ordinal, we write
←
α to represent α with the dual order.

Then the rank of the group Γ←
α

is the inverse order-type of Γα. Therefore if cof(α) >
ω0, the group Γ←

α
is nonmetrizable, because 1Γ←

α
does not have a countable base of

neighbourhoods.

3 Topological G-modules

We say that a G-module X is a topological G-module if the action of G over X is a
continuous map G×X → X, where G and X are provided with the order topology.
We now will show that there does not exist any extension of the multiplication of
G that is order compatible and such that G# is a topological semigroup. Moreover,
we will prove that a G-module X is a topological G-module if and only if it is a
continuous G-module (that is for each W ⊆ G such that infG W exists, (infG W )r =
infX(Wr) for all r ∈ X, see [5] section 1.6).

Proposition 3.1 No extension of the multiplication of G to G# that is order com-
patible can be continuous in the order topology.

Proof.
Let � : G# × G# → G# a extension of the multiplication from G to G# and let s
and t be respectively, the supremum and infimum, of some nontrivial convex sub-
group H. Let U and V be neighbourhoods of s and t respectively. Then the set
U � V = {x � y ∈ G# : x ∈ U ∧ y ∈ V } contains some elements which are less than
t and elements which are greater than s, therefore there always exists a neighbour-
hood of s � t that does not contain the set U � V . �



974 E. Olivos – H. Soto – A. Mansilla

Proposition 3.2 A totally ordered set X is a topological G-module if and only if
X is a continuous G-module. In particular, G# is a topological G-module.

Proof.
By [5] Proposition 1.6.4, if G is quasidiscrete, each G-module X is continuous and
by Proposition 2.1 above the order topology on a quasidiscrete group is discrete,
hence the action of G over X is a continuous operation. Therefore let us suppose
now that G is quasidense.
(⇒) We will prove that if X is not a continuous G-module, then the action of G
over X is not continuous. Indeed, if X is not continuous, by [5] Proposition 1.6.8,
there exists an element r ∈ X such that infX{gr : g ∈ G ∧ g > 1} := r′ > r. Hence,
for every neighbourhood (u, r′) of 1r = r there exists g > 1 such that gr ≥ r′ which
implies the action is not continuous.
(⇐) We will prove that if X is a continuous G-module, then the action of G over
X is a continuous operation. Let (a, b) be a neighbourhood of an element gr of X.
Then g−1a < r < g−1b. Since X is (left and right at each r ∈ X) continuous, there
exists h > 1 in G such that g−1a < h−1r < r < hr < g−1b. By lemma 2.2, there
exists l ∈ G such that 1 < l2 < h. Then,

l−1r < r < lr
l−1g < g < lg

a < h−1gr < l−2gr < gr < l2gr < hgr < b

and we are done. �

4 Topological properties of Γ#
α .

In this section we study the properties of separability and second countability of the
Dedekind completion of totally ordered groups.
Recall the convex hull of a subset A ⊆ G is convG#A = {x ∈ G# : ∃ g1, g2 ∈ A (g1 ≤
x ≤ g2)}.

Proposition 4.1 For any totally ordered group G, the completion G# is separable
if and only if G is separable.

Proof.
By construction, each element of the completion is the supremum of a set of ele-
ments of G, hence open intervals of G# are the union of a chain of open intervals
with extremes in G. Therefore, if A is a dense and countable subset of G and U is
an open set of G#, then U ∩G is open in G, hence U ∩ A 6= ∅.
On the other hand, let A = {ai}i<ω0 be a dense and countable subset of G#. By
density of G in G#, ai < aj implies there exists an element gij ∈ G such that
ai ≤ gij < aj. If ai ∈ G, we choose gij = ai for each j. We claim the family {gij} is
a dense and countable subset of G. Let (a, b) be a nonempty open interval G. Then
convG#(a, b) ∩ A 6= ∅ and the only problem could be if this set is a singleton, {ai}.
But in that case, convG#(a, ai) is clearly empty, that is to say ai ∈ G. Hence the
family {gij} intersects each open interval of G. �
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The next theorem give us a family of examples of metrizable groups which are not
separable.

Theorem 4.1 If Gβ is uncountable for some β > 0, then Γα is not separable and
hence it is not second countable.

Proof.
The open intervals (f−1χ(β,r1), fχ(β,r1)) and (f−1χ(β,r2), fχ(β,r2)) are disjoint for all
f > 1 ∈ Γα, with deg(f) < β and r1 6= r2 in Gβ. Therefore we have a non-
countable family of disjoint open sets. In fact, if r1 < r2 then g < h whenever
g ∈ (f−1χ(β,r1), fχ(β,r1)) and h ∈ (f−1χ(β,r2), fχ(β,r2)). Hence, Γα does not contain a
subset both countable and dense. �

Proposition 4.2 Γ#
α is second countable (and separable) if and only if Γα is count-

able.

Proof.
(⇒) We will prove Γα is not countable, then Γ#

α is not second countable. By the
above Theorem, we only have to consider the case when α is not countable. In that
case {sβ, sβ+1}β<α is an uncountable family of disjoint open sets, hence Γ#

α cannot
have a countable base of open sets.

(⇐) Suppose that Γα is countable. Then α is a countable ordinal, each group Gβ is
countable and also the rank of Γα is countable. Therefore Sα, the set of the suprema
and infima of convex subgroups is countable. We claim that a base of the order
topology of Γ#

α is B := {(fu, f ′u′) : f, f ′ ∈ Γα ∧ u, u′ ∈ Sα}.
It is clear B is a countable set. By Theorem 1.1 (see [7] for details), the only elements
of Γ#

α which are not of the form fu with f ∈ Γα, u ∈ Sα appear when some Gβ is a
countable non complete group (of rank 1).
Consider an interval which has one or both of its extremes of the form fχ(β,rβ)tβ

∗

with f ∈ Γα and rβ ∈ G′β, the completion of Gβ. It is easy to check that such
an interval contains an interval (fχ(β,qβ)tβ

∗, f ′χ(β,q′
β
)tβ
∗), with qβ, q′β ∈ Gβ as we

claimed.

So, if the interval (fχ(β,rβ)tβ
∗, f ′χ(β,r′

β
)tβ
∗) is non empty, then fχ(β,rβ)tβ

∗ < f ′χ(β,r′
β
)tβ
∗

and there exists γ ≤ β such that f(γ)χ(β,rβ) < f ′(γ)χ(β,r′
β
). The following two cases

are the only ones for consideration.

• γ > β. Then (fχ(β,rβ)tβ
∗, f ′χ(β,r′

β
)tβ
∗) ⊇ (fχ(β,qβ)tβ

∗, f ′χ(β,q′
β
)tβ
∗) with rβ <

qβ < q′β < r′β, con qβ, q′β ∈ Gβ.

• γ = β. Then we choose qβ, q′β ∈ Gβ such that qβ > rβ and q′β < r′β with
fχ(β,rβ) < fχ(β,qβ) < fχ(β,q′

β
) < fχ(β,r′

β
).

�
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5 Metrizability of Γ#
α

In this section we show that condition (δ) of the Proposition 1.4.4 of [4] is not a
guarantee for the metrizability of the completion.

Proposition 5.1 If Γα is countable, then Γ#
α is metrizable.

Proof. It is easy to see that Γ#
α is T1 , regular and second countable, then by [3]

Theorem 17 p.125, it is metrizable and separable. �

Proposition 5.2 If α < ω1, and Gβ is uncountable for some β < α, then Γ#
α is

nonmetrizable.

Proof.
Recall that in metric spaces the concepts of second countability, separability and
Lindelöf are equivalent (see for example [2] Theorem 5.6 p. 187). Therefore, by
Proposition 4.2, Γ#

α is not second countable.
To prove that Γ#

α is Lindelöf we will use Theorem 7.2, p.241 of [2], which establish a
space Y is a countable union of relatively compacts open sets Ui such that U i ⊂ Ui+1

if and only if Y is a Lindelöf locally compact space.
In fact, note that Γα

# is a countable union of a chain of relatively compact open sub-
sets Γ#

α =
⋃

β<α

convΓ#
α
Hβ, where convΓ#

α
Hβ = [tβ, sβ] ⊆ (tβ+1, sβ+1) for each β < α

is compact. Hence Γ#
α is a Lindelöf space and the assertion is proved. �

Remark. It is easy to construct examples of groups with non metrizable comple-
tions. For example, for a group Γω0 , if one of Gβ is isomorphic to the infinite interval
(0,∞) its completion Γ#

ω0
is non metrizable. For higher cardinalities we always have

non metrizability. If α > ω1 that is clear, because the group Γα is not first countable,
for instance the element sω1 has not a countable base of neighbourhoods (see [6]).

Proposition 5.3 If α = ω1, then Γ#
α is non metrizable.

Proof.
By [2] Theorem 4.1, p.233, a countably compact space is metrizable if and only if
it is second countable. By Proposition 4.2, Γ#

ω1
is not second countable, then it is

enough to prove that every open countable cover has a finite subcover.
Suppose that Γ#

ω1
is not countably compact and let {Un}n<ω0 be a countably open

cover of Γ#
ω1

which have not a finite subcover. Then, for every n < ω0, there exists

xn ∈ Γ#
ω1

such that xn /∈
n⋃

i=0

Ui. Because {xn}n<ω0 is countable, it is bounded and

there exists β0 < ω0 such that {xn}n<ω0 ⊆ [tβ0 , sβ0 ]. But [tβ0 , sβ0 ] is compact and
{Un}n<ω0 is a cover of [tβ0 , sβ0 ] without finite subcover, a contradiction. �

Therefore we have obtained a complete answer to the question posed by Ochsenius
and Schikhof in [4] after the Proposition 1.4.4.

Theorem 5.1 Γ#
α is metrizable if and only if Γα is countable.
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