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1 Introduction

This survey article is based on a joint work with Ehud Hrushovski on some Bezout
difference rings ([19]). We study in a model-theoretic point of view certain classes
of difference rings, namely rings with a distinguished endomorphism and more par-
ticularly rings of sequences over a field with a shift.

First we will recall some results on difference fields. A difference field is a differ-
ence ring which is a field (in this case, the endomorphism is necessarily injective);
and one can show that any difference field can be embedded in an inversive difference
field, namely a field with an automorphism ([5]). The model theory of difference
fields started in the nineties; one motivation was to understand the model-theory of
non principal ultraproducts of the algebraic closure Fa

p of the prime fields endowed
with the Frobenius maps. The existence of a model-companion for the theory of
difference fields was shown by L. van den Dries and A. Macintyre ([27]). Here, we
will recall the geometric axiomatization ACFA of the class of existentially closed
difference fields given by Z. Chatzidakis and E. Hrushovski ([7]); they identified the
different completions of ACFA, and deduce its decidability. The proofs that the
non principal ultraproducts of the Fa

p endowed with the Frobenius maps, are models
of ACFA, are much more difficult (⋆).

An easy consequence of the decidability of ACFA is the decidability of some von
Neumann commutative regular difference rings. Indeed, these are Boolean products
of fields and whenever the endomorphism σ fixes the prime spectrum of the ring,
we may apply transfer results due to S. Burris and H. Werner in these products
([4]). More generally we will consider Bezout difference rings in the point of view
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of (un)decidability of their theories; this will depend on whether σ has unbounded
orbits on the maximal spectrum of the ring. In the case we obtain undecidable
theories, we will still describe some existentially closed (non elementary) classes of
such difference rings.

Finally, we will recall some results on inversive difference valued fields. One
reason being that they do occur in a proof of (⋆) ([18]). In this case, one knows
by previous negative results of S. Shelah and H. Kikyo ([26]) that in order to get
first-order axiomatizable classes of existentially closed models, one has put some
constraints on the automorphism. In the case of valued difference fields, there are
basically two classes of such existentially closed fields, those where the automorphism
induces a rapidly increasing automorphism on the value group ([8], [18]) and those
where the automorphism leaves this group fixed and acts non-trivially on the residue
field ([36], [1]). A model of this last theory is, for instance, the field of Witt vectors
over Fa

p with the Frobenius map.
In the following section, besides recalling the above results on ACFA, in order

to make this paper accessible to a non-model-theorist, we give some basic definitions
and references.

2 Difference fields

Let (K, σ) be a field with a distinguished endomorphism (respectively automor-
phism) σ; we will call such a field a difference (respectively inversive difference)
field. We will denote by Fix(σ) := {x ∈ K : σ(x) = x} the subfield of K consisting
of the elements fixed by σ.

Notation 2.1. Let K[X]σ be the σ-polynomial ring, namely the polynomial ring
in infinitely many indeterminates: X, Xσ, · · · , Xσn

, · · · , n ∈ ω, where X is a fi-
nite tuple of indeterminates: X = (X1, · · · , Xm). We denote by Xσ the tuple
(Xσ

1 , · · · , Xσ
m). If for some 1 ≤ j ≤ m, Xσn

j occurs non trivially, we will say that
P is of order greater than or equal to n. As usual we can write P (X) ∈ K[X]σ of
order n, as P ∗(X1, · · · , Xm, Xσ

1 , · · · , Xσn

m ) for some element P ∗(Y1, · · · , Ym.(n+1)) ∈
K[Y1, · · · , Ym.(n+1)] and we define ∂

∂Xσj

i

P := ( ∂
∂Yi.(j+1)

P ∗)(X1, · · · , Xσn

m ).

Let Lrings := {+,−, ., 0, 1}, one can express by a set of universal-existential
sentences in the language Lringsσ := Lrings∪{σ} that a field is an inversive difference
field. (By sentence, we mean formula without free variables).

Therefore, any difference field K embeds into an existentially closed (e.c.) inver-
sive difference field K̃ ([16] Theorem 8.2.1), namely one endowed with an automor-
phism and where any existential formula with parameters in K̃ which has a solution
in some extension of K̃ has already a solution in K̃.

Let f1(X, Y ), · · · , fn(X, Y ), g(X, Y ) belonging to Z[X, Y ]σ and of order ≤ k, for
some k ∈ ω.

An existential Lringsσ-formula φ(ȳ) is a formula of the form:
∃x1 · · · ∃xm f ∗

1 (x1, · · · , xm, σ(x1), · · · , σk(xm), ȳ) = 0 &
· · · &
f ∗

n(x1 · · · , xm, σ(x1), · · · , σk(xm), ȳ) = 0 &
g∗(x1 · · · , xm, σ(x1), · · · , σk(xm), ȳ) 6= 0.
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Theorem 2.1. (1.1 in [7]). The class of existentially closed models of the theory of
difference fields is axiomatizable, by the following set of axioms called ACFA, that
express the following properties of a field K.

1. (K, σ) is an inversive difference field,

2. K is an algebraically closed field,

3. For every absolutely irreducible variety U and every absolutely irreducible va-
riety V ⊂ U×σ(U) projecting generically onto U and σ(U) and every algebraic
set W properly contained in V , there is a ∈ U(K) such that (a, σ(a)) ∈ V −W.

Observe that the third scheme of axioms is first-order (namely can be expressed
by formulas with quantifiers varying over elements of K); L. van den Dries and K.
Schmidt showed how to express in a first-order way that a variety is irreducible
([15]).

Rephrasing the above theorem: the theory ACFA is the model companion of the
theory of difference fields.

Namely that any difference field embeds in a model of ACFA and ACFA is
model-complete i.e. for any two models A, B of ACFA: A ⊆ B implies that A ⊆ec B,
namely any existential formula in parameters in A and true in B, is also true in A.

In a model-complete theory, every formula is equivalent to an existential formula
([16] Theorem 8.3.1). A theory admits quantifier-elimination (q.e.) iff every formula
is equivalent to a quantifier-free formula.

A theory is complete if all its models satisfy the same set of sentences. In the
case of ACFA, its completions are obtained by specifying the characteristic of the
field K and the action of the automorphism on the algebraic closure of the prime
field Fp or Q (see 1.4 in [7]).

Finally, let us say some rather informal words on decidability. A useful refer-
ence is the article of Michael O. Rabin on “Decidable theories” in “Handbook of
Mathematical logic”, edited by J. Barwise ([32]).

A theory T is decidable if there is a fixed algorithm which, given a property P
expressed in the language of T , determines whether P is a theorem of T .

• To show decidability of a theory T , one can determine a set of recursively
enumerable axioms for it and show it is complete (or determine in an “effective”
way its completions) (see [32], Theorems 1 and 2) or one may interpret T in
a (known) decidable theory. In order to identify the completions of a theory,
one strategy is to show that the definable subsets D in An, n ∈ ω, where A is
any model of T , have a manageable description.

• Often, to show that a theory is undecidable, one interprets in it well-known
undecidable theories, like Peano arithmetic PA, or the theory of a finitely
presented group with undecidable word problem.

Recall PA describes addition, multiplication and the induction scheme in the
natural numbers. Note that a theory that interprets PA is necessarily unsta-
ble.

Corollary 2.2. (1.4, 1.6 in [7]) The theory ACFA is decidable.
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Let p be a prime number, let q be a power of p and let Φq(x) := xq be the
q-Frobenius automorphism. Let (Fq, Φq) be an algebraically closed field of charac-
teristic p endowed with Φq.

Let T∞ be the set of sentences θ such that for all sufficiently large q, θ is true in
(Fq, Φq).

Theorem 2.3. ([18]) T∞ is decidable; it coincides with ACFA.

In particular, denotting by Fa
p the algebraic closure of Fp, a sentence holds in

(Fa
p, Φp) for almost all prime p, iff it is true in a model of ACFA of characteristic 0.

3 Difference rings

A difference ring is a commutative ring R with 1 and a distinguished ring endo-
morphism σ. Let Fix(σ) be the subring of R consisting of the elements fixed by
σ.

1. Let R0 be any commutative ring; then we form the difference ring of infinite
two-sided sequences: R=(RZ

0 , +, ., σt), where σt(ai)i∈Z = (ai+1); and Fix(σ) ∼=
R0.

2. Consider the ring of sequences over Z with the left shift sending (zn)n∈ω to
(zn+1)n∈ω or with the right shift sending (z0, z1, z2, · · · ) to (0, z0, z1, z2, · · · ).
Denote the first difference ring by (Zω, σℓ) and the second one by (Zω, σr).

3. Let K be a perfect field of characteristic p, p a prime number.
Then, set R=(KZ, +, ., σ), where σ((ai)i∈Z) := (Φp(ai))i∈Z.

An inversive difference ring is a difference ring where σ ∈ Aut(R); for instance
(Zω

F , σℓ), where F is the Frechet filter on ω.
A difference ring (R, σ) is well-mixed if ∀a∀b (a.b = 0 =⇒ a.bσ = 0). For

instance, the third example is well-mixed, whereas the first two are not well-mixed.
Note that any subdirect product of difference fields is well-mixed and any difference
ring which is a domain is well-mixed.

The examples above are instances of commutative difference von Neumann reg-
ular rings, namely commutative rings satisfying in addition:

∀a∃b (a2.b = a & b2.a = b).

In a well-mixed commutative von Neumann regular difference ring, the Boolean
algebra of idempotents B(R) is fixed by σ (namely, if e2 = e, then eσ = e) and so
the maximal (or prime) spectrum MSpec(R) of such ring R is fixed by σ.

Let R be a difference ring, let Spec(R) be the set of prime ideals of R. An
ideal I is transformally prime (or σ-prime) if it is a prime ideal with the additional
property that (x ∈ I ↔ xσ ∈ I). (Note that if I is σ-prime, then σ induces an
injective endomorphism on R/I and it can be extended on the field of fractions of
R/I which can be then viewed as a difference field.)
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Summary of our main results on difference rings (R, +, ., σ)

• First, assuming that R is a K-algebra, where K is a difference field containing
the subfield Fix(σ), we will view R as a module over a skew polynomial ring
of the form K[t; σ]. Under certain conditions on K, we will show that the
module theory of R has a model-companion.

• Second, we will consider R with its full ring structure.

In particular, for R a ring of infinite sequences indexed by ω over a finite field
F , we will get decidability results; whereas if F is an infinite field, we will get
undecidability results.

• Then, we will get decidability results for difference rings of the form (Cn, +, ., σn),
where n is a natural number. Such rings occur in the theory of Picard-Vessiot
extensions.

• For commutative difference Bezout rings R with an automorphism having an
infinite orbit on MSpec(R), we get undecidability results.

• We prove the existence of a model companion for well-mixed von Neumann
regular commutative rings, namely certain Boolean products of fields which
are models of ACFA.

• Finally, we will give some amalgamation results for von Neumann commutative
regular difference rings and for von Neumann commutative regular lattice-
ordered difference rings.

3.1 The theory of modules of difference rings.

Let (K, σ) be a difference field. One considers the theory of K in the reduct of
the difference field language consisting of an expansion by definition of the module
language over a non commutative skew polynomial ring K[t; σ] where the action of
“t” on the field K is interpreted by the action of the endomorphism σ.

Recall that K[t; σ] is the skew polynomial ring where the commutation rule is:
k.t = t.kσ, for all k ∈ K ([6]).

In collaboration with Pilar Dellunde and Françoise Delon, we described the the-
ory of modules of separably closed fields of characteristic p and imperfection degree
e (e ∈ ω ∪ {∞}) and of non principal ultraproducts of these ([10], [11], [30]).

T. Rohwer in his thesis considered valued difference fields with rapidly increasing
automorphism, as valued modules over skew polynomial rings ([34]). He showed in
particular that the theory of modules of the field of Laurent series K := F ((X))
over the skew polynomial ring K[t; Φp], augmented with extra unary predicates for
additive subgroups of K in particular for the zero subgroup {0}, is model-complete
whenever the theory of F over the skew polynomial ring K[t; σ] is model-complete.
Moreover, K is decidable whenever F is decidable. (See chapter 8 in [34].)

Throughout this section, (R, σ) will be a difference ring which is K-algebra, with
(K, σ) a difference field containing Fix(σ).
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Let A := K[t; σ], we endow R with a structure of a right A-module by defining
the action of t as s.t := sσ, s ∈ R. Under an addition assumption on K, we will
show that the “module” theory of R has a model-companion.

Let LA = {+,−, 0, .r; r ∈ A}, where .r denotes right multiplication by r and let
TA be the theory of all right A-modules.

In the theory of modules, one has the following relative quantifier elimination
result. Recall that a positive primitive (p.p.) formula is a formula expressing that a
system of linear equations has a solution.

Then, any LA-formula is equivalent in TA to a Boolean combination of p.p.
formulas and index sentences, namely sentences telling the index of p.p. definable
subgroups in one another ([31]).

Assume now that σ is an automorphism and that (K, σ) is an inversive difference
field. Then, A is right and left Euclidean ([6]), namely for all p(t), p1(t), there exist
q(t), q′(t) and r(t), r′(t) of degree strictly smaller than the degree of p1(t) such that
p(t) = p1(t).q(t) + r(t) = q′(t).p1(t) + r′(t). The next proposition will describe the
p.p. LA-formulas.

Proposition 3.1. (See [20]). Let A be a right and left Euclidean domain and B
be matrix m × n with coefficients in A. Then there exist invertible matrices P , Q
such that P.B.Q is diagonal. Moreover, if d1, · · · , dk are the non zero coefficients
occurring on the diagonal, then di divides di+1, 1 ≤ i ≤ k.

In particular, any p.p. formula φ(v) with one free variable is equivalent in TA to:

∧

i

∃wi wi.si = v.ri, si, ri ∈ A.

Let Tm be the following theory:

1. TA the theory of all right A-modules,

2. ∀g ∃f (f.t = g) & ∀g (g.t = 0 → g = 0), ”the action of “t” is surjective
and injective”

3. ∀g ∃f (f.p(t) = g), where p(t) is ranging over the irreducible polynomials of
A, ”divisibility”

4. ∃v 6= 0 v.p(t) = 0, with p(t) ∈ A and p(0) 6= 0, ”torsion”

Observe that one can embed R into a model of axiom scheme 3. Indeed, consider
the ring of sequences Rω endowed with the endomorphism σ̃ defined as follows:
σ̃((ri)i∈ω) := (σ(ri+1)i∈ω), with ri ∈ R. Then R embeds into the difference ring Rω

F

of sequences modulo the Frechet filter F , sending r → (r)F and (Rω
F , σ̃) satisfies

axiom scheme 3.
From now on, we will make the following additional assumptions on the differ-

ence ring R: recall that it is a K-algebra and assume that C := Fix(σ) ⊂ K is
algebraically closed and that the algebraic closure of K is included in Cω

F ; more-
over in characteristic p that K is perfect. These assumptions will insure that as a
K[t; σ]-module, R embeds into a model of Tm. To prove this, we will use the theory
of Picard-Vessiot extensions developed by M. Singer and M. van der Put ([37]).
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First, observe that to the p.p. LA-formula of the form:

v.(tn + tn−1.an−1 + ... + a0) = 0,

one can associate the difference equation:

σV = V.B,

where B ∈ Mn(K) and V is the tuple (v, σv, · · · , σn−1v)

(

σv σ2v . . σnv
)

=
(

v σv . . σn−1v
)

















0 0 0 ... −a0

1 0 0 ... −a1

0 0 ... 1 −an−1

















Note that whenever a0 6= 0, B ∈ GLn(K). Moreover, we may assume that we are
in that case since σ is an automorphism.

Then a ring S is a Picard-Vessiot ring w.r.to the equation σY = Y.B, where
B ∈ GLn(K), if the following conditions hold:

1. One may extend σ to the ring S.

2. S has no non trivial two-sided ideals.

3. There exists a matrix U in GLn(S) such that σU = U.B.

4. This extension is minimal.

Theorem 3.2. ([37]) Under the hypothesis above, let σY = Y.B be a difference
equation with B ∈ GLn(K), then the Picard-Vessiot ring associated to this equation
embeds in Cω

F . Moreover, there is a matrix Z in GLn(Cω
F) such that every solution

is a C- linear combination of the columns of Z.

Using the above theorem, one shows that our ring R embeds into a model of Tm.
Our main result in this section is the following (see [19]).

Proposition 3.3. As a K[t; σ]-module, R embeds into a model of Tm. The theory
Tm is complete and admits quantifier elimination in LA.

Corollary 3.4. Let K0 be a recursively presented subfield of K with a splitting
algorithm ([33]). Let R0 be the corresponding skew polynomial ring and denote by
Tm,0 the corresponding theory of modules. Then, Tm,0 is decidable.

Now, we will enrich the language of modules by adding a predicate for Fix(σ)∩K
and so obtain a two-sorted language: one sort for the module elements and another
sort for the field (or ring) elements (see for instance [22] chapter 9).

In this framework, T. Pheidas and K. Zahidi considered the polynomial ring
F [X] in one indeterminate X over a perfect field F of characteristic p and they
showed that its theory of modules over the skew polynomial ring F [t; Φp], with
an additional unary predicate for F , is model-complete, whenever the theory of
F as an F -vector-space is model-complete (see Theorem 2 in [28]). Recently, M.
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Kaminski considered two-sorted modules over polynomial rings in several commuting
indeterminates ([24]).

Denote by L the language of LA together with the field language Lf , a predicate
C for the fixed subfield of K under σ and new relation symbols {Dn(., · · · , .); n ∈ ω},
{Tn,θ(v̄; w̄); n ∈ ω; θ where θ is an open Lf -formula }.

Let Tm,C be the following theory:

1. the theory Tm,

2. C is an algebraically closed field included in Fix(σ),

3. ∀m1 ∈ M · · · ∀mk ∈ M∀c1 ∈ C · · · ∀ck ∈ C − {0}
(
∑k

i=1 mi.ci = 0 → Dk(m1, · · · , mk) ), k ≥ 2, k ∈ ω,

4. ∀v0 ∈ M · · · ∀vn ∈ M ∀w0 ∈ M · · · ∀wn ∈ M [ ¬Dn(v1, · · · , vn) or
¬Dn(w1, · · · , wn)] → [Tn,θ(v0, v1, v2, · · · , vn; w0, w1, w2, · · · , wn) iff
(∃k1 6= 0 · · · ∃kn 6= 0 ∈ C ∃l1 6= 0 · · · ∃ln 6= 0 ∈ C θ(k1, · · · , kn, l1, · · · , ln) and
v0 + v1.k1 + · · · + vn.kn = 0 and w0 + w1.l1 + · · · + wn.ln = 0]), for each open
Lf -formula θ.

5. ∃v1 · · · vd ∈ M
∧

i ¬Dd(v1, · · · , vd) ∧ vi.p(t) = 0, where p(t) ranging over the
irreducible polynomials of R of degree d, d ∈ ω

Proposition 3.5. (See [19]). The theory Tm,C admits q.e. in L and it is complete.

In the next sections, we will work in the full ring language.

3.2 Decidability results for difference rings of sequences over a field F .

Recall that in a monadic second-order theory of a structure, one is allowed to quan-
tify over subsets of the domain of the structure. Using automata operating on infinite
ω sequences, J.R. Büchi proved the decidability of the monadic second-order theory
of N := (N, S,≤), where S is the successor function ([3]). From this result, one can
easily deduce that the Boolean algebra of idempotents of the ring F ω

F , where F is
the Frechet filter on ω and F a finite field, with the shift automorphism is decidable.

Proposition 3.6. ([19]) The Lringsσ-structures (Fω
2 , +, ., 0, 1, σt), (FZ

2 , +, ., 0, 1, σt)
and (F2

ω
F , +, ., 0, 1, σt) are decidable.

We can easily generalize the above Proposition as follows.

Corollary 3.7. ([19]) The difference ring of sequences (F Z, +, ., 0, 1, σt) over the
finite field F , is decidable.
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3.3 Undecidability results for difference rings of sequenc es over a field F

As soon as the field F is infinite, we get the following undecidability results in both
characteristic 0 or p.

Proposition 3.8. ([19]) Let F be a field of characteristic zero. Then, the existential
theory of the difference ring (F ω

F , +, .,−, σt) is undecidable. We define the ring
(Z, +, ., 0, 1).

Proposition 3.9. ([19]) Let F be a field of characteristic p which is not included
in Fa

p. Then, we can interpret the semi-ring (N, +, ., 0, 1) in the difference ring
(F ω

F , +, , ., σt).

3.4 Undecidability results for commutative difference Bez out rings.

After the negative results of the previous section, one can ask: what about the
difference rings of finite sequences? One can show that the theories of (Cn, +, ., σn)
and the theories of (F̃p

n
, +, ., σn), n ∈ ω are decidable and model-complete. Note

that these rings also arise as total Picard-Vessiot rings attached to a difference
equation ([37] Chapter 1). However, we have no uniformity in n ∈ ω in the above
results as we shall see in Corollary 3.14, below.

This will be a consequence of a more general undecidability result holding for
certain classes of von Neumann regular commutative difference rings.

Definition 3.1. A commutative ring is b-Bezout if every finitely generated ideal is
generated by b elements, with b ∈ N − {0}.

Note that being b-Bezout is equivalent to: the sum of two ideals generated by
b elements is again generated by b elements; so the class of b-Bezout rings is an
elementary class. This generalizes Bezout rings, namely those where every finitely
generated ideal is principal.

Examples of Bezout rings (or 1-Bezout rings) are: von Neumann regular rings
(any finitely generated ideal is generated by an idempotent), valuation domains, the
ring of entire functions, the ring of algebraic integers ([25]).

Now, we will use the fact that there are undecidable finitely axiomatizable sub-
theories of Peano arithmetic ([38]). Let Qc be the theory of the truncated semi-ring
of the integers between 0 and n, n ∈ N. Let M be an infinite model of Qc and let
Tfin be its theory. One shows that Tfin contains an essentially undecidable finitely
axiomatizable subtheory of PA [38] and so, Tfin is undecidable.

Proposition 3.10. (Partial Dichotomy result [19]) Let R be a commutative b-Bezout
difference ring of characteristic 0. Suppose that Fix(σ) is an infinite field. Then,
either some power of σ fixes the maximal spectrum of R, or the theory of R is
undecidable.

By localizing, we can slightly weaken the hypothesis on the fixed subring.

Corollary 3.11. ([19]) Let R be a b-Bezout ring. Suppose that Fix(σ) has no zero-
divisors and that for all n ∈ ω, there exists a prime ideal P such that P ∩Fix(σ) =
{0} and P , σ(P ), · · · , σn(P ) are pairwise co-maximal. Then Th(R) is undecidable.
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In the characteristic p case, we have to strengthen our hypothesis of “Bezout”.

Proposition 3.12. ([19]) Let R be a commutative von Neumann regular difference
ring of characteristic p > 0 and assume that Fix(σ) is an infinite field. Assume
that for each n ∈ ω, there is an idempotent en such that {σ(en), · · · , σn(en) = en}
is a partition of 1. Then the theory of R is undecidable.

The following result improves Proposition 3.9 of the previous section.

Corollary 3.13. ([19]) The theory of the ring of all sequences with coefficients in
Fa

p with the shift endomorphism is undecidable.

Corollary 3.14. [Non-uniformity result] ([19]) The theory of all non principal ul-
traproducts on ω of of the following structures either, with n ∈ ω: (Cn, +, ., σn) or
(Fpn

Z, +, ., σt) or (Fpn

Z, +, ., σt) or equivalently the set of sentences true for all but
finitely many of these is undecidable.

Applications:

1. Let C{z−1} be the ring of power series in z−1 that converge in a neighbour-
hood of infinity and let σ1 be the automorphism sending f(z) → f(z + 1),
where f(z) =

∑

n an.z−n. We can embed this ring in Cω
F by sending f to

(f(1), f(2), · · · )F . So its fixed subring is a field. The maximal spectrum of
this ring contains the maximal ideals of the functions which are zero at some
point z0 and so we meet the hypothesis of Proposition 3.10.

So, the theory of the difference ring (C{z−1}, +, ., 0, 1, σ1) is undecidable.

2. Let C{z} be the ring of entire functions, let c ∈ C a complex number of
modulus 1 and which is not a root of unity. Let σc be the automorphism
sending f(z) → f(c.z), where f(z) ∈ C{z}. We can embed this ring in Cω

F by
sending f to (f(1), f(c), f(c2), · · · )F . Since the disk of unity is compact, the
fixed subring is isomorphic to C. The maximal spectrum of this ring contains
the maximal ideals of the functions which are zero at some point z0 and so we
meet the hypothesis of Proposition 3.10.

So, the theory of the difference ring (C{z}, +, ., 0, 1, σc) is undecidable.

Concerning the first example, using a previous result of R. Robinson ([34]) and
the fact that in this structure, in the language Lz−1 := Lrings ∪ {z−1}, the field C is
definable, it was observed in section 6 of [29], that the theory of C{z−1} in Lz−1 is
undecidable.

Concerning the second example, it was shown by J. Denef that the positive
existential theory of (C{z}, +, ., 0, 1, z) in the language Lz is undecidable ([12]).

Let Z̃ be the ring of all algebraic integers. The theory of this ring has been
shown to be decidable by L. van den Dries ([13]), using a local-global principle due
to R. Rumely. Its maximal spectrum coincides with the prime spectrum and it is a
totally disconnected topological space.

Let τ be a non-trivial element of the absolute Galois group G(Q) of Q. Then
every prime ideal has a non trivial intersection with Fix(τ). Is the theory of this
ring Th((Z̃, τ)) with this distinguished automorphism (un)decidable?

G. Cherlin and M. Jarden have shown that the theory consisting of the set
of sentences true in almost all (Q, τ1, · · · , τe) for (τ1, · · · , τe) ∈ G(Q)e, e > 1, is
undecidable ([9]).



Some model theory of Bezout difference rings- a survey 817

3.5 Boolean products of models of ACFA

Because of our undecidability result for commutative difference von Neumann reg-
ular rings of characteristic zero, with a distinguished automorphism σ having an
infinite orbit on Spec(R), we will now consider the class of difference von Neumann
regular rings where the orbits of the automorphism on Spec(R), are of cardinality
1 (the well-mixed case). Since in this case, it is a Boolean product of commutative
inversive difference fields, we will transfer positive results due to Z. Chatzidakis and
E. Hrushovski on ACFA.

First, let us recall the definition of a Boolean product (see [4]) of L-structures
Rx with x ∈ X.

The truth value of a formula φ(u, ā) in a subdirect product
∏

x∈X Rx is

[φ(u, ā)] := {x ∈ X : Rx |= φ(u(x), ā(x))}.

R is a (atomeless) Boolean product of L-structures Rx, x ∈ X, if

R = Γa(X,
⋃

x∈X

Rx)

1. R is a subdirect product of the Rx, x ∈ X,

2. The set X is a (atomeless) Boolean space i.e. X has a basis of clopen sets
(namely both open and closed) (and no isolated points),

3. For every atomic formula, its truth value in a clopen subset of X,

4. R has the patchwork property i.e. for any f , g ∈ R and N a clopen subset of
X, the element h of the product

∏

x∈X Rx defined by

h(x) =

{

f(x) if x ∈ N,
g(x) if x ∈ X − N,

belongs to R.

To the language of rings, we add a pseudo-inverse ∗ defined as follows:

∀r r2.r∗ = r& (r∗)2.r = r∗.

Let L0 := Lrings ∪ {σ, σ−1} ∪ {∗} and Tatm,σ be the following L0-theory of difference
commutative rings R:

1. R is von Neumann regular without minimal idempotents, σ is an automor-
phism of R and every monic polynomial has a root,

2. The Boolean algebra of idempotents is included in the set of fixed points of σ,

3. For each idempotent e of R, for every irreducible variety U on e and every
irreducible variety V ⊂ U × σ(U) projecting generically onto U and σ(U) and
every algebraic set W properly contained in V ,
there is a ∈ U(R) such that (a, σ(a)) ∈ V − W .
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Applying Burris-Werner’s transfer results ([4]) to atomeless Boolean products of
models of ACFA and Theorem 2.1 and Corollary 2.2, we get the following Propo-
sition.

Proposition 3.15. ([19]) The theory Tatm,σ is model-complete in L0 and decidable.

Recall that in a commutative ring R, the Jacobson radical J(R) is the intersection
of its maximal ideals; it is equal to {z ∈ R : ∀a∃u (1− a.z).u = 1}. One can define
the binary relation

a1 ∈ rad(a),

meaning that every maximal ideal containing a also contains a1, by the first-order
formula:

∀x∃y(1 − a1.x).y ∈ 1 + (a).

Proposition 3.16. ([19]) Let Trad be the theory of commutative inversive difference
rings in which J(R) = {0}, satisfying the sentence ∀a σ(a) ∈ rad(a). Then Trad

has a model-companion.

Proof: Since J(R) = {0}, R is a subdirect product of fields and these fields are
difference fields, since R satisfies ∀a σ(a) ∈ rad(a). Then, one embeds R in an
atomeless Boolean product of difference fields, applies the fact that ACFA is the
model companion of the theory of difference fields and the above Proposition on
atomeless Boolean products. �

3.6 Amalgamation

Let C be the class of von Neumann regular commutative inversive difference rings.
Let R0 ⊆ R1, R2 be commutative von Neumann regular inversive difference rings of
characteristic zero or perfect of characteristic p.

We show that we can embed them in a functorial way in a von Neumann regular
ring. In particular, since these are inversive difference rings, this embedding will
commute with each automorphism.

Lemma 3.17. Let R0, R1, R2 be commutative von Neumann regular rings either of
characteristic 0 or perfect of characteristic p, with R0 = R1 ∩ R2.
Let x1 (respectively x2) belong to Spec(R1) (respectively Spec(R2)) be such that
x1 ∩ x2 ∈ Spec(R0).

Then, R1/x1 ⊗R0/x0 R2/x2 embeds in a canonical way in a von Neumann regular
commutative ring Rx, x := (x1, x2) containing both R1/x1 and R2/x2.

Recall that a Robinson theory ([17]) is a universal theory with amalgamation,
namely any two models can be embedded in a third one. So, the class Cec of its
existentially closed models is well-behaved, in particular any existential formula is
equivalent to an infinitary quantifier-free formula ([16]). Such theory has universal
domains ([17]).

Let T0 be the theory of von Neumann commutative inversive difference regular
rings of characteristic zero in the language L0. Note that in this language L0, the
theory T0 is universal.
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Proposition 3.18. ([19]) The theory T0 is a Robinson theory in the language L0.

Let Tp be the theory of perfect von Neumann commutative regular difference
rings of characteristic p (i.e. ∀r p.r = 0 and ∀r∃s r = sp). Let Lp := L0 ∪ {(.)1/p},
where the new unary symbols are defined by (x)1/p = y iff xp = y, p ∈ P, where P
denotes the set of prime numbers. In this language Lp, the theory Tp is universal.

Proposition 3.19. ([19]) The theory Tp is a Robinson theory in the language Lp.

Now, we want to add constraints on the automorphism σ, namely that every
orbit of σ is infinite. It is expressed by the following scheme of axioms: for each
n ∈ ω, there is an idempotent en such that {σ(en), · · · , σn(en) = en} is a partition
of 1.

Let L∞,p := Lp ∪ {en; n ∈ ω}, where p ∈ P ∪ {0}.

Let T∞,p be the following theory consisting of:

1. for each n, the axiom: e2
n = en and

∑n−1
i=0 σi(en) = 1 &

∧

i6=j σi(en).σj(en) = 0
& σn(en) = en,

2. the theory Tp.

Proposition 3.20. ([19]) The theory T∞,p is a Robinson theory in the language
L∞,p.

3.7 Sequences with coefficients in R.

Finally, we will consider the class of lattice-ordered commutative rings (ℓ-rings) with
an automorphism. (For a reference on ℓ-rings and their properties, see for instance
[2]). Recall that those rings R are partially ordered rings where (R,∧,∨) form a
lattice. Let Lℓ=Lrings ∪ {∧,∨} the language of lattice-ordered rings.

Note that in an ℓ-ring, a finitely generated ℓ-ideal is principal. So, we may
apply our undecidability result for Bezout rings. Namely, given an ℓ-ring R with an
automorphism σ which has an infinite orbit on the set of its ℓ-ideals and such that
Fix(σ) is an infinite field, then the theory of (R, +, .,∧,∨, σ) is undecidable.

Now, we will consider the subclass of those ℓ-rings which can be represented as
a subdirect product of totally ordered rings; it is the subclass of f -rings. An f -ring
is a lattice-ordered ring where ∀a, b, c > 0 a ∧ b = 0 → (a ∧ b.c = 0 and a ∧ c.b = 0).

Again, the key lemma is the following.

Lemma 3.21. ([19]) Let R0, R1, R2 be commutative von Neumann regular f -
rings, with R0 = R1 ∩ R2. Let x1 (respectively x2) belong to Spec(R1) (respectively
Spec(R2)) be such that x1 ∩ x2 ∈ Spec(R0). Then, R1/x1 ⊗R0/x0

R2/x2 embeds
in a canonical way in a von Neumann regular f -ring that we will denote by Rx,
x := (x1, x2) containing both R1/x1 and R2/x2.

Let Tf be the following L∗ := Lℓ ∪ {∗} ∪ {σ, σ−1}-theory consisting of:

1. the Lℓ-theory of von Neumann commutative regular f -rings with a pseudo-
inverse {∗},



820 F. Point

2. σ is an morphism of ℓ-rings and σ−1 is its inverse.

Note that Tf is a universal theory: the axioms axiomatizing the class of f -rings are
universal and we have already seen that the other ones were universal.

Proposition 3.22. ([19]) Let Tf is a Robinson theory in L∗.

Can we describe in some ways the universal domains?

4 Topological difference fields

In this section, we will consider topological difference fields. Let (K, v, σ) be an
inversive difference valued field, namely a valued field endowed with a distinguished
field automorphism σ satisfying ∀a v(σ(a)) ≥ v(a) (*). This kind of structures
was considered on one hand by L. Bélair, A. Macintyre and T. Scanlon ([1], [36]),
requiring in addition that v(a) = v(σ(a)) for all a ∈ K× and on the other hand
by E. Hrushovski and Z. Chatzidakis requiring that σ induces a rapidly increasing
automorphism on the value group of K ([7], [18]).

Note that H. Kikyo and S. Shelah showed that in general given a model-complete
theory T , the theory Tσ of the class of the models of T endowed with a distinguished
automorphism σ does not have a model-companion (see [26]). In particular, when
T is not stable which is the case here. So, in order to obtain a first-order theory,
one has to put additional constraints on the automorphism σ.

Throughout this section, K is a valued field of characteristic zero with val-
uation v, the valuation ring OK := {x ∈ K : v(x) ≥ 0}, the maximal ideal
MK := {x ∈ K : v(x) > 0}, k ∼= OK/MK is the residue field and Γ is the value group
of v. We will denote the residue map from K to k by a → a := a + MK . Because
of the relation (*) between the valuation and the distinguished automorphism σ, σ
induces an endomorphism σ̄ on the residue field k, namely σ̄(ā) := σ(a) + MK .

Note that these fields can also be seen in the formalism of valued D-fields in-
troduced by T. Scanlon ([36]). Indeed, one defines a map D in the following way:
D(a) := (σ(a) − a)/p, which is additive, D(x.y) = D(x).y + x.D(y) + p.D(x).D(y)
and D(1) = 0.

In the case where σ̄ is the usual Frobenius on the residue field, one can also use
the following p-derivation, defined as follows δ1(a) := (σ(a) − ap)/p (see [23] and
[1]).

4.1 σ acts on the residue field

Let A be a commutative ring of characteristic p. One can define for each m, the Witt
ring Wm[A] whose domain is included in Am, the direct product of m copies of A
with the shift σr : Wm[A] → Wm+1[A] and the Frobenius map Φp acting pointwise.
For the definition of addition and multiplication (see section 8.10 [21]); for these
operations the right shift is only a morphism of the additive group structure. The
ring W [A] is defined as the inverse limit of the rings Wm[A]. If A is a perfect field,
then W [A] is a domain and we will denote its field of fractions by W (A). The ring
W [A] is endowed with the valuation v sending a sequence (an)n∈ω to m if am is the
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first non zero coefficient and with the endomorphism σ sending (an) to (Φp(an))n∈ω.
Then, we extend these two maps to W (A).

L. Belair, A. Macintyre and T. Scanlon have identified and studied the theory
of W (Fa

p) as a valued difference field, as well as the theory of the non principal
ultraproducts of these, varying p ([1], [36]). The fixed subfield of W (Fa

p) is isomorphic
to Qp

∼= W (Fp), the field of p-adic numbers and W (Fa
p) is the completion of the

maximal unramified extension of Qp.

Definition 4.1. ([1]]) Let P [Z] ∈ OK [Z]σ of order n with Z one indeterminate. Let
X̄ := (X0, · · · , Xn), ℓ̄ = (ℓ0, · · · , ℓn), |ℓ̄| = ℓ0 + · · · + ℓn and Ȳ ℓ̄ := (Y ℓ0

0 , · · · , Y ℓn
n ).

Write P ∗[X̄ + Ȳ ] as P ∗[X̄] +
∑

ℓ̄≥1 P ∗
ℓ̄ [X̄].Ȳ ℓ̄.

One says that ã := (a, aσ, · · · , aσn

) and P are in σ-Hensel configuration if

v(P ∗(ã)) = γ + min|ℓ̄|=1v(P ∗
ℓ̄ (ã))

< j.γ + v(P ∗
ℓ̄ (ã)),

whenever j = |ℓ̄| > 1.

Definition 4.2. Let Tw be the following theory of difference valued fields (K, k, Γ, v).

1. (K, v) is a valued field of characteristic 0,

2. σ is an automorphism of the field K,

3. ∀a ∈ K v(a) = v(σ(a)),

4. density of the fixed field: ∀a ∈ K ∃x ∈ Fix(σ) v(x) = v(a),

5. every inhomogeneous non-trivial linear σ̄-equation over k has a solution in k,

6. every equation σ̄(x) = λ.x, with λ 6= 0 has a non-trivial solution in k.

7. σ-Hensel Lemma: for any P [X1] ∈ OK [X1]σ, and a ∈ OK in σ-Hensel configu-
ration, there exists b ∈ OK such that P (b) = 0 and v(a − b) = γ.

Definition 4.3. Let (F, σ) be a difference field. Then F is linearly difference closed
if the linear difference operators

∑m
i=0 ajσ

j , m ∈ ω and aj ∈ F , are surjective on F .

Note that the above definition exactly expresses that F is a divisible F [t; σ]-
module.

Any complete discrete valued difference valued field K satisfying axioms (1) up
to (5) with a residue field which is linearly difference closed satisfies the σ-Hensel
Lemma ([1] Corollary 4.3).

Definition 4.4. Let Tw,p be the following theory of difference valued fields (K, v, k, Γ).

1. K is a model of Tw,

2. the residue field k has characteristic p and v(p) = 1,

3. ∀a ∈ k σ̄(a) = ap.
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Definition 4.5. Let Tw,0 be the following theory of difference valued fields (K, v, k, Γ).

1. K is a model of Tw,

2. the residue field k has characteristic 0,

3. no residual σ-identities: for every p[X] ∈ k[X]σ̄ − {0}, there is an element
a ∈ k with p(a) 6= 0,

4. genericity axiom: for any inhomogeneous nontrivial linear σ̄-equation over k
of order n and any nontrivial polynomial G(X) over k of order m < n, there
is a solution α in k of the linear equation such that G(α) 6= 0.

One obtains the following Ax-Kochen-Ershov like theorem:

Theorem 4.1. (Theorems 8.1, 9.1 in [1]) Let (K, v, k, Γ, σ) be a model of either Tw,0

or Tw,p. Then its theory is determined by the theory Tk of the residue field (k, σ̄)
and the theory TΓ of value group Γ. Moreover its theory is model-complete whenever
the theories Tk and TΓ are model-complete.

This theorem implies that the theory WFp of (W (Fa
p), σ) is axiomatized by Tw,p

plus the schemes of axioms expressing that the residue field k is algebraically closed
(of characteristic p), that the value group is a Z-group with its least strictly positive
element equal to v(p). (Note that in this case the valuation is definable in the ring
language and so we get a theory of existentially closed difference fields different from
ACFA).

In addition one can show that WFp is the model-companion of the theory of
p-valued difference fields satisfying ∀x ∈ k (σ̄(x) = xp) (Proposition 9.3 in [1]).

By asymptotic theory of the (W (Fa
p), σ), p ∈ P, we mean the set of sentences

θ true in all but finitely many (W (Fa
p), σ). The above Theorem implies that the

asymptotic theories of the (W (Fa
p), σ), and of the (Fa

p((t)), σp,t), p ∈ P, where σp,t is
the Frobenius on Fa

p and σp,t(t) = t coincide (see Corollary 11.5 in [1]).

4.2 σ acts on the value group.

Let (Kp, Φp, v) be an algebraically closed difference field of characteristic p with a
non trivial valuation v. The aim here is to describe the theory of the difference
non-trivially valued fields of characteristic 0 which are non principal ultraproducts
of these structures. Note that if ap ∈ Kp with v(ap) > 0, then v(Φ(ap)) = p.v(a)
and so in the ultraproduct

∏

U(Kp, Φp, v) with U a non principal ultrafilter over
the prime numbers, we have that v(Φ([ap]U) > n.v([ap]U) for every natural number
n ∈ ω.

Definition 4.6. Let Z[T ] be the polynomial ring in one indeterminate. We extend
the order on Z by setting

∑n
i=0 aiT

i > 0, with ai ∈ Z if an > 0.

Recall that a ball of center c and radius γ ∈ Γ in a valued field K is a subset of
the form {x ∈ K : v(x − c) > γ}.
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Definition 4.7. Strong approximation: Let Q ∈ K[X0, · · · , Xn], let B0, · · · , Bn ⊂
K be n+1 balls. Then, v(Q; B0×· · ·×Bn) := inf{v(Q(ā)) : ā ∈ B0×· · ·×Bn} and
for B ⊂ K a ball and P ∈ K[X]σ we have v(P ; B) := v(P ∗; B × Bσ × · · · × Bσn

).
We say that a ∈ B is an approximate solution of P on B if v(P (a)) > v(P ; B).

Definition 4.8. Let V FA0 be the following theory of difference valued fields (K, k, Γ, v)
([8]).

1. σ is an automorphism of the field K.

2. ∀a ∈ K v(a) ≤ v(σ(a)) and ∀a ∈ MK v(a) < v(σ(a)).

3. (k, σ̄) is a difference field of characteristic 0, model of ACFA.

4. Γ is a Z[σ]-module and for each γ ∈ Γ>0 and each f(T ) ∈ Z[T ]>0, f(σ)(γ) > 0.

5. Γ is a divisible Z[σ]-module.

6. σ-S-Hensel Lemma: for any P (X) ∈ OK [X]σ, for any open ball in OK such
that P (X) has an approximate solution in B and ∂

∂X0
P has none in B, there

exists c ∈ B such that P (c) = 0.

Theorem 4.2. ([8]) The theory V FA0 is model-complete in Lv,σ and coincide with
the asymptotic theory of the (Kp, Φp, v), p ∈ P.

The proof of this theorem uses Theorem 2.3 in order to show that the residue
fields of non principal ultraproducts of the (Kp, Φp, v) are models of ACFA ([18]).

4.3 A real-closed valued difference field

Let us now conclude this section by considering another kind of topological differ-
ence fields: real-closed valued difference fields. Let R be a real-closed field and let
(G, ., 1, <) be a totally ordered abelian group and τ an increasing automorphism of
this group.
Consider the field R((G)) := {

∑

g∈G rg.g : rg ∈ R & {g ∈ G : rg 6= 0} is well − ordered};
the fact that it is indeed a field has been shown by A.I. Mal’cev and B.H. Neumann.
One can embed any ordered field in a field of this form with R = R. If G is divisible,
then this field is real-closed. One can define a valuation v by setting v(

∑

g∈G rg.g)
to be the least g in the support of this element. One defines an automorphism σ by
σ(

∑

g∈G rg.g) =
∑

g∈G rg.τ(g); it satisfies axiom 2 of Definition 4.9.
If one specialize to the case of G = tZ, one gets the usual field of Laurent

series. Finally, let us say a few words on the field R((t))LE of real exponential-
logarithmic series ([14]). Its construction is described in ([14]). One starts with
the field R0 := R((x−1)) of Laurent series ordered by x > R; a typical element
f(x) is of the form rnx

n + · · · + r1.x + r0 + r−1.x
−1 + r−2.x

−2 + · · · . It consists of
an infinite part: f1 := rnx

n + · · · + r1.x, a standard part r0 and an infinitesimal
part: f−1 := r−1.x

−1 + r−2.x
−2 + · · · . The field K := R0 can be decomposed as

a direct sum of an additive subgroup K∞ = K − OK consisting of its elements of
valuation > 1, and a multiplicative (convex) subgroup consisting of its elements of
valuation ≤ 1. One defines the exponentiation operation E on finite elements as
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follows: E(r0 +f−1) := er0.
∑∞

m=0(1/m!).(f−1)
m, where e is the usual exponentiation

operation on R. Then, taking a strictly increasing homomorphism E1 from the
additive group of K into the multiplicative subgroup of its strictly positive elements,
one defines E(f(x)) := E1(f1).E(r0 + f−1).

Then, one considers the field R1 := R0((E1(K∞))) and iterate this construction in
ω steps, obtaining the field R((t))E and then we close off by the logarithmic function,
obtaining R((t))LE as a countable union of exponential fields. This last construction
uses the substitution map Φ : RE → RE defined (informally) by Φ(f(x)) := f(E(x)),
and so is the identity on R. This is used to define a logarithm operation for the
elements in its image (see section 2.6 in [14]).

Then, one can verify that Φ is an automorphism of R((t))LE and it is is ω-
increasing [14].
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