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Abstract

Let G be a locally compact group and let ω be a weight function on
G. Under a very mild assumption on ω, we show that L1(G, ω) is (2n+1)-
weakly amenable for every n ∈ Z+. Also for every odd n ∈ N we show that
H2(L1(G, ω), (L1(G, ω))(n)) is a Banach space.

1 introduction

In this paper we shall be concerned with the structure of the first and second coho-
mology group of L1(G,ω) with coefficients in the nth dual space (L1(G,ω))(n). We
begin by recalling some terminology.

Let A be a Banach algebra, and X be a Banach A-bimodule. The dual space
X ′ is a Banach A-bimodule where the products a · λ and λ · a are specified by

a · λ(x) = λ(x · a), λ · a(x) = λ(a · x) (1.1)

for all a ∈ A, x ∈ X and λ ∈ X ′. The canonical embedding of X in X ′′ is denoted
by ı or ̂ . We denote higher duals by X(n+1) = X(n)′ for all n ∈ N; with the
convention X(0) = X. Then X(n) is also a Banach A- bimodule; the definitions are
consistent in the sense that â · x = a · x̂. So that X(n) is a submodule of X(n+2). If
X is symmetric, then so is X(n). If X is unital, then so is X ′. The adjoint of the
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injective map ı : X(n−1) → X(n+1) is the projective map P : X(n+2) → X(n), defined
by P (Λ) = Λ|ı(X(n−1)). Then P is a A-bimodule morphism, and so we may write

X(n+2) = X(n) ⊕KerP = X(n) ⊕ ı(X(n−1))
⊥
,

as Banach A-bimodules. We shall also consider the second dual A′′ of a Banach
algebra A as a Banach algebra; indeed, two products are defined on A′′ as follows.
Let a ∈ A , λ ∈ A′ and m,n ∈ A′′. Then m · λ and λ ·m are defined by

m · λ(a) = m(λ · a), λ ·m(a) = m(a · λ),

where λ · a and a · λ are defined by (1.1). Next m�n and m � n are defined in A′′

by
m�n(λ) = m(n · λ), m � n(λ) = n(λ ·m). (1.2)

Then A′′ is a Banach algebra with respect to each of the products � and �, which
are called the first and second Arens products on A′′, respectively. For fixed n in
A′′, the map m→ m�n is weak* weak* continuous, but map m→ n �m in general
is not weak* weak* continuous unless m is in A.

The cohomology complex is

0 −→ X
δ0

−→ C1(A, X)
δ1

−→ C2(A, X)
δ2

−→ · · · ,

where for n ∈ Z+, Cn(A, X) is the set of all bounded n-linear maps from A to X.
The map δ0 : X −→ C1(A, X) is given by δ0(x)(a) = a · x − x · a and for n ∈ Z+,
the map δn : Cn(A, X) −→ Cn+1(A, X) is given by

δnT (a1, . . . , an+1) = a1 · T (a2, . . . , an+1) +
n∑

i=1

(−1)iT (a1, . . . , aiai+1, . . . an+1)

+(−1)n+1T (a1, . . . , an) · an+1,

where T ∈ Cn(A, X) and a1, . . . , an+1 ∈ A. The space ker δn of bounded n-cocycle
is denoted by Zn(A, X) and the space Im δn−1 of bounded n-coboundary is denoted
by Bn(A, X). We recall that Bn(A, X) is a subspace of Zn(A, X) and that the nth
cohomology group Hn(A, X) is defined by the quotient

Hn(A, X) =
Zn(A, X)

Bn(A, X)
,

which is called the nth Hochschild (continuous) cohomology of A with coefficients
in X.

The n-cochain T is called cyclic if

T (a1, a2, . . . , an)(a0) = (−1)nT (a0, a1, . . . , an−1)(an),

and we denote the linear space of all cyclic n-cochains by Cn
λ (A,A′). It is well

known (see [9]) that the cyclic cochains Cn
λ (A,A′) form a subcomplex of Cn(A,A′),

that is δn : Cn
λ (A,A′) → Cn+1

λ (A,A′), and so we have cyclic versions of the spaces
defined above, which we denote by Bn

λ(A,A′), Zn
λ (A,A′) and Hn

λ(A,A′). Note that
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it is usual to denote the cyclic cohomology group by Hn
λ(A), as there is only one

bimodule used, namely A′.

To show that Hn(A, X) = 0, we must show that every n-cocycle from A to X
is an n-coboundary. In particular case for n = 1, Z1(A, X) is the space of all con-
tinuous derivations from A to X, and B1(A, X) is the space of all inner derivations
from A to X. Thus H1(A, X) = 0 if and only if each continuous derivation from A
to X is inner.

The space Zn(A, X) is a Banach space, but in general Bn(A, X) is not closed;
we regard Hn(A, X) as a complete seminormed space with respect to the quotient
seminorm. This seminorm is a norm if and only if Bn(A, X) is a closed subspace of
Cn(A, X), which means that Hn(A, X) is a Banach space.

There have been very extensive studies devoted to calculation of the cohomology
group H1(A, X) and the higher dimensional groups Hn(A, X) for various classes
of Banach algebras A and Banach A-bimodules X. Our purpose here, being par-
ticularly concerned with the cohomology groups H1(A, X(n)) and H2(A, X(n)) for
n ∈ N.

A Banach algebra A is called n-weakly amenable if H1(A,A(n)) = 0. Note that
1-weakly amenable Banach algebras are called weakly amenable.

It was shown in [13] that L1(G) is weakly amenable for every locally compact
group G; see also [6] for a shorter proof. Dales, Ghahramani and Grønbæk [5]
showed that L1(G) is always (2n+1)-weakly amenable for n ∈ Z+. Johnson [14] for
the free group on two generators, proved that H1(`1(F2), (`

1(F2))
(n)) = 0 for every

n ∈ N and in [12] he proved that H2(`1(F2),C) 6= 0 which by [19, Theorem 8.3.1]
implies that H2(`1(F2), `

1(F2)) 6= 0 and H2(`1(F2), `
∞(F2)) 6= 0.

In [11] Ivanov and in [15] Matsumoto and Morita showed that H2(`1(G),C) is a
Banach space for every discrete group G with trivial action on C. A. Pourabbas [18]
showed that the second cohomology group of L1(G) with coefficients in L1(G)(2n+1)

is a Banach space for every locally compact group G and every n ∈ Z+. Meanwhile
Soma [20] showed that H3(`1(F2),R) is not a Banach space. In [4] Burger and
Monod showed that for a compactly generated locally compact second countable
group G, the second continuous cohomology H2

cb(G,F ) is a Banach space, where F
is a separable coefficient module.

In this paper for every locally compact group G and every n ∈ Z+, first we show
that H1(L1(G,ω), L1(G,ω)(2n+1)) = 0. Next we show that the second cohomology
group of L1(G,ω) with coefficients in L1(G,ω)(2n+1) is a Banach space, where ω
is a weight function with sup {ω(g)ω(g−1) : g ∈ G} < ∞. At the end we will give
examples which show dependence of cohomology on the weight ω.

2 The first cohomology group

Let G be a locally compact group. A weight on G is a continuous function ω :
G → (0,∞) satisfying ω(e) = 1, ω(xy) ≤ ω(x)ω(y) for all x, y ∈ G. We say that
the weight ω is diagonally bounded if sup {ω(g)ω(g−1) : g ∈ G} < ∞. Throughout
for a diagonally bounded weight ω we set Db(ω) = sup {ω(g)ω(g−1) : g ∈ G}. The
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Beurling algebra L1(G,ω) is defined as below,

L1(G,ω) =
{
f : G→ C : f is measurable and ‖f‖ω

1 =
∫
|f(x)|ω(x)d(x) <∞

}
.

L1(G,ω) is a Banach algebra with convolution product and norm ‖·‖ω
1 . The dual

space L∞(G,ω−1) = L1(G,ω)′ consists of all measurable functions ϕ on G with

‖ϕ‖∞ω = ess sup

{
|ϕ(g)|
ω(g)

: g ∈ G
}
<∞.

L1(G,ω) has a bounded approximate identity {eα}, and by [2, Proposition 28.7], the
Banach algebra (L1(G,ω)′′,�) has a right identity element E such that ‖E‖ ≤ M ,
where M = supα ‖eα‖ω

1 .
The space M(G,ω) of all complex, regular Borel measures µ on G such that

µ · ω ∈M(G) with the convolution product and norm

‖µ‖ω =
∫
ω(x)d |µ| (x)

is a Banach algebra. The weighted measure algebra M(G,ω) has a unit element
δe and contains L1(G,ω) as a closed two sided ideal. Also M(G,ω)∗ = C0(G,ω

−1)
consists of all continuous functions on G such that f

ω
∈ C0(G).

Lemma 2.1. The multiplier algebra of L1(G,ω) is isometrically isomorphic with
M(G,ω).

Proof. The proof is similar to the proof ∆(L1(G)) = M(G) [10, p. 276].

Let {µα} be a net in M(G,ω) and µ ∈M(G,ω). We say that (µα) tends to µ in
so-topology if for every f ∈ L1(G,ω), we have

µα ∗ f → µ ∗ f and f ∗ µα → f ∗ µ.

Lemma 2.2. Let G be a locally compact group. Then the so-closed convex span of{
λ

ω(g)
δg : g ∈ G, λ ∈ C, |λ| = 1

}

is the unit ball in M(G,ω).

Proof. The proof is the same as the unweighted case [8, 1.1.1-1.1.3].

Note. By the previous Lemma every measure µ in M(G,ω) is the so-limit of a
net {µα}, where each µα is a linear combination of point masses.

Now for every n ∈ Z+ we will show that L1(G,ω)
(2n+1)
R , the real-valued functions

in L1(G,ω)(2n+1), is a complete lattice in the sense that every non-empty subset of
L1(G,ω)(2n+1) which is bounded above has a supremum.
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Proposition 2.3. The Banach space L∞(G,ω−1) with the product

f · g(x) =
f(x)g(x)

ω(x)
, f, g ∈ L∞(G,ω−1)

and complex conjugate as involution is a commutative C*-algebra.

Proof. Define ϕ : L∞(G,ω−1) → L∞(G) by ϕ(f) = fω−1. Then ϕ is a ∗-isometrical
isomorphism from L∞(G,ω−1) onto L∞(G). Thus L∞(G,ω−1) is a commutative
C*-algebra.

Remark 2.4. Set X = L1(G,ω)(2n) (n ≥ 1). We note that L1(G,ω)′ = L∞(G,ω−1)
is a commutative C*-algebra. Because the second dual of a commutative C*-algebra
is a commutative von Neumann algebra, then X ′ = L1(G,ω)(2n+1) is the underlying
space of a commutative von Neumann algebra, and hence it is an L∞-space. The
space X ′

R of real-valued functions in X ′ forms a complete lattice.

Throughout the rest of this section we set A = L1(G,ω) and X = A(2n+2), where
n ∈ Z+. The map

θ : M(G,ω) → (A′′,�), µ 7→ E�µ

is a continuous embedding. In fact for all µ ∈M(G,ω) we have

‖θ(µ)‖ ≤ ‖µ‖ω ‖E‖ ≤ ‖µ‖ωM.

We write Es for E�δs, where s ∈ G and E is a right identity for (A′′,�). If D :
A −→ X ′ is a continuous derivation, then by [5, Proposition 1.7] D′′ : (A′′,�) −→
X ′′′ is a continuous derivation.

Lemma 2.5. Let ω be a diagonally bounded weight on G. Then

(i) For every subset B of X ′
R, and for every r ∈ G, we have

E · sup {Er · Λ : Λ ∈ B} = Er · sup {E · Λ : Λ ∈ B}

and
sup {Er · Λ : Λ ∈ B} · E = sup {E · Λ : Λ ∈ B} · Er.

(ii) The set {Es−1 · ReD′′(Es) : s ∈ G} is a bounded subset of X ′
R.

Proof. (i) Let α = sup {E · Λ : Λ ∈ B} and γ = sup {Er · Λ : Λ ∈ B}. For all Λ ∈ B
we have Er · Λ = Er · (E · Λ) ≤ Er · α. So

E · sup {Er · Λ : Λ ∈ B} ≤ Er sup {E · Λ : Λ ∈ B} .

Conversely

α = sup {E · Λ : Λ ∈ B} = sup {Er−1(Er · E · Λ) : Λ ∈ B} ≤ Er−1 · E · γ.
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Thus Er · α ≤ E · γ. By the same method we have

sup {Er · Λ : Λ ∈ B} · E = sup {E · Λ : Λ ∈ B} · Er.

(ii) Since ‖Es‖ ≤ ω(s)M for every s ∈ G, then

‖Es−1 · ReD′′(Es)‖ = ‖Re(Es−1 ·D′′(Es))‖
≤ ‖Es−1 ·D′′(Es)‖ ≤ ‖Es−1‖ ‖D′′‖ ‖Es‖
≤ ω(s)ω(s−1) ‖D′′‖M2 ≤ Db(ω) ‖D′′‖M2.

Thus {Es−1 · Re(D′′(Es)) : s ∈ G} is a bounded subset of X ′
R.

Theorem 2.6. Let G be a locally compact group. Then L1(G,ω) is a (2n + 1)-
weakly amenable for every n ∈ Z+, whenever ω is a diagonally bounded weight on
G.

Proof. Set A = L1(G,ω) and X = L1(G,ω)(2n). The result in [17] establishes the
case n = 1 and we may suppose that n ∈ N. Let {eα} be a bounded approximate
identity for A. Then there exists a right identity E for (A′′,�) such that ‖E‖ ≤M.

Since A is a closed ideal of M(G,ω), then by [7] (A′′,�) is a closed ideal of
(M(G,ω)′′,�). Let D ∈ Z1(A,X ′). Then D′′ : (A′′,�) → X ′′′ is a continuous
derivation. For r, s ∈ G we have

D′′(Est) = D′′(Es) · Et + Es ·D′′(Et)

and so

E(st)−1 ·D′′(Est) = Et−1 · (Es−1 ·D′′(Es)) · Et + Et−1 ·D′′(Et). (2.1)

By Lemma 2.5(ii) the set {Es−1 · ReD′′(Es) : s ∈ G} is bounded in X ′′′
R . Since X ′′′

R
is a complete lattice, then

φr = sup {Es−1 · Re(D′′(Es)) : s ∈ G} (2.2)

exists in X ′′′
R . Let t ∈ G. Then from (2.1), (2.2) and Lemma 2.5(i) we have

E · φr · E = Et−1 · φr · Et + Et−1 · ReD′′(Et) · E.

Hence

E · ReD′′(Et) · E = Et · φr · E − E · φr · Et.

Similarly, by considering imaginary parts we obtain φi ∈ X ′′′
R such that

E · ImD′′(Et) · E = Et · φi · E − E · φi · Et.

Thus if we define φ = φr + φi, then φ ∈ X ′′′ and for all t ∈ G,

E ·D′′(Et) · E = Et · φ · E − E · φ · Et.
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If ν is a linear combination of point masses and f, g ∈ A, then we have

f ·D′′(E�ν) · g = (f ∗ ν) · φ · g − f · φ · (ν ∗ g). (2.3)

Now take h ∈ A. Then there is a net {να} of linear combination of point masses
such that να → h in the strong operator topology on A, that is, limα(f ∗ να) = f ∗h
and limα(να ∗ g) = h ∗ g for every f, g ∈ A.

Let f, g ∈ A. Then

lim
α
f ·D′′(E�να) · g = lim

α
(D′′(f ∗ να) · g −D′′(f) · (να ∗ g))

= D′′(f ∗ h) · g −D′′(f) · (h ∗ g)
= f ·D′′(h) · g.

So, from (2.3) we have

f ·D′′(h) · g = (f ∗ h) · φ · g − f · φ · (h ∗ g)
= f · (h · φ− φ · h) · g.

Let P : X ′′′ → X ′ = A(2k+1) be the natural projection, so that P is an A-bimodule
morphism. We have D = P ◦D′′. Set φ0 = P (φ). Then

f ·D(h) · g = f · (h · φ0 − φ0 · h) · g

for every f, g, h ∈ A, and so

D(h)(f · x · g) = (h · φ0 − φ0 · h)(f · x · g)

for every f, g, h ∈ A and x ∈ X. Now by [5, proposition 1.17] we have D(h)(x) =
(h·φ0−φ0 ·h)(x). Then D is an inner derivation and so A is (2k+1)- weak amenable.

3 The second cohomology group

In this section firstly we prove that H2(`1(G,ω), `1(G,ω)(2n+1)) is a Banach space
for every discrete group G. Secondly we will generalize this method to show that
H2(L1(G,ω), (L1(G,ω))(2n+1)) is a Banach space for every locally compact group G.
Recall that we set Db(ω) = sup {ω(g)ω(g−1) : g ∈ G}.

Theorem 3.1. H2(`1(G,ω), `1(G,ω)(2n+1)) is a Banach space for every discrete
group G and for every diagonally bounded weight ω.

Proof. Set X = `1(G,ω)(2n). Let ψ ∈ C1(`1(G,ω), X ′). Then for every g, h ∈ G and
s ∈ X with ‖s‖ ≤ 1 we have

|δψ(g, h)(s)| = |ψ(g)(hs)− ψ(gh)(s) + ψ(h)(sg)| ≤ ‖δψ‖ω(g)ω(h). (3.1)

Since the set {Reψ(g) · g−1 : g ∈ G} is bounded above by ‖ψ‖Db(ω) in X ′
R. Then

fr(s) = sup
g∈G

{
Reψ(g)(g−1s)

}
,
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exists in X ′
R. For every h ∈ G by (3.1) we have

fr(hs) = sup
g∈G

{
Reψ(g)(g−1hs)

}
= sup

g∈G

{
Reψ(hg)(g−1s)

}
≤ sup

g∈G

{
Reψ(h)(s) + Reψ(g)(g−1sh) + ‖δψ‖ω(g)ω(g−1)ω(h)

}
= Reψ(h)(s) + sup

g∈G

{
Reψ(g)(g−1sh)

}
+ ‖δψ‖ω(h)Db(ω)

= Reψ(h)(s) + fr(sh) + ‖δψ‖ω(h)Db(ω).

(3.2)

On the other hand

fr(hs) = sup
g∈G

{
Reψ(g)(g−1hs)

}
≥ Reψ(h)(s) + fr(sh)− ‖δψ‖ω(h)Db(ω).

(3.3)

¿From (3.2) and (3.3) we have

|h · fr(s)− fr · h(s) + Reψ(h)(s)| ≤ ‖δψ‖ω(h)Db(ω).

Similarly, by considering imaginary parts we have

|h · fi(s)− fi · h(s) + Imψ(h)(s)| ≤ ‖δψ‖ω(h)Db(ω).

By putting f = fr + ifi we obtain

|h · f(s)− f · h(s) + ψ(h)(s)| ≤ 2 ‖δψ‖ω(h)Db(ω).

Now let us define
ψ̄(h)(s) = (δf)(h)(s) + ψ(h)(s),

so δψ̄ = δψ and
∣∣∣ψ̄(h)(s)

∣∣∣ ≤ 2 ‖δψ‖ω(h)Db(ω)||s|| for every h ∈ G and s ∈ X. Thus∥∥∥ψ̄∥∥∥ ≤ 2 ‖δψ‖Db(ω) and this finishes the proof.

Lemma 3.2. The cyclic cohomology group H2
λ(`

1(G,ω)) is a Banach space for every
discrete group G and for every diagonally bounded weight ω.

Proof. Let ψ ∈ C1(`1(G,ω), `∞(G,ω−1)) such that ψ(h)(g) = −ψ(g)(h) for g, h ∈ G,
and let us consider ψ̄(h)(g) = (δf)(h)(g)+ψ(h)(g) as in Theorem 3.1. Then δψ̄ = δψ

and
∥∥∥ψ̄∥∥∥ ≤ 2 ‖δψ‖Db(ω), further

ψ̄(h)(g) = (δf)(h)(g) + ψ(h)(g)

= −(δf)(g)(h)− ψ(g)(h)

= −ψ̄(g)(h).

Hence H2
λ(`

1(G), ω) is a Banach space.
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We can now state the final result of this paper, we show that the cohomology
groupH2(L1(G,ω), L1(G,ω)(2n+1)) is a Banach space for every locally compact group
G and every diagonally bounded weight ω.

We recall a construction that shows that L∞(G,ω−1) is an M(G,ω)-bimodule.
For f ∈ L∞(G,ω−1), a ∈ L1(G,ω) and µ ∈M(G,ω) define the module actions by

(fµ)(a) = f(µ ∗ a) and (µf)(a) = f(a ∗ µ).

Throughout this section the notations lim sup and lim inf are frequently simpli-
fied to lim and lim. We denote by so-limµα the limits of measures in the strong
operator topology.

Proposition 3.3. Set X = L1(G,ω)(2n). Let ψ ∈ C1(L1(G,ω), X ′). Then there is
a ψ̃ ∈ C1(M(G,ω), X ′) with

(i) ψ̃|L1(G,ω) = ψ and δψ̃|L1(G,ω)×L1(G,ω) = δψ.

(ii) Let µ be in M(G,ω) with ‖µ‖ω ≤ 1, and let x be in X with ‖x‖ ≤ 1 and
a, b ∈ L1(G,ω) with ‖a‖ω

1 ≤ 1 and ‖b‖ω
1 ≤ 1. If {µα} is a net in M(G,ω) with

‖µα‖ω ≤ 1 such that so-limµα = µ, then∣∣∣(limα Re ψ̃(µα)(a · x · b) + i limα Im ψ̃(µα)(a · x · b))− ψ̃(µ)(a · x · b)
∣∣∣ ≤ 3

∥∥∥δψ̃∥∥∥ .
Proof. (i) We follow the proof of [12, Lemma 1.10] for this particular case. Let
µ ∈ M(G,ω) and let {eα} be a bounded approximate identity for L1(G,ω) with
bound M . Defining

ψα(µ) = ψ(µ ∗ eα)

we see that ψα is a bounded net in C1(M(G,ω), X ′) and so has a cofinal subnet ψβ

convergent to a limit ψ̃ in the weak∗-topology induced by identifying C1(M(G,ω), X ′)
with C1(M(G,ω), X)′. Thus

lim
β
ψ(µ ∗ eβ)(x) = ψ̃(µ)(x)

for all µ ∈ M(G,ω), x ∈ X. Since for all a ∈ L1(G,ω), ψ(a ∗ eβ) → ψ(a) in norm,
ψ̃|L1(G,ω) = ψ. Also δψ̃|L1(G,ω)×L1(G,ω) = δψ.

To prove (ii) let us consider µ, ν ∈ M(G,ω) with ‖µ‖ω , ‖ν‖ω ≤ 1 and x ∈ X
with ‖x‖ ≤ 1. Then∣∣∣δψ̃(µ, ν)(x)

∣∣∣ =
∣∣∣µ · ψ̃(ν)(x)− ψ̃(µ ∗ ν)(x) + ψ̃(µ) · ν(x)

∣∣∣ ≤ ∥∥∥δψ̃∥∥∥ . (3.4)

For a, b ∈ L1(G,ω) with ‖a‖ω
1 ≤ 1, ‖b‖ω

1 ≤ 1 and x ∈ X with ‖x‖ ≤ 1 by (3.4)

−Re ψ̃(µα)(a · x · b) = −Re ψ̃(µα) · a(x · b)
≤ Reµα · ψ(a)(x · b)− Reψ(µα ∗ a)(x · b) +

∥∥∥δψ̃∥∥∥
and so

−lim Re ψ̃(µα)(a · x · b) ≤ lim
{
Reµα · ψ(a)(x · b)− Reψ(µα ∗ a)(x · b) +

∥∥∥δψ̃∥∥∥}
= Reµ · ψ(a)(x · b)− Reψ(µ ∗ a)(x · b) +

∥∥∥δψ̃∥∥∥ .
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On the other hand

−lim Re ψ̃(µα)(a · x · b) ≥ Reµ · ψ(a)(x · b)− Reψ(µ ∗ a)(x · b)−
∥∥∥δψ̃∥∥∥ .

Hence ∣∣∣µ · Reψ(a)(x · b)− Reψ(µ ∗ a)(x · b) + lim Re ψ̃(µα)(a · x · b)
∣∣∣ ≤ ∥∥∥δψ̃∥∥∥ .

Similarly for imaginary parts we have∣∣∣µ · Imψ(a)(x · b)− Imψ(µ ∗ a)(x · b) + lim Im ψ̃(µα)(a · x · b)
∣∣∣ ≤ ∥∥∥δψ̃∥∥∥ .

Therefore ∣∣∣µ · ψ(a)(x · b)− ψ(µ ∗ a)(x · b)

+
(
lim Re ψ̃(µα) + i lim Im ψ̃(µα)

)
(a · x · b)

∣∣∣ ≤ 2
∥∥∥δψ̃∥∥∥ . (3.5)

but from (3.4) we also have∣∣∣µ · ψ(a)(x · b)− ψ(µ ∗ a)(x · b) + ψ̃(µ)(a · x · b)
∣∣∣ ≤ ∥∥∥δψ̃∥∥∥ . (3.6)

Hence (3.5) and (3.6) imply that∣∣∣(lim Re ψ̃(µα)(a) + i lim Im ψ̃(µα)
)

(a · x · b)− ψ̃(µ)(a · x · b)
∣∣∣ ≤ 3

∥∥∥δψ̃∥∥∥ .

Proposition 3.4. [18, Proposition 3.1] Let A be a Banach algebra with a bounded
approximate identity, and let X be a Banach A-bimodule. Let ψ ∈ C1(A, X ′) such
that |ψ(a)(b · x · c)| ≤ ‖δψ‖ for every x ∈ X with ‖x‖ ≤ 1 and a, b, c ∈ A with
‖a‖ ≤ 1, ‖b‖ ≤ 1 and ‖c‖ ≤ 1. Then there exists ψ̂ ∈ X ′ such that∣∣∣ψ(a)(x)− δψ̂(a)(x)

∣∣∣ ≤ 5 ‖δψ‖ .

Theorem 3.5. Let G be a locally compact group, and let ω be a diagonally bounded
weight on G. Then H2(L1(G,ω), L1(G,ω)(2n+1)) is a Banach space for every n ∈ Z+.

Proof. Set X = L1(G,ω)(2n). Let φ ∈ C1(L1(G,ω), X ′) and let us consider φ̃ ∈
C1(M(G,ω), X ′) as in Proposition 3.3. Set

S =
{
Re δg−1φ̃(δg) : g ∈ G

}
,

Since S is bounded above by
∥∥∥φ̃∥∥∥Db(ω) in X ′

R, the complete vector lattice of real

valued functions in X ′, then ψr = supg∈G S exists in X ′
R.

For every h ∈ G and x ∈ X with ‖x‖ ≤ 1 by (3.4) we have

δh · ψr(x) = sup
k∈G

{
Re(δh ∗ δk−1) · φ̃(δk)(x)

}
= sup

g∈G

{
Re δg−1 · φ̃(δg ∗ δh)(x)

}
≤ sup

g∈G

{
Re(δg−1 ∗ δg) · φ̃(δh)(x) + Re δg−1 · φ̃(δg) · δh(x)

}
+

∥∥∥δφ̃∥∥∥Db(ω)ω(h)

≤ Re φ̃(δh)(x) + ψr · δh(x) +
∥∥∥δφ̃∥∥∥Db(ω)ω(h),
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where hk−1 = g−1. On the other hand,

δh · ψr(x) ≥ Re φ̃(δh)(x) + ψr · δh(x)−
∥∥∥δφ̃∥∥∥Db(ω)ω(h).

Therefore, ∣∣∣δh · ψr(x)− ψr · δh(x)− Re φ̃(δh)(x)
∣∣∣ ≤ ∥∥∥δφ̃∥∥∥Db(ω)ω(h). (3.7)

Now if µα =
∑n

i=1 αiδhi
, then by (3.7)

|µα · ψr(x)− ψr · µα(x)− Re φ̃(µα)(x)|

≤
n∑

i=1

|αi|
∣∣∣δhi

· ψr(x)− ψr · δhi
(x)− Re φ̃(δhi

)(x)
∣∣∣

≤
n∑

i=1

|αi|
∥∥∥δφ̃∥∥∥Db(ω)ω(hi) ≤

∥∥∥δφ̃∥∥∥Db(ω) ‖µα‖ω .

(3.8)

Similarly, by considering imaginary parts we obtain ψi such that∣∣∣µα · ψi(x)− ψi · µα(x)− Im φ̃(µα)(x)
∣∣∣ ≤ ∥∥∥δφ̃∥∥∥Db(ω) ‖µα‖ω . (3.9)

Since every h in L1(G,ω) with ‖h‖ω
1 ≤ 1 is the so-limit of a net {µα} with ‖µα‖ω ≤ 1,

where every µα is a linear combination of point masses, then by (3.8) and (3.9) for
every x ∈ X with ‖x‖ ≤ 1 and a, b ∈ L1(G,ω) with ‖a‖ω

1 ≤ 1 and ‖b‖ω
1 ≤ 1 we have∣∣∣(h · ψ − ψ · h) (a · x · b)−

(
lim Re φ̃(µα) + i lim Im φ̃(µα)

)
(a · x · b)

∣∣∣ ≤ 2
∥∥∥δφ̃∥∥∥Db(ω)

where ψ = ψr + i ψi. Now by Proposition 3.3 (ii), we have∣∣∣(limα Re φ̃(µα)(a · x · b) + i limα Im φ̃(µα)(a · x · b))− φ(h)(a · x · b)
∣∣∣ ≤ 3

∥∥∥δφ̃∥∥∥ .
Thus∣∣∣∣(h · ψ − ψ · h)(a · x · b)− φ(h)(a · x · b)

∣∣∣∣
≤

∣∣∣(h · ψ − ψ · h)(a · x · b)−
(
lim Re φ̃(µα) + i lim Im φ̃(µα)

)
(a · x · b)

∣∣∣
+

∣∣∣(lim Re φ̃(µα) + i lim Im φ̃(µα)
)

(a · x · b)− φ(h)(a · x · b)
∣∣∣

≤
∥∥∥δφ̃∥∥∥ (2Db(ω) + 3).

Now by Proposition 3.4 there exist φ̂ ∈ X ′ such that∣∣∣(h · ψ − ψ · h)(x)− δφ̂(h)(x)− φ(h)(x)
∣∣∣ ≤ 5

∥∥∥δφ̃∥∥∥ (2Db(ω) + 3)

Define
ψ̄(h)(x) = −δψ(h)(x)− δφ̂(h)(x) + φ(h)(x).

Then δψ̄ = δφ̃ and
∣∣∣ψ̄(h)(x)

∣∣∣ ≤ 5
∥∥∥δφ̃∥∥∥ (2Db(ω) + 3) for every h ∈ L1(G,ω) with

‖h‖ω
1 ≤ 1 and x ∈ X with ‖x‖ ≤ 1. So

∥∥∥ψ̄∥∥∥ ≤ 5
∥∥∥δφ̃∥∥∥ (2Db(ω) + 3) and this

completes the proof.
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Theorem 3.6. H2
λ(L

1(G,ω)) is a Banach space for every locally compact group G
and for every diagonally bounded weight ω.

Proof. Let φ ∈ C1(L1(G,ω), L∞(G,ω−1)) be such that for a, b ∈ L1(G,ω)

φ(a)(b) = −φ(b)(a).

By the proof of Theorem 3.5 there exists ψ̄ ∈ C1(L1(G,ω), L∞(G,ω−1)) defined by

ψ̄(b)(a) = −δψ(b)(a) + φ(b)(a) such that δψ̄ = δφ and for a constant M ,
∥∥∥ψ̄∥∥∥ ≤

M ‖δφ‖ and obviously ψ̄(b)(a) = −φ̄(a)(b).

Example 3.7. [17, Example 3.15] It is well known that for F2, the free group on two
generators, the second unbounded cohomology H2(F2,R) is trivial [3, Example 4.3
and Example 1 on page 58]. So all bounded 2-cocycles have the form φ(g, h) =
ψ(g)− ψ(gh) + ψ(h) for some possibly unbounded ψ. We define

ω(g) =

exp(K − ψ(g)) if g 6= e

1 otherwise,

where K is a bound for φ, we get a weight on F2 such that sup{ω(g)ω(g−1)} <∞.
Thus H2(`1(F2, ω), `∞(F2, ω

−1)) is a Banach space. In the case ω = 1 as noted in
the Introduction H2(`1(F2), `

∞(F2)) 6= 0 and by [18] it is a Banach space.

Example 3.8. Bade et al. [1] studied the Beurling algebra `1(Z, ωα). They defined a
weight ωα on Z by ωα(n) = (1 + |n|)α and they proved

(i) If α > 0, then `1(Z, ωα) is not amenable.
(ii) If 0 ≤ α < 1/2, then `1(Z, ωα) is weakly amenable.
(iii) If α ≥ 1/2, then `1(Z, ωα) is not weakly amenable.

Note that if α = 0, then ω = 1 and `1(Z, ωα) = `1(Z) is an amenable algebra
[2, §43.3]. Thus by [12] Hn(`1(Z), X ′) = 0 for every Banach `1(Z)-bimodule X
and every n ≥ 1. In [16] the second author showed that H2(`1(Z, ωα),C) 6= 0
for every α > 0, then by [19] H2(`1(Z, ωα), `∞(Z, ωα)) 6= 0. Note that ωα is not
diagonally bounded. So Theorem 3.5 is not applicable. We do not know whether
H2(`1(Z, ωα), `∞(Z, ωα)) is a Banach space or not.
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