On the Hochschild cohomology of Beurling Algebras E. Feizi A. Pourabbas #### Abstract Let G be a locally compact group and let ω be a weight function on G. Under a very mild assumption on ω , we show that $L^1(G,\omega)$ is (2n+1)-weakly amenable for every $n \in \mathbb{Z}^+$. Also for every odd $n \in \mathbb{N}$ we show that $\mathcal{H}^2(L^1(G,\omega),(L^1(G,\omega))^{(n)})$ is a Banach space. #### 1 introduction In this paper we shall be concerned with the structure of the first and second cohomology group of $L^1(G,\omega)$ with coefficients in the *n*th dual space $(L^1(G,\omega))^{(n)}$. We begin by recalling some terminology. Let \mathcal{A} be a Banach algebra, and X be a Banach \mathcal{A} -bimodule. The dual space X' is a Banach \mathcal{A} -bimodule where the products $a \cdot \lambda$ and $\lambda \cdot a$ are specified by $$a \cdot \lambda(x) = \lambda(x \cdot a), \qquad \lambda \cdot a(x) = \lambda(a \cdot x)$$ (1.1) for all $a \in \mathcal{A}$, $x \in X$ and $\lambda \in X'$. The canonical embedding of X in X'' is denoted by i or $\hat{}$. We denote higher duals by $X^{(n+1)} = X^{(n)'}$ for all $n \in \mathbb{N}$; with the convention $X^{(0)} = X$. Then $X^{(n)}$ is also a Banach \mathcal{A} - bimodule; the definitions are consistent in the sense that $\widehat{a \cdot x} = a \cdot \widehat{x}$. So that $X^{(n)}$ is a submodule of $X^{(n+2)}$. If X is symmetric, then so is $X^{(n)}$. If X is unital, then so is X'. The adjoint of the Received by the editors June 2004 - In revised form in September 2004. Communicated by A. Valette. 2000 Mathematics Subject Classification: Primary 43A20; Secondary 46M20. Key words and phrases: weak amenability, cohomology, Beurling algebra. injective map $i: X^{(n-1)} \to X^{(n+1)}$ is the projective map $P: X^{(n+2)} \to X^{(n)}$, defined by $P(\Lambda) = \Lambda|_{i(X^{(n-1)})}$. Then P is a \mathcal{A} -bimodule morphism, and so we may write $$X^{(n+2)} = X^{(n)} \oplus \text{Ker } P = X^{(n)} \oplus \iota(X^{(n-1)})^{\perp},$$ as Banach \mathcal{A} -bimodules. We shall also consider the second dual \mathcal{A}'' of a Banach algebra \mathcal{A} as a Banach algebra; indeed, two products are defined on \mathcal{A}'' as follows. Let $a \in \mathcal{A}$, $\lambda \in \mathcal{A}'$ and $m, n \in \mathcal{A}''$. Then $m \cdot \lambda$ and $\lambda \cdot m$ are defined by $$m \cdot \lambda(a) = m(\lambda \cdot a), \qquad \lambda \cdot m(a) = m(a \cdot \lambda),$$ where $\lambda \cdot a$ and $a \cdot \lambda$ are defined by (1.1). Next $m \square n$ and $m \diamond n$ are defined in \mathcal{A}'' by $$m\Box n(\lambda) = m(n \cdot \lambda), \qquad m \diamond n(\lambda) = n(\lambda \cdot m).$$ (1.2) Then \mathcal{A}'' is a Banach algebra with respect to each of the products \square and \diamond , which are called the first and second Arens products on \mathcal{A}'' , respectively. For fixed n in \mathcal{A}'' , the map $m \to m \square n$ is weak* weak* continuous, but map $m \to n \diamond m$ in general is not weak* weak* continuous unless m is in \mathcal{A} . The cohomology complex is $$0 \longrightarrow X \xrightarrow{\delta^0} \mathcal{C}^1(\mathcal{A}, X) \xrightarrow{\delta^1} \mathcal{C}^2(\mathcal{A}, X) \xrightarrow{\delta^2} \cdots,$$ where for $n \in \mathbb{Z}^+$, $C^n(A, X)$ is the set of all bounded *n*-linear maps from A to X. The map $\delta^0: X \longrightarrow C^1(A, X)$ is given by $\delta^0(x)(a) = a \cdot x - x \cdot a$ and for $n \in \mathbb{Z}^+$, the map $\delta^n: C^n(A, X) \longrightarrow C^{n+1}(A, X)$ is given by $$\delta^{n}T(a_{1},\ldots,a_{n+1}) = a_{1} \cdot T(a_{2},\ldots,a_{n+1}) + \sum_{i=1}^{n} (-1)^{i}T(a_{1},\ldots,a_{i}a_{i+1},\ldots a_{n+1}) + (-1)^{n+1}T(a_{1},\ldots,a_{n}) \cdot a_{n+1},$$ where $T \in \mathcal{C}^n(\mathcal{A}, X)$ and $a_1, \ldots, a_{n+1} \in \mathcal{A}$. The space $\ker \delta^n$ of bounded *n*-cocycle is denoted by $\mathcal{Z}^n(\mathcal{A}, X)$ and the space $\operatorname{Im} \delta^{n-1}$ of bounded *n*-coboundary is denoted by $\mathcal{B}^n(\mathcal{A}, X)$. We recall that $\mathcal{B}^n(\mathcal{A}, X)$ is a subspace of $\mathcal{Z}^n(\mathcal{A}, X)$ and that the *n*th cohomology group $\mathcal{H}^n(\mathcal{A}, X)$ is defined by the quotient $$\mathcal{H}^n(\mathcal{A}, X) = \frac{\mathcal{Z}^n(\mathcal{A}, X)}{\mathcal{B}^n(\mathcal{A}, X)},$$ which is called the *n*th Hochschild (continuous) cohomology of \mathcal{A} with coefficients in X. The n-cochain T is called cyclic if $$T(a_1, a_2, \dots, a_n)(a_0) = (-1)^n T(a_0, a_1, \dots, a_{n-1})(a_n),$$ and we denote the linear space of all cyclic *n*-cochains by $\mathcal{C}^n_{\lambda}(\mathcal{A}, \mathcal{A}')$. It is well known (see [9]) that the cyclic cochains $\mathcal{C}^n_{\lambda}(\mathcal{A}, \mathcal{A}')$ form a subcomplex of $C^n(\mathcal{A}, \mathcal{A}')$, that is $\delta^n : \mathcal{C}^n_{\lambda}(\mathcal{A}, \mathcal{A}') \to \mathcal{C}^{n+1}_{\lambda}(\mathcal{A}, \mathcal{A}')$, and so we have cyclic versions of the spaces defined above, which we denote by $\mathcal{B}^n_{\lambda}(\mathcal{A}, \mathcal{A}')$, $\mathcal{Z}^n_{\lambda}(\mathcal{A}, \mathcal{A}')$ and $\mathcal{H}^n_{\lambda}(\mathcal{A}, \mathcal{A}')$. Note that it is usual to denote the cyclic cohomology group by $\mathcal{H}_{\lambda}^{n}(\mathcal{A})$, as there is only one bimodule used, namely \mathcal{A}' . To show that $\mathcal{H}^n(\mathcal{A}, X) = 0$, we must show that every *n*-cocycle from \mathcal{A} to X is an *n*-coboundary. In particular case for n = 1, $\mathcal{Z}^1(\mathcal{A}, X)$ is the space of all continuous derivations from \mathcal{A} to X, and $\mathcal{B}^1(\mathcal{A}, X)$ is the space of all inner derivations from \mathcal{A} to X. Thus $\mathcal{H}^1(\mathcal{A}, X) = 0$ if and only if each continuous derivation from \mathcal{A} to X is inner. The space $\mathcal{Z}^n(\mathcal{A}, X)$ is a Banach space, but in general $\mathcal{B}^n(\mathcal{A}, X)$ is not closed; we regard $\mathcal{H}^n(\mathcal{A}, X)$ as a complete seminormed space with respect to the quotient seminorm. This seminorm is a norm if and only if $\mathcal{B}^n(\mathcal{A}, X)$ is a closed subspace of $\mathcal{C}^n(\mathcal{A}, X)$, which means that $\mathcal{H}^n(\mathcal{A}, X)$ is a Banach space. There have been very extensive studies devoted to calculation of the cohomology group $\mathcal{H}^1(\mathcal{A}, X)$ and the higher dimensional groups $\mathcal{H}^n(\mathcal{A}, X)$ for various classes of Banach algebras \mathcal{A} and Banach \mathcal{A} -bimodules X. Our purpose here, being particularly concerned with the cohomology groups $\mathcal{H}^1(\mathcal{A}, X^{(n)})$ and $\mathcal{H}^2(\mathcal{A}, X^{(n)})$ for $n \in \mathbb{N}$. A Banach algebra \mathcal{A} is called *n*-weakly amenable if $\mathcal{H}^1(\mathcal{A}, \mathcal{A}^{(n)}) = 0$. Note that 1-weakly amenable Banach algebras are called weakly amenable. It was shown in [13] that $L^1(G)$ is weakly amenable for every locally compact group G; see also [6] for a shorter proof. Dales, Ghahramani and Grønbæk [5] showed that $L^1(G)$ is always (2n+1)-weakly amenable for $n \in \mathbb{Z}^+$. Johnson [14] for the free group on two generators, proved that $\mathcal{H}^1(\ell^1(\mathbb{F}_2), (\ell^1(\mathbb{F}_2))^{(n)}) = 0$ for every $n \in \mathbb{N}$ and in [12] he proved that $\mathcal{H}^2(\ell^1(\mathbb{F}_2), \mathbb{C}) \neq 0$ which by [19, Theorem 8.3.1] implies that $\mathcal{H}^2(\ell^1(\mathbb{F}_2), \ell^1(\mathbb{F}_2)) \neq 0$ and $\mathcal{H}^2(\ell^1(\mathbb{F}_2), \ell^\infty(\mathbb{F}_2)) \neq 0$. In [11] Ivanov and in [15] Matsumoto and Morita showed that $\mathcal{H}^2(\ell^1(G), \mathbb{C})$ is a Banach space for every discrete group G with trivial action on \mathbb{C} . A. Pourabbas [18] showed that the second cohomology group of $L^1(G)$ with coefficients in $L^1(G)^{(2n+1)}$ is a Banach space for every locally compact group G and every $n \in \mathbb{Z}^+$. Meanwhile Soma [20] showed that $\mathcal{H}^3(\ell^1(\mathbb{F}_2), \mathbb{R})$ is not a Banach space. In [4] Burger and Monod showed that for a compactly generated locally compact second countable group G, the second continuous cohomology $\mathcal{H}^2_{cb}(G, F)$ is a Banach space, where F is a separable coefficient module. In this paper for every locally compact group G and every $n \in \mathbb{Z}^+$, first we show that $\mathcal{H}^1(L^1(G,\omega),L^1(G,\omega)^{(2n+1)})=0$. Next we show that the second cohomology group of $L^1(G,\omega)$ with coefficients in $L^1(G,\omega)^{(2n+1)}$ is a Banach space, where ω is a weight function with sup $\{\omega(g)\omega(g^{-1}):g\in G\}<\infty$. At the end we will give examples which show dependence of cohomology on the weight ω . ## 2 The first cohomology group Let G be a locally compact group. A weight on G is a continuous function ω : $G \to (0, \infty)$ satisfying $\omega(e) = 1$, $\omega(xy) \leq \omega(x)\omega(y)$ for all $x, y \in G$. We say that the weight ω is diagonally bounded if $\sup \{\omega(g)\omega(g^{-1}) : g \in G\} < \infty$. Throughout for a diagonally bounded weight ω we set $Db(\omega) = \sup \{\omega(g)\omega(g^{-1}) : g \in G\}$. The Beurling algebra $L^1(G,\omega)$ is defined as below, $$L^{1}(G,\omega) = \left\{ f: G \to \mathbb{C} : f \text{ is measurable and } \|f\|_{1}^{\omega} = \int |f(x)| \, \omega(x) d(x) < \infty \right\}.$$ $L^1(G,\omega)$ is a Banach algebra with convolution product and norm $\|\cdot\|_1^{\omega}$. The dual space $L^{\infty}(G,\omega^{-1})=L^1(G,\omega)'$ consists of all measurable functions φ on G with $$\|\varphi\|_{\omega}^{\infty} = \operatorname{ess\ sup}\left\{\frac{|\varphi(g)|}{\omega(g)} : g \in G\right\} < \infty.$$ $L^1(G,\omega)$ has a bounded approximate identity $\{e_{\alpha}\}$, and by [2, Proposition 28.7], the Banach algebra $(L^1(G,\omega)'',\square)$ has a right identity element E such that $||E|| \leq M$, where $M = \sup_{\alpha} ||e_{\alpha}||_{1}^{\omega}$. The space $M(G, \omega)$ of all complex, regular Borel measures μ on G such that $\mu \cdot \omega \in M(G)$ with the convolution product and norm $$\|\mu\|_{\omega} = \int \omega(x) d|\mu|(x)$$ is a Banach algebra. The weighted measure algebra $M(G,\omega)$ has a unit element δ_e and contains $L^1(G,\omega)$ as a closed two sided ideal. Also $M(G,\omega)_* = C_0(G,\omega^{-1})$ consists of all continuous functions on G such that $\frac{f}{\omega} \in C_0(G)$. **Lemma 2.1.** The multiplier algebra of $L^1(G,\omega)$ is isometrically isomorphic with $M(G,\omega)$. *Proof.* The proof is similar to the proof $\Delta(L^1(G)) = M(G)$ [10, p. 276]. Let $\{\mu_{\alpha}\}$ be a net in $M(G, \omega)$ and $\mu \in M(G, \omega)$. We say that (μ_{α}) tends to μ in so-topology if for every $f \in L^1(G, \omega)$, we have $$\mu_{\alpha} * f \to \mu * f$$ and $f * \mu_{\alpha} \to f * \mu$. **Lemma 2.2.** Let G be a locally compact group. Then the so-closed convex span of $$\left\{ \frac{\lambda}{\omega(g)} \delta_g : g \in G, \lambda \in \mathbb{C}, |\lambda| = 1 \right\}$$ is the unit ball in $M(G,\omega)$. *Proof.* The proof is the same as the unweighted case [8, 1.1.1-1.1.3]. NOTE. By the previous Lemma every measure μ in $M(G, \omega)$ is the so-limit of a net $\{\mu_{\alpha}\}$, where each μ_{α} is a linear combination of point masses. Now for every $n \in \mathbb{Z}^+$ we will show that $L^1(G,\omega)^{(2n+1)}_{\mathbb{R}}$, the real-valued functions in $L^1(G,\omega)^{(2n+1)}$, is a complete lattice in the sense that every non-empty subset of $L^1(G,\omega)^{(2n+1)}$ which is bounded above has a supremum. **Proposition 2.3.** The Banach space $L^{\infty}(G, \omega^{-1})$ with the product $$f \cdot g(x) = \frac{f(x)g(x)}{\omega(x)}, \qquad f, g \in L^{\infty}(G, \omega^{-1})$$ and complex conjugate as involution is a commutative C^* -algebra. *Proof.* Define $\varphi: L^{\infty}(G, \omega^{-1}) \to L^{\infty}(G)$ by $\varphi(f) = f\omega^{-1}$. Then φ is a *-isometrical isomorphism from $L^{\infty}(G, \omega^{-1})$ onto $L^{\infty}(G)$. Thus $L^{\infty}(G, \omega^{-1})$ is a commutative C*-algebra. Remark 2.4. Set $X=L^1(G,\omega)^{(2n)}$ $(n\geq 1)$. We note that $L^1(G,\omega)'=L^\infty(G,\omega^{-1})$ is a commutative C*-algebra. Because the second dual of a commutative C*-algebra is a commutative von Neumann algebra, then $X'=L^1(G,\omega)^{(2n+1)}$ is the underlying space of a commutative von Neumann algebra, and hence it is an L^∞ -space. The space $X'_{\mathbb{R}}$ of real-valued functions in X' forms a complete lattice. Throughout the rest of this section we set $\mathcal{A} = L^1(G, \omega)$ and $X = \mathcal{A}^{(2n+2)}$, where $n \in \mathbb{Z}^+$. The map $$\theta: M(G,\omega) \to (\mathcal{A}'',\square), \qquad \mu \mapsto E\square \mu$$ is a continuous embedding. In fact for all $\mu \in M(G, \omega)$ we have $$\|\theta(\mu)\| \le \|\mu\|_{\omega}, \|E\| \le \|\mu\|_{\omega}M.$$ We write E_s for $E \square \delta_s$, where $s \in G$ and E is a right identity for (\mathcal{A}'', \square) . If $D : \mathcal{A} \longrightarrow X'$ is a continuous derivation, then by [5, Proposition 1.7] $D'' : (\mathcal{A}'', \square) \longrightarrow X'''$ is a continuous derivation. **Lemma 2.5.** Let ω be a diagonally bounded weight on G. Then (i) For every subset B of $X'_{\mathbb{R}}$, and for every $r \in G$, we have $$E \cdot \sup \{E_r \cdot \Lambda : \Lambda \in B\} = E_r \cdot \sup \{E \cdot \Lambda : \Lambda \in B\}$$ and $$\sup \{E_r \cdot \Lambda : \Lambda \in B\} \cdot E = \sup \{E \cdot \Lambda : \Lambda \in B\} \cdot E_r.$$ (ii) The set $\{E_{s^{-1}} \cdot \operatorname{Re} D''(E_s) : s \in G\}$ is a bounded subset of $X'_{\mathbb{R}}$. *Proof.* (i) Let $\alpha = \sup \{E \cdot \Lambda : \Lambda \in B\}$ and $\gamma = \sup \{E_r \cdot \Lambda : \Lambda \in B\}$. For all $\Lambda \in B$ we have $E_r \cdot \Lambda = E_r \cdot (E \cdot \Lambda) \leq E_r \cdot \alpha$. So $$E \cdot \sup \{E_r \cdot \Lambda : \Lambda \in B\} \le E_r \sup \{E \cdot \Lambda : \Lambda \in B\}.$$ Conversely $$\alpha = \sup \{ E \cdot \Lambda : \Lambda \in B \} = \sup \{ E_{r^{-1}}(E_r \cdot E \cdot \Lambda) : \Lambda \in B \} \le E_{r^{-1}} \cdot E \cdot \gamma.$$ Thus $E_r \cdot \alpha \leq E \cdot \gamma$. By the same method we have $$\sup \{E_r \cdot \Lambda : \Lambda \in B\} \cdot E = \sup \{E \cdot \Lambda : \Lambda \in B\} \cdot E_r.$$ (ii) Since $||E_s|| \leq \omega(s)M$ for every $s \in G$, then $$||E_{s^{-1}} \cdot \operatorname{Re} D''(E_s)|| = ||Re(E_{s^{-1}} \cdot D''(E_s))||$$ $$\leq ||E_{s^{-1}} \cdot D''(E_s)|| \leq ||E_{s^{-1}}|| ||D''|| ||E_s||$$ $$\leq \omega(s)\omega(s^{-1}) ||D''|| M^2 \leq Db(\omega) ||D''|| M^2.$$ Thus $\{E_{s^{-1}} \cdot \operatorname{Re}(D''(E_s)) : s \in G\}$ is a bounded subset of $X'_{\mathbb{R}}$. **Theorem 2.6.** Let G be a locally compact group. Then $L^1(G, \omega)$ is a (2n + 1)-weakly amenable for every $n \in \mathbb{Z}^+$, whenever ω is a diagonally bounded weight on G. *Proof.* Set $\mathcal{A} = L^1(G, \omega)$ and $X = L^1(G, \omega)^{(2n)}$. The result in [17] establishes the case n = 1 and we may suppose that $n \in \mathbb{N}$. Let $\{e_\alpha\}$ be a bounded approximate identity for \mathcal{A} . Then there exists a right identity E for (\mathcal{A}'', \square) such that $||E|| \leq M$. Since \mathcal{A} is a closed ideal of $M(G,\omega)$, then by [7] (\mathcal{A}'',\square) is a closed ideal of $(M(G,\omega)'',\square)$. Let $D \in \mathcal{Z}^1(A,X')$. Then $D'':(\mathcal{A}'',\square) \to X'''$ is a continuous derivation. For $r,s\in G$ we have $$D''(E_{st}) = D''(E_s) \cdot E_t + E_s \cdot D''(E_t)$$ and so $$E_{(st)^{-1}} \cdot D''(E_{st}) = E_{t^{-1}} \cdot (E_{s^{-1}} \cdot D''(E_s)) \cdot E_t + E_{t^{-1}} \cdot D''(E_t). \tag{2.1}$$ By Lemma 2.5(ii) the set $\{E_{s^{-1}} \cdot \operatorname{Re} D''(E_s) : s \in G\}$ is bounded in $X_{\mathbb{R}}'''$. Since $X_{\mathbb{R}}'''$ is a complete lattice, then $$\phi_r = \sup \{ E_{s^{-1}} \cdot \text{Re}(D''(E_s)) : s \in G \}$$ (2.2) exists in $X_{\mathbb{R}}^{"}$. Let $t \in G$. Then from (2.1), (2.2) and Lemma 2.5(i) we have $$E \cdot \phi_r \cdot E = E_{t-1} \cdot \phi_r \cdot E_t + E_{t-1} \cdot \operatorname{Re} D''(E_t) \cdot E.$$ Hence $$E \cdot \operatorname{Re} D''(E_t) \cdot E = E_t \cdot \phi_r \cdot E - E \cdot \phi_r \cdot E_t.$$ Similarly, by considering imaginary parts we obtain $\phi_i \in X_{\mathbb{R}}^{""}$ such that $$E \cdot \operatorname{Im} D''(E_t) \cdot E = E_t \cdot \phi_i \cdot E - E \cdot \phi_i \cdot E_t.$$ Thus if we define $\phi = \phi_r + \phi_i$, then $\phi \in X'''$ and for all $t \in G$, $$E \cdot D''(E_t) \cdot E = E_t \cdot \phi \cdot E - E \cdot \phi \cdot E_t.$$ If ν is a linear combination of point masses and $f, g \in \mathcal{A}$, then we have $$f \cdot D''(E \square \nu) \cdot g = (f * \nu) \cdot \phi \cdot g - f \cdot \phi \cdot (\nu * g). \tag{2.3}$$ Now take $h \in \mathcal{A}$. Then there is a net $\{\nu_{\alpha}\}$ of linear combination of point masses such that $\nu_{\alpha} \to h$ in the strong operator topology on \mathcal{A} , that is, $\lim_{\alpha} (f * \nu_{\alpha}) = f * h$ and $\lim_{\alpha} (\nu_{\alpha} * g) = h * g$ for every $f, g \in \mathcal{A}$. Let $f, g \in \mathcal{A}$. Then $$\lim_{\alpha} f \cdot D''(E \square \nu_{\alpha}) \cdot g = \lim_{\alpha} (D''(f * \nu_{\alpha}) \cdot g - D''(f) \cdot (\nu_{\alpha} * g))$$ $$= D''(f * h) \cdot g - D''(f) \cdot (h * g)$$ $$= f \cdot D''(h) \cdot g.$$ So, from (2.3) we have $$f \cdot D''(h) \cdot g = (f * h) \cdot \phi \cdot g - f \cdot \phi \cdot (h * g)$$ $$= f \cdot (h \cdot \phi - \phi \cdot h) \cdot g.$$ Let $P: X''' \to X' = \mathcal{A}^{(2k+1)}$ be the natural projection, so that P is an \mathcal{A} -bimodule morphism. We have $D = P \circ D''$. Set $\phi_0 = P(\phi)$. Then $$f \cdot D(h) \cdot g = f \cdot (h \cdot \phi_0 - \phi_0 \cdot h) \cdot g$$ for every $f, g, h \in \mathcal{A}$, and so $$D(h)(f \cdot x \cdot g) = (h \cdot \phi_0 - \phi_0 \cdot h)(f \cdot x \cdot g)$$ for every $f, g, h \in \mathcal{A}$ and $x \in X$. Now by [5, proposition 1.17] we have $D(h)(x) = (h \cdot \phi_0 - \phi_0 \cdot h)(x)$. Then D is an inner derivation and so \mathcal{A} is (2k+1)- weak amenable. # 3 The second cohomology group In this section firstly we prove that $\mathcal{H}^2(\ell^1(G,\omega),\ell^1(G,\omega)^{(2n+1)})$ is a Banach space for every discrete group G. Secondly we will generalize this method to show that $\mathcal{H}^2(L^1(G,\omega),(L^1(G,\omega))^{(2n+1)})$ is a Banach space for every locally compact group G. Recall that we set $Db(\omega) = \sup \{\omega(g)\omega(g^{-1}) : g \in G\}$. **Theorem 3.1.** $\mathcal{H}^2(\ell^1(G,\omega),\ell^1(G,\omega)^{(2n+1)})$ is a Banach space for every discrete group G and for every diagonally bounded weight ω . *Proof.* Set $X = \ell^1(G, \omega)^{(2n)}$. Let $\psi \in \mathcal{C}^1(\ell^1(G, \omega), X')$. Then for every $g, h \in G$ and $s \in X$ with $||s|| \leq 1$ we have $$|\delta\psi(g,h)(s)| = |\psi(g)(hs) - \psi(gh)(s) + \psi(h)(sg)| \le ||\delta\psi|| \omega(g)\omega(h). \tag{3.1}$$ Since the set $\{\operatorname{Re} \psi(g) \cdot g^{-1} : g \in G\}$ is bounded above by $\|\psi\| Db(\omega)$ in $X'_{\mathbb{R}}$. Then $$f_r(s) = \sup_{g \in G} \left\{ \operatorname{Re} \psi(g)(g^{-1}s) \right\},$$ exists in $X'_{\mathbb{R}}$. For every $h \in G$ by (3.1) we have $$f_r(hs) = \sup_{g \in G} \left\{ \operatorname{Re} \psi(g)(g^{-1}hs) \right\}$$ $$= \sup_{g \in G} \left\{ \operatorname{Re} \psi(hg)(g^{-1}s) \right\}$$ $$\leq \sup_{g \in G} \left\{ \operatorname{Re} \psi(h)(s) + \operatorname{Re} \psi(g)(g^{-1}sh) + \|\delta\psi\| \,\omega(g)\omega(g^{-1})\omega(h) \right\}$$ $$= \operatorname{Re} \psi(h)(s) + \sup_{g \in G} \left\{ \operatorname{Re} \psi(g)(g^{-1}sh) \right\} + \|\delta\psi\| \,\omega(h)Db(\omega)$$ $$= \operatorname{Re} \psi(h)(s) + f_r(sh) + \|\delta\psi\| \,\omega(h)Db(\omega).$$ (3.2) On the other hand $$f_r(hs) = \sup_{g \in G} \left\{ \operatorname{Re} \psi(g)(g^{-1}hs) \right\}$$ $$\geq \operatorname{Re} \psi(h)(s) + f_r(sh) - \|\delta\psi\| \,\omega(h)Db(\omega).$$ (3.3) From (3.2) and (3.3) we have $$|h \cdot f_r(s) - f_r \cdot h(s) + \operatorname{Re} \psi(h)(s)| \le ||\delta\psi|| \omega(h) Db(\omega).$$ Similarly, by considering imaginary parts we have $$|h \cdot f_i(s) - f_i \cdot h(s) + \operatorname{Im} \psi(h)(s)| \le ||\delta \psi|| \omega(h) Db(\omega).$$ By putting $f = f_r + if_i$ we obtain $$|h \cdot f(s) - f \cdot h(s) + \psi(h)(s)| < 2 \|\delta\psi\| \omega(h) Db(\omega).$$ Now let us define $$\bar{\psi}(h)(s) = (\delta f)(h)(s) + \psi(h)(s),$$ so $\delta \bar{\psi} = \delta \psi$ and $|\bar{\psi}(h)(s)| \leq 2 \|\delta \psi\| \omega(h) Db(\omega) \|s\|$ for every $h \in G$ and $s \in X$. Thus $\|\bar{\psi}\| \leq 2 \|\delta \psi\| Db(\omega)$ and this finishes the proof. **Lemma 3.2.** The cyclic cohomology group $\mathcal{H}^2_{\lambda}(\ell^1(G,\omega))$ is a Banach space for every discrete group G and for every diagonally bounded weight ω . Proof. Let $\psi \in C^1(\ell^1(G,\omega), \ell^\infty(G,\omega^{-1}))$ such that $\psi(h)(g) = -\psi(g)(h)$ for $g, h \in G$, and let us consider $\bar{\psi}(h)(g) = (\delta f)(h)(g) + \psi(h)(g)$ as in Theorem 3.1. Then $\delta \bar{\psi} = \delta \psi$ and $\|\bar{\psi}\| \leq 2 \|\delta \psi\| Db(\omega)$, further $$\bar{\psi}(h)(g) = (\delta f)(h)(g) + \psi(h)(g)$$ $$= -(\delta f)(g)(h) - \psi(g)(h)$$ $$= -\bar{\psi}(g)(h).$$ Hence $\mathcal{H}^2_{\lambda}(\ell^1(G), \omega)$ is a Banach space. We can now state the final result of this paper, we show that the cohomology group $\mathcal{H}^2(L^1(G,\omega),L^1(G,\omega)^{(2n+1)})$ is a Banach space for every locally compact group G and every diagonally bounded weight ω . We recall a construction that shows that $L^{\infty}(G, \omega^{-1})$ is an $M(G, \omega)$ -bimodule. For $f \in L^{\infty}(G, \omega^{-1})$, $a \in L^{1}(G, \omega)$ and $\mu \in M(G, \omega)$ define the module actions by $$(f\mu)(a) = f(\mu * a)$$ and $(\mu f)(a) = f(a * \mu)$. Throughout this section the notations \limsup and \liminf are frequently simplified to \limsup and \limsup and \limsup and \limsup and \limsup and \limsup are frequently simplified to and \limsup are frequently simplified to and \limsup are frequently simplified to \limsup are frequently simplified to \limsup are frequent **Proposition 3.3.** Set $X = L^1(G, \omega)^{(2n)}$. Let $\psi \in C^1(L^1(G, \omega), X')$. Then there is $a \ \tilde{\psi} \in C^1(M(G, \omega), X')$ with - (i) $\tilde{\psi}|_{L^1(G,\omega)} = \psi$ and $\delta \tilde{\psi}|_{L^1(G,\omega) \times L^1(G,\omega)} = \delta \psi$. - (ii) Let μ be in $M(G,\omega)$ with $\|\mu\|_{\omega} \leq 1$, and let x be in X with $\|x\| \leq 1$ and $a,b \in L^1(G,\omega)$ with $\|a\|_1^{\omega} \leq 1$ and $\|b\|_1^{\omega} \leq 1$. If $\{\mu_{\alpha}\}$ is a net in $M(G,\omega)$ with $\|\mu_{\alpha}\|_{\omega} \leq 1$ such that so- $\lim \mu_{\alpha} = \mu$, then $$\left| (\overline{\lim}_{\alpha} \operatorname{Re} \tilde{\psi}(\mu_{\alpha})(a \cdot x \cdot b) + i \overline{\lim}_{\alpha} \operatorname{Im} \tilde{\psi}(\mu_{\alpha})(a \cdot x \cdot b)) - \tilde{\psi}(\mu)(a \cdot x \cdot b) \right| \leq 3 \left\| \delta \tilde{\psi} \right\|.$$ *Proof.* (i) We follow the proof of [12, Lemma 1.10] for this particular case. Let $\mu \in M(G, \omega)$ and let $\{e_{\alpha}\}$ be a bounded approximate identity for $L^{1}(G, \omega)$ with bound M. Defining $$\psi_{\alpha}(\mu) = \psi(\mu * e_{\alpha})$$ we see that ψ_{α} is a bounded net in $\mathcal{C}^1(M(G,\omega),X')$ and so has a cofinal subnet ψ_{β} convergent to a limit $\tilde{\psi}$ in the weak*-topology induced by identifying $\mathcal{C}^1(M(G,\omega),X')$ with $\mathcal{C}_1(M(G,\omega),X)'$. Thus $$\lim_{\beta} \psi(\mu * e_{\beta})(x) = \tilde{\psi}(\mu)(x)$$ for all $\mu \in M(G, \omega)$, $x \in X$. Since for all $a \in L^1(G, \omega)$, $\psi(a * e_\beta) \to \psi(a)$ in norm, $\tilde{\psi}|_{L^1(G,\omega)} = \psi$. Also $\delta \tilde{\psi}|_{L^1(G,\omega) \times L^1(G,\omega)} = \delta \psi$. To prove (ii) let us consider $\mu, \nu \in M(G, \omega)$ with $\|\mu\|_{\omega}$, $\|\nu\|_{\omega} \leq 1$ and $x \in X$ with $\|x\| \leq 1$. Then $$\left|\delta\tilde{\psi}(\mu,\nu)(x)\right| = \left|\mu \cdot \tilde{\psi}(\nu)(x) - \tilde{\psi}(\mu*\nu)(x) + \tilde{\psi}(\mu) \cdot \nu(x)\right| \le \left\|\delta\tilde{\psi}\right\|. \tag{3.4}$$ For $a, b \in L^1(G, \omega)$ with $||a||_1^{\omega} \le 1$, $||b||_1^{\omega} \le 1$ and $x \in X$ with $||x|| \le 1$ by (3.4) $$-\operatorname{Re}\tilde{\psi}(\mu_{\alpha})(a\cdot x\cdot b) = -\operatorname{Re}\tilde{\psi}(\mu_{\alpha})\cdot a(x\cdot b)$$ $$\leq \operatorname{Re}\mu_{\alpha}\cdot \psi(a)(x\cdot b) - \operatorname{Re}\psi(\mu_{\alpha}*a)(x\cdot b) + \|\delta\tilde{\psi}\|$$ and so $$-\overline{\lim} \operatorname{Re} \tilde{\psi}(\mu_{\alpha})(a \cdot x \cdot b) \leq \underline{\lim} \left\{ \operatorname{Re} \mu_{\alpha} \cdot \psi(a)(x \cdot b) - \operatorname{Re} \psi(\mu_{\alpha} * a)(x \cdot b) + \left\| \delta \tilde{\psi} \right\| \right\}$$ $$= \operatorname{Re} \mu \cdot \psi(a)(x \cdot b) - \operatorname{Re} \psi(\mu * a)(x \cdot b) + \left\| \delta \tilde{\psi} \right\|.$$ On the other hand $$-\overline{\lim} \operatorname{Re} \tilde{\psi}(\mu_{\alpha})(a \cdot x \cdot b) \ge \operatorname{Re} \mu \cdot \psi(a)(x \cdot b) - \operatorname{Re} \psi(\mu * a)(x \cdot b) - \|\delta \tilde{\psi}\|.$$ Hence $$\left| \mu \cdot \operatorname{Re} \psi(a)(x \cdot b) - \operatorname{Re} \psi(\mu * a)(x \cdot b) + \overline{\lim} \operatorname{Re} \tilde{\psi}(\mu_{\alpha})(a \cdot x \cdot b) \right| \leq \left\| \delta \tilde{\psi} \right\|.$$ Similarly for imaginary parts we have $$\left| \mu \cdot \operatorname{Im} \psi(a)(x \cdot b) - \operatorname{Im} \psi(\mu * a)(x \cdot b) + \overline{\lim} \operatorname{Im} \tilde{\psi}(\mu_{\alpha})(a \cdot x \cdot b) \right| \leq \left\| \delta \tilde{\psi} \right\|.$$ Therefore $$\left| \mu \cdot \psi(a)(x \cdot b) - \psi(\mu * a)(x \cdot b) + \left(\overline{\lim} \operatorname{Re} \tilde{\psi}(\mu_{\alpha}) + i \overline{\lim} \operatorname{Im} \tilde{\psi}(\mu_{\alpha}) \right) (a \cdot x \cdot b) \right| \leq 2 \left\| \delta \tilde{\psi} \right\|.$$ (3.5) but from (3.4) we also have $$\left| \mu \cdot \psi(a)(x \cdot b) - \psi(\mu * a)(x \cdot b) + \tilde{\psi}(\mu)(a \cdot x \cdot b) \right| \le \left\| \delta \tilde{\psi} \right\|. \tag{3.6}$$ Hence (3.5) and (3.6) imply that $$\left| \left(\overline{\lim} \operatorname{Re} \tilde{\psi}(\mu_{\alpha})(a) + i \overline{\lim} \operatorname{Im} \tilde{\psi}(\mu_{\alpha}) \right) (a \cdot x \cdot b) - \tilde{\psi}(\mu)(a \cdot x \cdot b) \right| \leq 3 \left\| \delta \tilde{\psi} \right\|.$$ **Proposition 3.4.** [18, Proposition 3.1] Let \mathcal{A} be a Banach algebra with a bounded approximate identity, and let X be a Banach \mathcal{A} -bimodule. Let $\psi \in \mathcal{C}^1(\mathcal{A}, X')$ such that $|\psi(a)(b \cdot x \cdot c)| \leq ||\delta\psi||$ for every $x \in X$ with $||x|| \leq 1$ and $a, b, c \in \mathcal{A}$ with $||a|| \leq 1$, $||b|| \leq 1$ and $||c|| \leq 1$. Then there exists $\widehat{\psi} \in X'$ such that $$\left|\psi(a)(x) - \delta\widehat{\psi}(a)(x)\right| \le 5 \left\|\delta\psi\right\|.$$ **Theorem 3.5.** Let G be a locally compact group, and let ω be a diagonally bounded weight on G. Then $\mathcal{H}^2(L^1(G,\omega),L^1(G,\omega)^{(2n+1)})$ is a Banach space for every $n \in \mathbb{Z}^+$. *Proof.* Set $X = L^1(G, \omega)^{(2n)}$. Let $\phi \in \mathcal{C}^1(L^1(G, \omega), X')$ and let us consider $\tilde{\phi} \in \mathcal{C}^1(M(G, \omega), X')$ as in Proposition 3.3. Set $$S = \left\{ \operatorname{Re} \delta_{g^{-1}} \tilde{\phi}(\delta_g) : g \in G \right\},\,$$ Since S is bounded above by $\|\tilde{\phi}\| Db(\omega)$ in $X'_{\mathbb{R}}$, the complete vector lattice of real valued functions in X', then $\psi_r = \sup_{g \in G} S$ exists in $X'_{\mathbb{R}}$. For every $h \in G$ and $x \in X$ with $||x|| \le 1$ by (3.4) we have $$\begin{split} \delta_h \cdot \psi_r(x) &= \sup_{k \in G} \left\{ \operatorname{Re}(\delta_h * \delta_{k^{-1}}) \cdot \tilde{\phi}(\delta_k)(x) \right\} = \sup_{g \in G} \left\{ \operatorname{Re} \delta_{g^{-1}} \cdot \tilde{\phi}(\delta_g * \delta_h)(x) \right\} \\ &\leq \sup_{g \in G} \left\{ \operatorname{Re}(\delta_{g^{-1}} * \delta_g) \cdot \tilde{\phi}(\delta_h)(x) + \operatorname{Re} \delta_{g^{-1}} \cdot \tilde{\phi}(\delta_g) \cdot \delta_h(x) \right\} + \left\| \delta \tilde{\phi} \right\| Db(\omega)\omega(h) \\ &\leq \operatorname{Re} \tilde{\phi}(\delta_h)(x) + \psi_r \cdot \delta_h(x) + \left\| \delta \tilde{\phi} \right\| Db(\omega)\omega(h), \end{split}$$ where $hk^{-1} = g^{-1}$. On the other hand, $$\delta_h \cdot \psi_r(x) \ge \operatorname{Re} \tilde{\phi}(\delta_h)(x) + \psi_r \cdot \delta_h(x) - \left\| \delta \tilde{\phi} \right\| Db(\omega)\omega(h).$$ Therefore, $$\left| \delta_h \cdot \psi_r(x) - \psi_r \cdot \delta_h(x) - \operatorname{Re} \tilde{\phi}(\delta_h)(x) \right| \le \left\| \delta \tilde{\phi} \right\| Db(\omega)\omega(h). \tag{3.7}$$ Now if $\mu_{\alpha} = \sum_{i=1}^{n} \alpha_{i} \delta_{h_{i}}$, then by (3.7) $$|\mu_{\alpha} \cdot \psi_{r}(x) - \psi_{r} \cdot \mu_{\alpha}(x) - \operatorname{Re} \tilde{\phi}(\mu_{\alpha})(x)|$$ $$\leq \sum_{i=1}^{n} |\alpha_{i}| \left| \delta_{h_{i}} \cdot \psi_{r}(x) - \psi_{r} \cdot \delta_{h_{i}}(x) - \operatorname{Re} \tilde{\phi}(\delta_{h_{i}})(x) \right|$$ $$\leq \sum_{i=1}^{n} |\alpha_{i}| \left\| \delta \tilde{\phi} \right\| Db(\omega)\omega(h_{i}) \leq \left\| \delta \tilde{\phi} \right\| Db(\omega) \left\| \mu_{\alpha} \right\|_{\omega}.$$ (3.8) Similarly, by considering imaginary parts we obtain ψ_i such that $$\left| \mu_{\alpha} \cdot \psi_{i}(x) - \psi_{i} \cdot \mu_{\alpha}(x) - \operatorname{Im} \tilde{\phi}(\mu_{\alpha})(x) \right| \leq \left\| \delta \tilde{\phi} \right\| Db(\omega) \left\| \mu_{\alpha} \right\|_{\omega}. \tag{3.9}$$ Since every h in $L^1(G, \omega)$ with $||h||_1^{\omega} \le 1$ is the so-limit of a net $\{\mu_{\alpha}\}$ with $||\mu_{\alpha}||_{\omega} \le 1$, where every μ_{α} is a linear combination of point masses, then by (3.8) and (3.9) for every $x \in X$ with $||x|| \le 1$ and $a, b \in L^1(G, \omega)$ with $||a||_1^{\omega} \le 1$ and $||b||_1^{\omega} \le 1$ we have $$\left| (h \cdot \psi - \psi \cdot h) \left(a \cdot x \cdot b \right) - \left(\overline{\lim} \operatorname{Re} \tilde{\phi}(\mu_{\alpha}) + i \overline{\lim} \operatorname{Im} \tilde{\phi}(\mu_{\alpha}) \right) \left(a \cdot x \cdot b \right) \right| \leq 2 \left\| \delta \tilde{\phi} \right\| Db(\omega)$$ where $\psi = \psi_r + i \psi_i$. Now by Proposition 3.3 (ii), we have $$\left| (\overline{\lim}_{\alpha} \operatorname{Re} \tilde{\phi}(\mu_{\alpha})(a \cdot x \cdot b) + i \overline{\lim}_{\alpha} \operatorname{Im} \tilde{\phi}(\mu_{\alpha})(a \cdot x \cdot b)) - \phi(h)(a \cdot x \cdot b) \right| \leq 3 \|\delta \tilde{\phi}\|.$$ Thus $$\begin{aligned} \left| (h \cdot \psi - \psi \cdot h)(a \cdot x \cdot b) - \phi(h)(a \cdot x \cdot b) \right| \\ &\leq \left| (h \cdot \psi - \psi \cdot h)(a \cdot x \cdot b) - \left(\overline{\lim} \operatorname{Re} \tilde{\phi}(\mu_{\alpha}) + i \overline{\lim} \operatorname{Im} \tilde{\phi}(\mu_{\alpha}) \right) (a \cdot x \cdot b) \right| \\ &+ \left| \left(\overline{\lim} \operatorname{Re} \tilde{\phi}(\mu_{\alpha}) + i \overline{\lim} \operatorname{Im} \tilde{\phi}(\mu_{\alpha}) \right) (a \cdot x \cdot b) - \phi(h)(a \cdot x \cdot b) \right| \\ &\leq \left\| \delta \tilde{\phi} \right\| (2Db(\omega) + 3). \end{aligned}$$ Now by Proposition 3.4 there exist $\hat{\phi} \in X'$ such that $$\left| (h \cdot \psi - \psi \cdot h)(x) - \delta \hat{\phi}(h)(x) - \phi(h)(x) \right| \le 5 \left\| \delta \tilde{\phi} \right\| (2Db(\omega) + 3)$$ Define $$\bar{\psi}(h)(x) = -\delta\psi(h)(x) - \delta\hat{\phi}(h)(x) + \phi(h)(x).$$ Then $\delta \bar{\psi} = \delta \tilde{\phi}$ and $|\bar{\psi}(h)(x)| \leq 5 \|\delta \tilde{\phi}\| (2Db(\omega) + 3)$ for every $h \in L^1(G, \omega)$ with $\|h\|_1^{\omega} \leq 1$ and $x \in X$ with $\|x\| \leq 1$. So $\|\bar{\psi}\| \leq 5 \|\delta \tilde{\phi}\| (2Db(\omega) + 3)$ and this completes the proof. **Theorem 3.6.** $\mathcal{H}^2_{\lambda}(L^1(G,\omega))$ is a Banach space for every locally compact group G and for every diagonally bounded weight ω . *Proof.* Let $\phi \in \mathcal{C}^1(L^1(G,\omega), L^\infty(G,\omega^{-1}))$ be such that for $a,b \in L^1(G,\omega)$ $$\phi(a)(b) = -\phi(b)(a).$$ By the proof of Theorem 3.5 there exists $\bar{\psi} \in \mathcal{C}^1(L^1(G,\omega), L^{\infty}(G,\omega^{-1}))$ defined by $\bar{\psi}(b)(a) = -\delta\psi(b)(a) + \phi(b)(a)$ such that $\delta\bar{\psi} = \delta\phi$ and for a constant M, $\|\bar{\psi}\| \leq M \|\delta\phi\|$ and obviously $\bar{\psi}(b)(a) = -\bar{\phi}(a)(b)$. Example 3.7. [17, Example 3.15] It is well known that for \mathbb{F}_2 , the free group on two generators, the second unbounded cohomology $H^2(\mathbb{F}_2, \mathbb{R})$ is trivial [3, Example 4.3 and Example 1 on page 58]. So all bounded 2-cocycles have the form $\phi(g, h) = \psi(g) - \psi(gh) + \psi(h)$ for some possibly unbounded ψ . We define $$\omega(g) = \begin{cases} \exp(K - \psi(g)) & \text{if } g \neq e \\ 1 & \text{otherwise,} \end{cases}$$ where K is a bound for ϕ , we get a weight on \mathbb{F}_2 such that $\sup\{\omega(g)\omega(g^{-1})\}<\infty$. Thus $\mathcal{H}^2(\ell^1(\mathbb{F}_2,\omega),\ell^\infty(\mathbb{F}_2,\omega^{-1}))$ is a Banach space. In the case $\omega=1$ as noted in the Introduction $\mathcal{H}^2(\ell^1(\mathbb{F}_2),\ell^\infty(\mathbb{F}_2))\neq 0$ and by [18] it is a Banach space. Example 3.8. Bade et al. [1] studied the Beurling algebra $\ell^1(\mathbb{Z}, \omega_\alpha)$. They defined a weight ω_α on \mathbb{Z} by $\omega_\alpha(n) = (1 + |n|)^\alpha$ and they proved - (i) If $\alpha > 0$, then $\ell^1(\mathbb{Z}, \omega_{\alpha})$ is not amenable. - (ii) If $0 \le \alpha < 1/2$, then $\ell^1(\mathbb{Z}, \omega_\alpha)$ is weakly amenable. - (iii) If $\alpha \geq 1/2$, then $\ell^1(\mathbb{Z}, \omega_\alpha)$ is not weakly amenable. Note that if $\alpha = 0$, then $\omega = 1$ and $\ell^1(\mathbb{Z}, \omega_{\alpha}) = \ell^1(\mathbb{Z})$ is an amenable algebra [2, §43.3]. Thus by [12] $\mathcal{H}^n(\ell^1(\mathbb{Z}), X') = 0$ for every Banach $\ell^1(\mathbb{Z})$ -bimodule X and every $n \geq 1$. In [16] the second author showed that $\mathcal{H}^2(\ell^1(\mathbb{Z}, \omega_{\alpha}), \mathbb{C}) \neq 0$ for every $\alpha > 0$, then by [19] $\mathcal{H}^2(\ell^1(\mathbb{Z}, \omega_{\alpha}), \ell^{\infty}(\mathbb{Z}, \omega_{\alpha})) \neq 0$. Note that ω_{α} is not diagonally bounded. So Theorem 3.5 is not applicable. We do not know whether $\mathcal{H}^2(\ell^1(\mathbb{Z}, \omega_{\alpha}), \ell^{\infty}(\mathbb{Z}, \omega_{\alpha}))$ is a Banach space or not. ACKNOWLEDGMENT. The authors express their thanks to the referee for his valuable comments and bringing references [4] and [20] to the authors attention. ### References - [1] W. G. Bade, P. C. Curtis, Jr. and H. G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. **55** (1987) 359-377. - [2] F. F. Bonsall and J. Duncan, complete normed algebras, (springer-Verlag, 1973). - [3] K. S. Brown, Cohomology of groups, Springer-Verlag, 1982. - [4] M. Burger and N. Monod, Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal. 12 (2002), no. 2, 219-280. - [5] H. G. Dales, F. Ghahramani, N. Grønbæk, Derivations into iterated duals of Banach algebras, Studia Math. 128 1998, 19-54. - [6] M. Despic and F. Ghahramani, Weak amenability of group algebras of locally compact groups, Canad. Math. Bull. 37 (1994), 165-167. - [7] F. Ghahramani and A. T. M. Lau, Multipliers and ideals in second conjugate algebras related to locally compact groups, J. Funct. Anal. 132 (1995) no. 1, 170-191. - [8] F. P. Greenleaf, Norm decreasing homomorphisms of group algebras, Pacific J. Math. 15 (1965), 1187-1219. - [9] A. Ya. Helemskii, Banach cyclic (co)homology and the Connes-Tzygan exact sequence, *J. London Math. Soc.*, (2) 6, (1992), 449-462. - [10] E. Hewitt and K. A. Ross, *Abstract harmonic analysis* I, Springer-verlage, Berlin, (1963). - [11] N. V. Ivanov, Second bounded cohomology group, J. Soviet Math., 167 (1988), 117-120. - [12] B. E. Johnson, Cohomology in Banach algebras, Men. American Math. Soc. 127 (1972), pp. 96 - [13] —, Weak amenability of group algebras, Bull. London Math. Soc. 23, (1991) 281-284. - [14] —, Permanent weak amenability of group algebras of free groups, Bull. London Math. Soc. **31**, (1999) 569-573. - [15] S. Matsumoto and S. Morita, Bounded cohomology of certain groups of homeomorphisms, Proc. Amer. Math. Soc. 94 (1985), 539-544. - [16] A. Pourabbas, Second cohomology of Beurling algebras, Saitama Math. j. 17(1999), 87-94. - [17] —, Weak amenability of Weighted group algebras, Atti Sem. Math. Fis. Uni. Modena 48, (2000) no. 2, 299-316. - [18] —, Second cohomology group of group algebras with coefficients in iterated duals. Proc. Amer. Math. Soc. **132** (2004) no. 5, 1403-1410. - [19] A. M. Sinclair and R. R. Smith, *Hochschild cohomology of von Neumann algebras*, London Math. Soc. Lecture Note Series **203** (1995), pp. 196. - [20] T. Soma, Existence of non-Banach bounded cohomology, Topology **37** (1998), no. 1, 179–193. Faculty of Mathematics and Computer Science, Amirkabir University of Technology, 424 Hafez Avenue, Tehran Iran email:feyzih@aut.ac.ir, arpabbas@aut.ac.ir