# On the Hochschild cohomology of Beurling Algebras

E. Feizi A. Pourabbas

#### Abstract

Let G be a locally compact group and let  $\omega$  be a weight function on G. Under a very mild assumption on  $\omega$ , we show that  $L^1(G,\omega)$  is (2n+1)-weakly amenable for every  $n \in \mathbb{Z}^+$ . Also for every odd  $n \in \mathbb{N}$  we show that  $\mathcal{H}^2(L^1(G,\omega),(L^1(G,\omega))^{(n)})$  is a Banach space.

#### 1 introduction

In this paper we shall be concerned with the structure of the first and second cohomology group of  $L^1(G,\omega)$  with coefficients in the *n*th dual space  $(L^1(G,\omega))^{(n)}$ . We begin by recalling some terminology.

Let  $\mathcal{A}$  be a Banach algebra, and X be a Banach  $\mathcal{A}$ -bimodule. The dual space X' is a Banach  $\mathcal{A}$ -bimodule where the products  $a \cdot \lambda$  and  $\lambda \cdot a$  are specified by

$$a \cdot \lambda(x) = \lambda(x \cdot a), \qquad \lambda \cdot a(x) = \lambda(a \cdot x)$$
 (1.1)

for all  $a \in \mathcal{A}$ ,  $x \in X$  and  $\lambda \in X'$ . The canonical embedding of X in X'' is denoted by i or  $\hat{}$ . We denote higher duals by  $X^{(n+1)} = X^{(n)'}$  for all  $n \in \mathbb{N}$ ; with the convention  $X^{(0)} = X$ . Then  $X^{(n)}$  is also a Banach  $\mathcal{A}$ - bimodule; the definitions are consistent in the sense that  $\widehat{a \cdot x} = a \cdot \widehat{x}$ . So that  $X^{(n)}$  is a submodule of  $X^{(n+2)}$ . If X is symmetric, then so is  $X^{(n)}$ . If X is unital, then so is X'. The adjoint of the

Received by the editors June 2004 - In revised form in September 2004.

Communicated by A. Valette.

2000 Mathematics Subject Classification: Primary 43A20; Secondary 46M20.

Key words and phrases: weak amenability, cohomology, Beurling algebra.

injective map  $i: X^{(n-1)} \to X^{(n+1)}$  is the projective map  $P: X^{(n+2)} \to X^{(n)}$ , defined by  $P(\Lambda) = \Lambda|_{i(X^{(n-1)})}$ . Then P is a  $\mathcal{A}$ -bimodule morphism, and so we may write

$$X^{(n+2)} = X^{(n)} \oplus \text{Ker } P = X^{(n)} \oplus \iota(X^{(n-1)})^{\perp},$$

as Banach  $\mathcal{A}$ -bimodules. We shall also consider the second dual  $\mathcal{A}''$  of a Banach algebra  $\mathcal{A}$  as a Banach algebra; indeed, two products are defined on  $\mathcal{A}''$  as follows. Let  $a \in \mathcal{A}$ ,  $\lambda \in \mathcal{A}'$  and  $m, n \in \mathcal{A}''$ . Then  $m \cdot \lambda$  and  $\lambda \cdot m$  are defined by

$$m \cdot \lambda(a) = m(\lambda \cdot a), \qquad \lambda \cdot m(a) = m(a \cdot \lambda),$$

where  $\lambda \cdot a$  and  $a \cdot \lambda$  are defined by (1.1). Next  $m \square n$  and  $m \diamond n$  are defined in  $\mathcal{A}''$  by

$$m\Box n(\lambda) = m(n \cdot \lambda), \qquad m \diamond n(\lambda) = n(\lambda \cdot m).$$
 (1.2)

Then  $\mathcal{A}''$  is a Banach algebra with respect to each of the products  $\square$  and  $\diamond$ , which are called the first and second Arens products on  $\mathcal{A}''$ , respectively. For fixed n in  $\mathcal{A}''$ , the map  $m \to m \square n$  is weak\* weak\* continuous, but map  $m \to n \diamond m$  in general is not weak\* weak\* continuous unless m is in  $\mathcal{A}$ .

The cohomology complex is

$$0 \longrightarrow X \xrightarrow{\delta^0} \mathcal{C}^1(\mathcal{A}, X) \xrightarrow{\delta^1} \mathcal{C}^2(\mathcal{A}, X) \xrightarrow{\delta^2} \cdots,$$

where for  $n \in \mathbb{Z}^+$ ,  $C^n(A, X)$  is the set of all bounded *n*-linear maps from A to X. The map  $\delta^0: X \longrightarrow C^1(A, X)$  is given by  $\delta^0(x)(a) = a \cdot x - x \cdot a$  and for  $n \in \mathbb{Z}^+$ , the map  $\delta^n: C^n(A, X) \longrightarrow C^{n+1}(A, X)$  is given by

$$\delta^{n}T(a_{1},\ldots,a_{n+1}) = a_{1} \cdot T(a_{2},\ldots,a_{n+1}) + \sum_{i=1}^{n} (-1)^{i}T(a_{1},\ldots,a_{i}a_{i+1},\ldots a_{n+1}) + (-1)^{n+1}T(a_{1},\ldots,a_{n}) \cdot a_{n+1},$$

where  $T \in \mathcal{C}^n(\mathcal{A}, X)$  and  $a_1, \ldots, a_{n+1} \in \mathcal{A}$ . The space  $\ker \delta^n$  of bounded *n*-cocycle is denoted by  $\mathcal{Z}^n(\mathcal{A}, X)$  and the space  $\operatorname{Im} \delta^{n-1}$  of bounded *n*-coboundary is denoted by  $\mathcal{B}^n(\mathcal{A}, X)$ . We recall that  $\mathcal{B}^n(\mathcal{A}, X)$  is a subspace of  $\mathcal{Z}^n(\mathcal{A}, X)$  and that the *n*th cohomology group  $\mathcal{H}^n(\mathcal{A}, X)$  is defined by the quotient

$$\mathcal{H}^n(\mathcal{A}, X) = \frac{\mathcal{Z}^n(\mathcal{A}, X)}{\mathcal{B}^n(\mathcal{A}, X)},$$

which is called the *n*th Hochschild (continuous) cohomology of  $\mathcal{A}$  with coefficients in X.

The n-cochain T is called cyclic if

$$T(a_1, a_2, \dots, a_n)(a_0) = (-1)^n T(a_0, a_1, \dots, a_{n-1})(a_n),$$

and we denote the linear space of all cyclic *n*-cochains by  $\mathcal{C}^n_{\lambda}(\mathcal{A}, \mathcal{A}')$ . It is well known (see [9]) that the cyclic cochains  $\mathcal{C}^n_{\lambda}(\mathcal{A}, \mathcal{A}')$  form a subcomplex of  $C^n(\mathcal{A}, \mathcal{A}')$ , that is  $\delta^n : \mathcal{C}^n_{\lambda}(\mathcal{A}, \mathcal{A}') \to \mathcal{C}^{n+1}_{\lambda}(\mathcal{A}, \mathcal{A}')$ , and so we have cyclic versions of the spaces defined above, which we denote by  $\mathcal{B}^n_{\lambda}(\mathcal{A}, \mathcal{A}')$ ,  $\mathcal{Z}^n_{\lambda}(\mathcal{A}, \mathcal{A}')$  and  $\mathcal{H}^n_{\lambda}(\mathcal{A}, \mathcal{A}')$ . Note that

it is usual to denote the cyclic cohomology group by  $\mathcal{H}_{\lambda}^{n}(\mathcal{A})$ , as there is only one bimodule used, namely  $\mathcal{A}'$ .

To show that  $\mathcal{H}^n(\mathcal{A}, X) = 0$ , we must show that every *n*-cocycle from  $\mathcal{A}$  to X is an *n*-coboundary. In particular case for n = 1,  $\mathcal{Z}^1(\mathcal{A}, X)$  is the space of all continuous derivations from  $\mathcal{A}$  to X, and  $\mathcal{B}^1(\mathcal{A}, X)$  is the space of all inner derivations from  $\mathcal{A}$  to X. Thus  $\mathcal{H}^1(\mathcal{A}, X) = 0$  if and only if each continuous derivation from  $\mathcal{A}$  to X is inner.

The space  $\mathcal{Z}^n(\mathcal{A}, X)$  is a Banach space, but in general  $\mathcal{B}^n(\mathcal{A}, X)$  is not closed; we regard  $\mathcal{H}^n(\mathcal{A}, X)$  as a complete seminormed space with respect to the quotient seminorm. This seminorm is a norm if and only if  $\mathcal{B}^n(\mathcal{A}, X)$  is a closed subspace of  $\mathcal{C}^n(\mathcal{A}, X)$ , which means that  $\mathcal{H}^n(\mathcal{A}, X)$  is a Banach space.

There have been very extensive studies devoted to calculation of the cohomology group  $\mathcal{H}^1(\mathcal{A}, X)$  and the higher dimensional groups  $\mathcal{H}^n(\mathcal{A}, X)$  for various classes of Banach algebras  $\mathcal{A}$  and Banach  $\mathcal{A}$ -bimodules X. Our purpose here, being particularly concerned with the cohomology groups  $\mathcal{H}^1(\mathcal{A}, X^{(n)})$  and  $\mathcal{H}^2(\mathcal{A}, X^{(n)})$  for  $n \in \mathbb{N}$ .

A Banach algebra  $\mathcal{A}$  is called *n*-weakly amenable if  $\mathcal{H}^1(\mathcal{A}, \mathcal{A}^{(n)}) = 0$ . Note that 1-weakly amenable Banach algebras are called weakly amenable.

It was shown in [13] that  $L^1(G)$  is weakly amenable for every locally compact group G; see also [6] for a shorter proof. Dales, Ghahramani and Grønbæk [5] showed that  $L^1(G)$  is always (2n+1)-weakly amenable for  $n \in \mathbb{Z}^+$ . Johnson [14] for the free group on two generators, proved that  $\mathcal{H}^1(\ell^1(\mathbb{F}_2), (\ell^1(\mathbb{F}_2))^{(n)}) = 0$  for every  $n \in \mathbb{N}$  and in [12] he proved that  $\mathcal{H}^2(\ell^1(\mathbb{F}_2), \mathbb{C}) \neq 0$  which by [19, Theorem 8.3.1] implies that  $\mathcal{H}^2(\ell^1(\mathbb{F}_2), \ell^1(\mathbb{F}_2)) \neq 0$  and  $\mathcal{H}^2(\ell^1(\mathbb{F}_2), \ell^\infty(\mathbb{F}_2)) \neq 0$ .

In [11] Ivanov and in [15] Matsumoto and Morita showed that  $\mathcal{H}^2(\ell^1(G), \mathbb{C})$  is a Banach space for every discrete group G with trivial action on  $\mathbb{C}$ . A. Pourabbas [18] showed that the second cohomology group of  $L^1(G)$  with coefficients in  $L^1(G)^{(2n+1)}$  is a Banach space for every locally compact group G and every  $n \in \mathbb{Z}^+$ . Meanwhile Soma [20] showed that  $\mathcal{H}^3(\ell^1(\mathbb{F}_2), \mathbb{R})$  is not a Banach space. In [4] Burger and Monod showed that for a compactly generated locally compact second countable group G, the second continuous cohomology  $\mathcal{H}^2_{cb}(G, F)$  is a Banach space, where F is a separable coefficient module.

In this paper for every locally compact group G and every  $n \in \mathbb{Z}^+$ , first we show that  $\mathcal{H}^1(L^1(G,\omega),L^1(G,\omega)^{(2n+1)})=0$ . Next we show that the second cohomology group of  $L^1(G,\omega)$  with coefficients in  $L^1(G,\omega)^{(2n+1)}$  is a Banach space, where  $\omega$  is a weight function with sup  $\{\omega(g)\omega(g^{-1}):g\in G\}<\infty$ . At the end we will give examples which show dependence of cohomology on the weight  $\omega$ .

## 2 The first cohomology group

Let G be a locally compact group. A weight on G is a continuous function  $\omega$ :  $G \to (0, \infty)$  satisfying  $\omega(e) = 1$ ,  $\omega(xy) \leq \omega(x)\omega(y)$  for all  $x, y \in G$ . We say that the weight  $\omega$  is diagonally bounded if  $\sup \{\omega(g)\omega(g^{-1}) : g \in G\} < \infty$ . Throughout for a diagonally bounded weight  $\omega$  we set  $Db(\omega) = \sup \{\omega(g)\omega(g^{-1}) : g \in G\}$ . The

Beurling algebra  $L^1(G,\omega)$  is defined as below,

$$L^{1}(G,\omega) = \left\{ f: G \to \mathbb{C} : f \text{ is measurable and } \|f\|_{1}^{\omega} = \int |f(x)| \, \omega(x) d(x) < \infty \right\}.$$

 $L^1(G,\omega)$  is a Banach algebra with convolution product and norm  $\|\cdot\|_1^{\omega}$ . The dual space  $L^{\infty}(G,\omega^{-1})=L^1(G,\omega)'$  consists of all measurable functions  $\varphi$  on G with

$$\|\varphi\|_{\omega}^{\infty} = \operatorname{ess\ sup}\left\{\frac{|\varphi(g)|}{\omega(g)} : g \in G\right\} < \infty.$$

 $L^1(G,\omega)$  has a bounded approximate identity  $\{e_{\alpha}\}$ , and by [2, Proposition 28.7], the Banach algebra  $(L^1(G,\omega)'',\square)$  has a right identity element E such that  $||E|| \leq M$ , where  $M = \sup_{\alpha} ||e_{\alpha}||_{1}^{\omega}$ .

The space  $M(G, \omega)$  of all complex, regular Borel measures  $\mu$  on G such that  $\mu \cdot \omega \in M(G)$  with the convolution product and norm

$$\|\mu\|_{\omega} = \int \omega(x) d|\mu|(x)$$

is a Banach algebra. The weighted measure algebra  $M(G,\omega)$  has a unit element  $\delta_e$  and contains  $L^1(G,\omega)$  as a closed two sided ideal. Also  $M(G,\omega)_* = C_0(G,\omega^{-1})$  consists of all continuous functions on G such that  $\frac{f}{\omega} \in C_0(G)$ .

**Lemma 2.1.** The multiplier algebra of  $L^1(G,\omega)$  is isometrically isomorphic with  $M(G,\omega)$ .

*Proof.* The proof is similar to the proof  $\Delta(L^1(G)) = M(G)$  [10, p. 276].

Let  $\{\mu_{\alpha}\}$  be a net in  $M(G, \omega)$  and  $\mu \in M(G, \omega)$ . We say that  $(\mu_{\alpha})$  tends to  $\mu$  in so-topology if for every  $f \in L^1(G, \omega)$ , we have

$$\mu_{\alpha} * f \to \mu * f$$
 and  $f * \mu_{\alpha} \to f * \mu$ .

**Lemma 2.2.** Let G be a locally compact group. Then the so-closed convex span of

$$\left\{ \frac{\lambda}{\omega(g)} \delta_g : g \in G, \lambda \in \mathbb{C}, |\lambda| = 1 \right\}$$

is the unit ball in  $M(G,\omega)$ .

*Proof.* The proof is the same as the unweighted case [8, 1.1.1-1.1.3].

NOTE. By the previous Lemma every measure  $\mu$  in  $M(G, \omega)$  is the so-limit of a net  $\{\mu_{\alpha}\}$ , where each  $\mu_{\alpha}$  is a linear combination of point masses.

Now for every  $n \in \mathbb{Z}^+$  we will show that  $L^1(G,\omega)^{(2n+1)}_{\mathbb{R}}$ , the real-valued functions in  $L^1(G,\omega)^{(2n+1)}$ , is a complete lattice in the sense that every non-empty subset of  $L^1(G,\omega)^{(2n+1)}$  which is bounded above has a supremum.

**Proposition 2.3.** The Banach space  $L^{\infty}(G, \omega^{-1})$  with the product

$$f \cdot g(x) = \frac{f(x)g(x)}{\omega(x)}, \qquad f, g \in L^{\infty}(G, \omega^{-1})$$

and complex conjugate as involution is a commutative  $C^*$ -algebra.

*Proof.* Define  $\varphi: L^{\infty}(G, \omega^{-1}) \to L^{\infty}(G)$  by  $\varphi(f) = f\omega^{-1}$ . Then  $\varphi$  is a \*-isometrical isomorphism from  $L^{\infty}(G, \omega^{-1})$  onto  $L^{\infty}(G)$ . Thus  $L^{\infty}(G, \omega^{-1})$  is a commutative C\*-algebra.

Remark 2.4. Set  $X=L^1(G,\omega)^{(2n)}$   $(n\geq 1)$ . We note that  $L^1(G,\omega)'=L^\infty(G,\omega^{-1})$  is a commutative C\*-algebra. Because the second dual of a commutative C\*-algebra is a commutative von Neumann algebra, then  $X'=L^1(G,\omega)^{(2n+1)}$  is the underlying space of a commutative von Neumann algebra, and hence it is an  $L^\infty$ -space. The space  $X'_{\mathbb{R}}$  of real-valued functions in X' forms a complete lattice.

Throughout the rest of this section we set  $\mathcal{A} = L^1(G, \omega)$  and  $X = \mathcal{A}^{(2n+2)}$ , where  $n \in \mathbb{Z}^+$ . The map

$$\theta: M(G,\omega) \to (\mathcal{A}'',\square), \qquad \mu \mapsto E\square \mu$$

is a continuous embedding. In fact for all  $\mu \in M(G, \omega)$  we have

$$\|\theta(\mu)\| \le \|\mu\|_{\omega}, \|E\| \le \|\mu\|_{\omega}M.$$

We write  $E_s$  for  $E \square \delta_s$ , where  $s \in G$  and E is a right identity for  $(\mathcal{A}'', \square)$ . If  $D : \mathcal{A} \longrightarrow X'$  is a continuous derivation, then by [5, Proposition 1.7]  $D'' : (\mathcal{A}'', \square) \longrightarrow X'''$  is a continuous derivation.

**Lemma 2.5.** Let  $\omega$  be a diagonally bounded weight on G. Then

(i) For every subset B of  $X'_{\mathbb{R}}$ , and for every  $r \in G$ , we have

$$E \cdot \sup \{E_r \cdot \Lambda : \Lambda \in B\} = E_r \cdot \sup \{E \cdot \Lambda : \Lambda \in B\}$$

and

$$\sup \{E_r \cdot \Lambda : \Lambda \in B\} \cdot E = \sup \{E \cdot \Lambda : \Lambda \in B\} \cdot E_r.$$

(ii) The set  $\{E_{s^{-1}} \cdot \operatorname{Re} D''(E_s) : s \in G\}$  is a bounded subset of  $X'_{\mathbb{R}}$ .

*Proof.* (i) Let  $\alpha = \sup \{E \cdot \Lambda : \Lambda \in B\}$  and  $\gamma = \sup \{E_r \cdot \Lambda : \Lambda \in B\}$ . For all  $\Lambda \in B$  we have  $E_r \cdot \Lambda = E_r \cdot (E \cdot \Lambda) \leq E_r \cdot \alpha$ . So

$$E \cdot \sup \{E_r \cdot \Lambda : \Lambda \in B\} \le E_r \sup \{E \cdot \Lambda : \Lambda \in B\}.$$

Conversely

$$\alpha = \sup \{ E \cdot \Lambda : \Lambda \in B \} = \sup \{ E_{r^{-1}}(E_r \cdot E \cdot \Lambda) : \Lambda \in B \} \le E_{r^{-1}} \cdot E \cdot \gamma.$$

Thus  $E_r \cdot \alpha \leq E \cdot \gamma$ . By the same method we have

$$\sup \{E_r \cdot \Lambda : \Lambda \in B\} \cdot E = \sup \{E \cdot \Lambda : \Lambda \in B\} \cdot E_r.$$

(ii) Since  $||E_s|| \leq \omega(s)M$  for every  $s \in G$ , then

$$||E_{s^{-1}} \cdot \operatorname{Re} D''(E_s)|| = ||Re(E_{s^{-1}} \cdot D''(E_s))||$$

$$\leq ||E_{s^{-1}} \cdot D''(E_s)|| \leq ||E_{s^{-1}}|| ||D''|| ||E_s||$$

$$\leq \omega(s)\omega(s^{-1}) ||D''|| M^2 \leq Db(\omega) ||D''|| M^2.$$

Thus  $\{E_{s^{-1}} \cdot \operatorname{Re}(D''(E_s)) : s \in G\}$  is a bounded subset of  $X'_{\mathbb{R}}$ .

**Theorem 2.6.** Let G be a locally compact group. Then  $L^1(G, \omega)$  is a (2n + 1)-weakly amenable for every  $n \in \mathbb{Z}^+$ , whenever  $\omega$  is a diagonally bounded weight on G.

*Proof.* Set  $\mathcal{A} = L^1(G, \omega)$  and  $X = L^1(G, \omega)^{(2n)}$ . The result in [17] establishes the case n = 1 and we may suppose that  $n \in \mathbb{N}$ . Let  $\{e_\alpha\}$  be a bounded approximate identity for  $\mathcal{A}$ . Then there exists a right identity E for  $(\mathcal{A}'', \square)$  such that  $||E|| \leq M$ .

Since  $\mathcal{A}$  is a closed ideal of  $M(G,\omega)$ , then by [7]  $(\mathcal{A}'',\square)$  is a closed ideal of  $(M(G,\omega)'',\square)$ . Let  $D \in \mathcal{Z}^1(A,X')$ . Then  $D'':(\mathcal{A}'',\square) \to X'''$  is a continuous derivation. For  $r,s\in G$  we have

$$D''(E_{st}) = D''(E_s) \cdot E_t + E_s \cdot D''(E_t)$$

and so

$$E_{(st)^{-1}} \cdot D''(E_{st}) = E_{t^{-1}} \cdot (E_{s^{-1}} \cdot D''(E_s)) \cdot E_t + E_{t^{-1}} \cdot D''(E_t). \tag{2.1}$$

By Lemma 2.5(ii) the set  $\{E_{s^{-1}} \cdot \operatorname{Re} D''(E_s) : s \in G\}$  is bounded in  $X_{\mathbb{R}}'''$ . Since  $X_{\mathbb{R}}'''$  is a complete lattice, then

$$\phi_r = \sup \{ E_{s^{-1}} \cdot \text{Re}(D''(E_s)) : s \in G \}$$
 (2.2)

exists in  $X_{\mathbb{R}}^{"}$ . Let  $t \in G$ . Then from (2.1), (2.2) and Lemma 2.5(i) we have

$$E \cdot \phi_r \cdot E = E_{t-1} \cdot \phi_r \cdot E_t + E_{t-1} \cdot \operatorname{Re} D''(E_t) \cdot E.$$

Hence

$$E \cdot \operatorname{Re} D''(E_t) \cdot E = E_t \cdot \phi_r \cdot E - E \cdot \phi_r \cdot E_t.$$

Similarly, by considering imaginary parts we obtain  $\phi_i \in X_{\mathbb{R}}^{""}$  such that

$$E \cdot \operatorname{Im} D''(E_t) \cdot E = E_t \cdot \phi_i \cdot E - E \cdot \phi_i \cdot E_t.$$

Thus if we define  $\phi = \phi_r + \phi_i$ , then  $\phi \in X'''$  and for all  $t \in G$ ,

$$E \cdot D''(E_t) \cdot E = E_t \cdot \phi \cdot E - E \cdot \phi \cdot E_t.$$

If  $\nu$  is a linear combination of point masses and  $f, g \in \mathcal{A}$ , then we have

$$f \cdot D''(E \square \nu) \cdot g = (f * \nu) \cdot \phi \cdot g - f \cdot \phi \cdot (\nu * g). \tag{2.3}$$

Now take  $h \in \mathcal{A}$ . Then there is a net  $\{\nu_{\alpha}\}$  of linear combination of point masses such that  $\nu_{\alpha} \to h$  in the strong operator topology on  $\mathcal{A}$ , that is,  $\lim_{\alpha} (f * \nu_{\alpha}) = f * h$  and  $\lim_{\alpha} (\nu_{\alpha} * g) = h * g$  for every  $f, g \in \mathcal{A}$ .

Let  $f, g \in \mathcal{A}$ . Then

$$\lim_{\alpha} f \cdot D''(E \square \nu_{\alpha}) \cdot g = \lim_{\alpha} (D''(f * \nu_{\alpha}) \cdot g - D''(f) \cdot (\nu_{\alpha} * g))$$
$$= D''(f * h) \cdot g - D''(f) \cdot (h * g)$$
$$= f \cdot D''(h) \cdot g.$$

So, from (2.3) we have

$$f \cdot D''(h) \cdot g = (f * h) \cdot \phi \cdot g - f \cdot \phi \cdot (h * g)$$
$$= f \cdot (h \cdot \phi - \phi \cdot h) \cdot g.$$

Let  $P: X''' \to X' = \mathcal{A}^{(2k+1)}$  be the natural projection, so that P is an  $\mathcal{A}$ -bimodule morphism. We have  $D = P \circ D''$ . Set  $\phi_0 = P(\phi)$ . Then

$$f \cdot D(h) \cdot g = f \cdot (h \cdot \phi_0 - \phi_0 \cdot h) \cdot g$$

for every  $f, g, h \in \mathcal{A}$ , and so

$$D(h)(f \cdot x \cdot g) = (h \cdot \phi_0 - \phi_0 \cdot h)(f \cdot x \cdot g)$$

for every  $f, g, h \in \mathcal{A}$  and  $x \in X$ . Now by [5, proposition 1.17] we have  $D(h)(x) = (h \cdot \phi_0 - \phi_0 \cdot h)(x)$ . Then D is an inner derivation and so  $\mathcal{A}$  is (2k+1)- weak amenable.

# 3 The second cohomology group

In this section firstly we prove that  $\mathcal{H}^2(\ell^1(G,\omega),\ell^1(G,\omega)^{(2n+1)})$  is a Banach space for every discrete group G. Secondly we will generalize this method to show that  $\mathcal{H}^2(L^1(G,\omega),(L^1(G,\omega))^{(2n+1)})$  is a Banach space for every locally compact group G. Recall that we set  $Db(\omega) = \sup \{\omega(g)\omega(g^{-1}) : g \in G\}$ .

**Theorem 3.1.**  $\mathcal{H}^2(\ell^1(G,\omega),\ell^1(G,\omega)^{(2n+1)})$  is a Banach space for every discrete group G and for every diagonally bounded weight  $\omega$ .

*Proof.* Set  $X = \ell^1(G, \omega)^{(2n)}$ . Let  $\psi \in \mathcal{C}^1(\ell^1(G, \omega), X')$ . Then for every  $g, h \in G$  and  $s \in X$  with  $||s|| \leq 1$  we have

$$|\delta\psi(g,h)(s)| = |\psi(g)(hs) - \psi(gh)(s) + \psi(h)(sg)| \le ||\delta\psi|| \omega(g)\omega(h). \tag{3.1}$$

Since the set  $\{\operatorname{Re} \psi(g) \cdot g^{-1} : g \in G\}$  is bounded above by  $\|\psi\| Db(\omega)$  in  $X'_{\mathbb{R}}$ . Then

$$f_r(s) = \sup_{g \in G} \left\{ \operatorname{Re} \psi(g)(g^{-1}s) \right\},$$

exists in  $X'_{\mathbb{R}}$ . For every  $h \in G$  by (3.1) we have

$$f_r(hs) = \sup_{g \in G} \left\{ \operatorname{Re} \psi(g)(g^{-1}hs) \right\}$$

$$= \sup_{g \in G} \left\{ \operatorname{Re} \psi(hg)(g^{-1}s) \right\}$$

$$\leq \sup_{g \in G} \left\{ \operatorname{Re} \psi(h)(s) + \operatorname{Re} \psi(g)(g^{-1}sh) + \|\delta\psi\| \,\omega(g)\omega(g^{-1})\omega(h) \right\}$$

$$= \operatorname{Re} \psi(h)(s) + \sup_{g \in G} \left\{ \operatorname{Re} \psi(g)(g^{-1}sh) \right\} + \|\delta\psi\| \,\omega(h)Db(\omega)$$

$$= \operatorname{Re} \psi(h)(s) + f_r(sh) + \|\delta\psi\| \,\omega(h)Db(\omega).$$
(3.2)

On the other hand

$$f_r(hs) = \sup_{g \in G} \left\{ \operatorname{Re} \psi(g)(g^{-1}hs) \right\}$$

$$\geq \operatorname{Re} \psi(h)(s) + f_r(sh) - \|\delta\psi\| \,\omega(h)Db(\omega).$$
(3.3)

From (3.2) and (3.3) we have

$$|h \cdot f_r(s) - f_r \cdot h(s) + \operatorname{Re} \psi(h)(s)| \le ||\delta\psi|| \omega(h) Db(\omega).$$

Similarly, by considering imaginary parts we have

$$|h \cdot f_i(s) - f_i \cdot h(s) + \operatorname{Im} \psi(h)(s)| \le ||\delta \psi|| \omega(h) Db(\omega).$$

By putting  $f = f_r + if_i$  we obtain

$$|h \cdot f(s) - f \cdot h(s) + \psi(h)(s)| < 2 \|\delta\psi\| \omega(h) Db(\omega).$$

Now let us define

$$\bar{\psi}(h)(s) = (\delta f)(h)(s) + \psi(h)(s),$$

so  $\delta \bar{\psi} = \delta \psi$  and  $|\bar{\psi}(h)(s)| \leq 2 \|\delta \psi\| \omega(h) Db(\omega) \|s\|$  for every  $h \in G$  and  $s \in X$ . Thus  $\|\bar{\psi}\| \leq 2 \|\delta \psi\| Db(\omega)$  and this finishes the proof.

**Lemma 3.2.** The cyclic cohomology group  $\mathcal{H}^2_{\lambda}(\ell^1(G,\omega))$  is a Banach space for every discrete group G and for every diagonally bounded weight  $\omega$ .

Proof. Let  $\psi \in C^1(\ell^1(G,\omega), \ell^\infty(G,\omega^{-1}))$  such that  $\psi(h)(g) = -\psi(g)(h)$  for  $g, h \in G$ , and let us consider  $\bar{\psi}(h)(g) = (\delta f)(h)(g) + \psi(h)(g)$  as in Theorem 3.1. Then  $\delta \bar{\psi} = \delta \psi$  and  $\|\bar{\psi}\| \leq 2 \|\delta \psi\| Db(\omega)$ , further

$$\bar{\psi}(h)(g) = (\delta f)(h)(g) + \psi(h)(g)$$
$$= -(\delta f)(g)(h) - \psi(g)(h)$$
$$= -\bar{\psi}(g)(h).$$

Hence  $\mathcal{H}^2_{\lambda}(\ell^1(G), \omega)$  is a Banach space.

We can now state the final result of this paper, we show that the cohomology group  $\mathcal{H}^2(L^1(G,\omega),L^1(G,\omega)^{(2n+1)})$  is a Banach space for every locally compact group G and every diagonally bounded weight  $\omega$ .

We recall a construction that shows that  $L^{\infty}(G, \omega^{-1})$  is an  $M(G, \omega)$ -bimodule. For  $f \in L^{\infty}(G, \omega^{-1})$ ,  $a \in L^{1}(G, \omega)$  and  $\mu \in M(G, \omega)$  define the module actions by

$$(f\mu)(a) = f(\mu * a)$$
 and  $(\mu f)(a) = f(a * \mu)$ .

Throughout this section the notations  $\limsup$  and  $\liminf$  are frequently simplified to  $\limsup$  and  $\limsup$  and  $\limsup$  and  $\limsup$  and  $\limsup$  and  $\limsup$  are frequently simplified to  $\limsup$  and  $\limsup$  are frequently simplified to  $\limsup$  and  $\limsup$  are frequently simplified to  $\limsup$  are frequently simplified to  $\limsup$  are frequent

**Proposition 3.3.** Set  $X = L^1(G, \omega)^{(2n)}$ . Let  $\psi \in C^1(L^1(G, \omega), X')$ . Then there is  $a \ \tilde{\psi} \in C^1(M(G, \omega), X')$  with

- (i)  $\tilde{\psi}|_{L^1(G,\omega)} = \psi$  and  $\delta \tilde{\psi}|_{L^1(G,\omega) \times L^1(G,\omega)} = \delta \psi$ .
- (ii) Let  $\mu$  be in  $M(G,\omega)$  with  $\|\mu\|_{\omega} \leq 1$ , and let x be in X with  $\|x\| \leq 1$  and  $a,b \in L^1(G,\omega)$  with  $\|a\|_1^{\omega} \leq 1$  and  $\|b\|_1^{\omega} \leq 1$ . If  $\{\mu_{\alpha}\}$  is a net in  $M(G,\omega)$  with  $\|\mu_{\alpha}\|_{\omega} \leq 1$  such that so- $\lim \mu_{\alpha} = \mu$ , then

$$\left| (\overline{\lim}_{\alpha} \operatorname{Re} \tilde{\psi}(\mu_{\alpha})(a \cdot x \cdot b) + i \overline{\lim}_{\alpha} \operatorname{Im} \tilde{\psi}(\mu_{\alpha})(a \cdot x \cdot b)) - \tilde{\psi}(\mu)(a \cdot x \cdot b) \right| \leq 3 \left\| \delta \tilde{\psi} \right\|.$$

*Proof.* (i) We follow the proof of [12, Lemma 1.10] for this particular case. Let  $\mu \in M(G, \omega)$  and let  $\{e_{\alpha}\}$  be a bounded approximate identity for  $L^{1}(G, \omega)$  with bound M. Defining

$$\psi_{\alpha}(\mu) = \psi(\mu * e_{\alpha})$$

we see that  $\psi_{\alpha}$  is a bounded net in  $\mathcal{C}^1(M(G,\omega),X')$  and so has a cofinal subnet  $\psi_{\beta}$  convergent to a limit  $\tilde{\psi}$  in the weak\*-topology induced by identifying  $\mathcal{C}^1(M(G,\omega),X')$  with  $\mathcal{C}_1(M(G,\omega),X)'$ . Thus

$$\lim_{\beta} \psi(\mu * e_{\beta})(x) = \tilde{\psi}(\mu)(x)$$

for all  $\mu \in M(G, \omega)$ ,  $x \in X$ . Since for all  $a \in L^1(G, \omega)$ ,  $\psi(a * e_\beta) \to \psi(a)$  in norm,  $\tilde{\psi}|_{L^1(G,\omega)} = \psi$ . Also  $\delta \tilde{\psi}|_{L^1(G,\omega) \times L^1(G,\omega)} = \delta \psi$ .

To prove (ii) let us consider  $\mu, \nu \in M(G, \omega)$  with  $\|\mu\|_{\omega}$ ,  $\|\nu\|_{\omega} \leq 1$  and  $x \in X$  with  $\|x\| \leq 1$ . Then

$$\left|\delta\tilde{\psi}(\mu,\nu)(x)\right| = \left|\mu \cdot \tilde{\psi}(\nu)(x) - \tilde{\psi}(\mu*\nu)(x) + \tilde{\psi}(\mu) \cdot \nu(x)\right| \le \left\|\delta\tilde{\psi}\right\|. \tag{3.4}$$

For  $a, b \in L^1(G, \omega)$  with  $||a||_1^{\omega} \le 1$ ,  $||b||_1^{\omega} \le 1$  and  $x \in X$  with  $||x|| \le 1$  by (3.4)

$$-\operatorname{Re}\tilde{\psi}(\mu_{\alpha})(a\cdot x\cdot b) = -\operatorname{Re}\tilde{\psi}(\mu_{\alpha})\cdot a(x\cdot b)$$

$$\leq \operatorname{Re}\mu_{\alpha}\cdot \psi(a)(x\cdot b) - \operatorname{Re}\psi(\mu_{\alpha}*a)(x\cdot b) + \|\delta\tilde{\psi}\|$$

and so

$$-\overline{\lim} \operatorname{Re} \tilde{\psi}(\mu_{\alpha})(a \cdot x \cdot b) \leq \underline{\lim} \left\{ \operatorname{Re} \mu_{\alpha} \cdot \psi(a)(x \cdot b) - \operatorname{Re} \psi(\mu_{\alpha} * a)(x \cdot b) + \left\| \delta \tilde{\psi} \right\| \right\}$$
$$= \operatorname{Re} \mu \cdot \psi(a)(x \cdot b) - \operatorname{Re} \psi(\mu * a)(x \cdot b) + \left\| \delta \tilde{\psi} \right\|.$$

On the other hand

$$-\overline{\lim} \operatorname{Re} \tilde{\psi}(\mu_{\alpha})(a \cdot x \cdot b) \ge \operatorname{Re} \mu \cdot \psi(a)(x \cdot b) - \operatorname{Re} \psi(\mu * a)(x \cdot b) - \|\delta \tilde{\psi}\|.$$

Hence

$$\left| \mu \cdot \operatorname{Re} \psi(a)(x \cdot b) - \operatorname{Re} \psi(\mu * a)(x \cdot b) + \overline{\lim} \operatorname{Re} \tilde{\psi}(\mu_{\alpha})(a \cdot x \cdot b) \right| \leq \left\| \delta \tilde{\psi} \right\|.$$

Similarly for imaginary parts we have

$$\left| \mu \cdot \operatorname{Im} \psi(a)(x \cdot b) - \operatorname{Im} \psi(\mu * a)(x \cdot b) + \overline{\lim} \operatorname{Im} \tilde{\psi}(\mu_{\alpha})(a \cdot x \cdot b) \right| \leq \left\| \delta \tilde{\psi} \right\|.$$

Therefore

$$\left| \mu \cdot \psi(a)(x \cdot b) - \psi(\mu * a)(x \cdot b) + \left( \overline{\lim} \operatorname{Re} \tilde{\psi}(\mu_{\alpha}) + i \overline{\lim} \operatorname{Im} \tilde{\psi}(\mu_{\alpha}) \right) (a \cdot x \cdot b) \right| \leq 2 \left\| \delta \tilde{\psi} \right\|.$$
(3.5)

but from (3.4) we also have

$$\left| \mu \cdot \psi(a)(x \cdot b) - \psi(\mu * a)(x \cdot b) + \tilde{\psi}(\mu)(a \cdot x \cdot b) \right| \le \left\| \delta \tilde{\psi} \right\|. \tag{3.6}$$

Hence (3.5) and (3.6) imply that

$$\left| \left( \overline{\lim} \operatorname{Re} \tilde{\psi}(\mu_{\alpha})(a) + i \overline{\lim} \operatorname{Im} \tilde{\psi}(\mu_{\alpha}) \right) (a \cdot x \cdot b) - \tilde{\psi}(\mu)(a \cdot x \cdot b) \right| \leq 3 \left\| \delta \tilde{\psi} \right\|.$$

**Proposition 3.4.** [18, Proposition 3.1] Let  $\mathcal{A}$  be a Banach algebra with a bounded approximate identity, and let X be a Banach  $\mathcal{A}$ -bimodule. Let  $\psi \in \mathcal{C}^1(\mathcal{A}, X')$  such that  $|\psi(a)(b \cdot x \cdot c)| \leq ||\delta\psi||$  for every  $x \in X$  with  $||x|| \leq 1$  and  $a, b, c \in \mathcal{A}$  with  $||a|| \leq 1$ ,  $||b|| \leq 1$  and  $||c|| \leq 1$ . Then there exists  $\widehat{\psi} \in X'$  such that

$$\left|\psi(a)(x) - \delta\widehat{\psi}(a)(x)\right| \le 5 \left\|\delta\psi\right\|.$$

**Theorem 3.5.** Let G be a locally compact group, and let  $\omega$  be a diagonally bounded weight on G. Then  $\mathcal{H}^2(L^1(G,\omega),L^1(G,\omega)^{(2n+1)})$  is a Banach space for every  $n \in \mathbb{Z}^+$ .

*Proof.* Set  $X = L^1(G, \omega)^{(2n)}$ . Let  $\phi \in \mathcal{C}^1(L^1(G, \omega), X')$  and let us consider  $\tilde{\phi} \in \mathcal{C}^1(M(G, \omega), X')$  as in Proposition 3.3. Set

$$S = \left\{ \operatorname{Re} \delta_{g^{-1}} \tilde{\phi}(\delta_g) : g \in G \right\},\,$$

Since S is bounded above by  $\|\tilde{\phi}\| Db(\omega)$  in  $X'_{\mathbb{R}}$ , the complete vector lattice of real valued functions in X', then  $\psi_r = \sup_{g \in G} S$  exists in  $X'_{\mathbb{R}}$ .

For every  $h \in G$  and  $x \in X$  with  $||x|| \le 1$  by (3.4) we have

$$\begin{split} \delta_h \cdot \psi_r(x) &= \sup_{k \in G} \left\{ \operatorname{Re}(\delta_h * \delta_{k^{-1}}) \cdot \tilde{\phi}(\delta_k)(x) \right\} = \sup_{g \in G} \left\{ \operatorname{Re} \delta_{g^{-1}} \cdot \tilde{\phi}(\delta_g * \delta_h)(x) \right\} \\ &\leq \sup_{g \in G} \left\{ \operatorname{Re}(\delta_{g^{-1}} * \delta_g) \cdot \tilde{\phi}(\delta_h)(x) + \operatorname{Re} \delta_{g^{-1}} \cdot \tilde{\phi}(\delta_g) \cdot \delta_h(x) \right\} + \left\| \delta \tilde{\phi} \right\| Db(\omega)\omega(h) \\ &\leq \operatorname{Re} \tilde{\phi}(\delta_h)(x) + \psi_r \cdot \delta_h(x) + \left\| \delta \tilde{\phi} \right\| Db(\omega)\omega(h), \end{split}$$

where  $hk^{-1} = g^{-1}$ . On the other hand,

$$\delta_h \cdot \psi_r(x) \ge \operatorname{Re} \tilde{\phi}(\delta_h)(x) + \psi_r \cdot \delta_h(x) - \left\| \delta \tilde{\phi} \right\| Db(\omega)\omega(h).$$

Therefore,

$$\left| \delta_h \cdot \psi_r(x) - \psi_r \cdot \delta_h(x) - \operatorname{Re} \tilde{\phi}(\delta_h)(x) \right| \le \left\| \delta \tilde{\phi} \right\| Db(\omega)\omega(h). \tag{3.7}$$

Now if  $\mu_{\alpha} = \sum_{i=1}^{n} \alpha_{i} \delta_{h_{i}}$ , then by (3.7)

$$|\mu_{\alpha} \cdot \psi_{r}(x) - \psi_{r} \cdot \mu_{\alpha}(x) - \operatorname{Re} \tilde{\phi}(\mu_{\alpha})(x)|$$

$$\leq \sum_{i=1}^{n} |\alpha_{i}| \left| \delta_{h_{i}} \cdot \psi_{r}(x) - \psi_{r} \cdot \delta_{h_{i}}(x) - \operatorname{Re} \tilde{\phi}(\delta_{h_{i}})(x) \right|$$

$$\leq \sum_{i=1}^{n} |\alpha_{i}| \left\| \delta \tilde{\phi} \right\| Db(\omega)\omega(h_{i}) \leq \left\| \delta \tilde{\phi} \right\| Db(\omega) \left\| \mu_{\alpha} \right\|_{\omega}.$$
(3.8)

Similarly, by considering imaginary parts we obtain  $\psi_i$  such that

$$\left| \mu_{\alpha} \cdot \psi_{i}(x) - \psi_{i} \cdot \mu_{\alpha}(x) - \operatorname{Im} \tilde{\phi}(\mu_{\alpha})(x) \right| \leq \left\| \delta \tilde{\phi} \right\| Db(\omega) \left\| \mu_{\alpha} \right\|_{\omega}. \tag{3.9}$$

Since every h in  $L^1(G, \omega)$  with  $||h||_1^{\omega} \le 1$  is the so-limit of a net  $\{\mu_{\alpha}\}$  with  $||\mu_{\alpha}||_{\omega} \le 1$ , where every  $\mu_{\alpha}$  is a linear combination of point masses, then by (3.8) and (3.9) for every  $x \in X$  with  $||x|| \le 1$  and  $a, b \in L^1(G, \omega)$  with  $||a||_1^{\omega} \le 1$  and  $||b||_1^{\omega} \le 1$  we have

$$\left| (h \cdot \psi - \psi \cdot h) \left( a \cdot x \cdot b \right) - \left( \overline{\lim} \operatorname{Re} \tilde{\phi}(\mu_{\alpha}) + i \overline{\lim} \operatorname{Im} \tilde{\phi}(\mu_{\alpha}) \right) \left( a \cdot x \cdot b \right) \right| \leq 2 \left\| \delta \tilde{\phi} \right\| Db(\omega)$$

where  $\psi = \psi_r + i \psi_i$ . Now by Proposition 3.3 (ii), we have

$$\left| (\overline{\lim}_{\alpha} \operatorname{Re} \tilde{\phi}(\mu_{\alpha})(a \cdot x \cdot b) + i \overline{\lim}_{\alpha} \operatorname{Im} \tilde{\phi}(\mu_{\alpha})(a \cdot x \cdot b)) - \phi(h)(a \cdot x \cdot b) \right| \leq 3 \|\delta \tilde{\phi}\|.$$

Thus

$$\begin{aligned} \left| (h \cdot \psi - \psi \cdot h)(a \cdot x \cdot b) - \phi(h)(a \cdot x \cdot b) \right| \\ &\leq \left| (h \cdot \psi - \psi \cdot h)(a \cdot x \cdot b) - \left( \overline{\lim} \operatorname{Re} \tilde{\phi}(\mu_{\alpha}) + i \overline{\lim} \operatorname{Im} \tilde{\phi}(\mu_{\alpha}) \right) (a \cdot x \cdot b) \right| \\ &+ \left| \left( \overline{\lim} \operatorname{Re} \tilde{\phi}(\mu_{\alpha}) + i \overline{\lim} \operatorname{Im} \tilde{\phi}(\mu_{\alpha}) \right) (a \cdot x \cdot b) - \phi(h)(a \cdot x \cdot b) \right| \\ &\leq \left\| \delta \tilde{\phi} \right\| (2Db(\omega) + 3). \end{aligned}$$

Now by Proposition 3.4 there exist  $\hat{\phi} \in X'$  such that

$$\left| (h \cdot \psi - \psi \cdot h)(x) - \delta \hat{\phi}(h)(x) - \phi(h)(x) \right| \le 5 \left\| \delta \tilde{\phi} \right\| (2Db(\omega) + 3)$$

Define

$$\bar{\psi}(h)(x) = -\delta\psi(h)(x) - \delta\hat{\phi}(h)(x) + \phi(h)(x).$$

Then  $\delta \bar{\psi} = \delta \tilde{\phi}$  and  $|\bar{\psi}(h)(x)| \leq 5 \|\delta \tilde{\phi}\| (2Db(\omega) + 3)$  for every  $h \in L^1(G, \omega)$  with  $\|h\|_1^{\omega} \leq 1$  and  $x \in X$  with  $\|x\| \leq 1$ . So  $\|\bar{\psi}\| \leq 5 \|\delta \tilde{\phi}\| (2Db(\omega) + 3)$  and this completes the proof.

**Theorem 3.6.**  $\mathcal{H}^2_{\lambda}(L^1(G,\omega))$  is a Banach space for every locally compact group G and for every diagonally bounded weight  $\omega$ .

*Proof.* Let  $\phi \in \mathcal{C}^1(L^1(G,\omega), L^\infty(G,\omega^{-1}))$  be such that for  $a,b \in L^1(G,\omega)$ 

$$\phi(a)(b) = -\phi(b)(a).$$

By the proof of Theorem 3.5 there exists  $\bar{\psi} \in \mathcal{C}^1(L^1(G,\omega), L^{\infty}(G,\omega^{-1}))$  defined by  $\bar{\psi}(b)(a) = -\delta\psi(b)(a) + \phi(b)(a)$  such that  $\delta\bar{\psi} = \delta\phi$  and for a constant M,  $\|\bar{\psi}\| \leq M \|\delta\phi\|$  and obviously  $\bar{\psi}(b)(a) = -\bar{\phi}(a)(b)$ .

Example 3.7. [17, Example 3.15] It is well known that for  $\mathbb{F}_2$ , the free group on two generators, the second unbounded cohomology  $H^2(\mathbb{F}_2, \mathbb{R})$  is trivial [3, Example 4.3 and Example 1 on page 58]. So all bounded 2-cocycles have the form  $\phi(g, h) = \psi(g) - \psi(gh) + \psi(h)$  for some possibly unbounded  $\psi$ . We define

$$\omega(g) = \begin{cases} \exp(K - \psi(g)) & \text{if } g \neq e \\ 1 & \text{otherwise,} \end{cases}$$

where K is a bound for  $\phi$ , we get a weight on  $\mathbb{F}_2$  such that  $\sup\{\omega(g)\omega(g^{-1})\}<\infty$ . Thus  $\mathcal{H}^2(\ell^1(\mathbb{F}_2,\omega),\ell^\infty(\mathbb{F}_2,\omega^{-1}))$  is a Banach space. In the case  $\omega=1$  as noted in the Introduction  $\mathcal{H}^2(\ell^1(\mathbb{F}_2),\ell^\infty(\mathbb{F}_2))\neq 0$  and by [18] it is a Banach space.

Example 3.8. Bade et al. [1] studied the Beurling algebra  $\ell^1(\mathbb{Z}, \omega_\alpha)$ . They defined a weight  $\omega_\alpha$  on  $\mathbb{Z}$  by  $\omega_\alpha(n) = (1 + |n|)^\alpha$  and they proved

- (i) If  $\alpha > 0$ , then  $\ell^1(\mathbb{Z}, \omega_{\alpha})$  is not amenable.
- (ii) If  $0 \le \alpha < 1/2$ , then  $\ell^1(\mathbb{Z}, \omega_\alpha)$  is weakly amenable.
- (iii) If  $\alpha \geq 1/2$ , then  $\ell^1(\mathbb{Z}, \omega_\alpha)$  is not weakly amenable.

Note that if  $\alpha = 0$ , then  $\omega = 1$  and  $\ell^1(\mathbb{Z}, \omega_{\alpha}) = \ell^1(\mathbb{Z})$  is an amenable algebra [2, §43.3]. Thus by [12]  $\mathcal{H}^n(\ell^1(\mathbb{Z}), X') = 0$  for every Banach  $\ell^1(\mathbb{Z})$ -bimodule X and every  $n \geq 1$ . In [16] the second author showed that  $\mathcal{H}^2(\ell^1(\mathbb{Z}, \omega_{\alpha}), \mathbb{C}) \neq 0$  for every  $\alpha > 0$ , then by [19]  $\mathcal{H}^2(\ell^1(\mathbb{Z}, \omega_{\alpha}), \ell^{\infty}(\mathbb{Z}, \omega_{\alpha})) \neq 0$ . Note that  $\omega_{\alpha}$  is not diagonally bounded. So Theorem 3.5 is not applicable. We do not know whether  $\mathcal{H}^2(\ell^1(\mathbb{Z}, \omega_{\alpha}), \ell^{\infty}(\mathbb{Z}, \omega_{\alpha}))$  is a Banach space or not.

ACKNOWLEDGMENT. The authors express their thanks to the referee for his valuable comments and bringing references [4] and [20] to the authors attention.

### References

- [1] W. G. Bade, P. C. Curtis, Jr. and H. G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. **55** (1987) 359-377.
- [2] F. F. Bonsall and J. Duncan, complete normed algebras, (springer-Verlag, 1973).
- [3] K. S. Brown, Cohomology of groups, Springer-Verlag, 1982.
- [4] M. Burger and N. Monod, Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal. 12 (2002), no. 2, 219-280.
- [5] H. G. Dales, F. Ghahramani, N. Grønbæk, Derivations into iterated duals of Banach algebras, Studia Math. 128 1998, 19-54.
- [6] M. Despic and F. Ghahramani, Weak amenability of group algebras of locally compact groups, Canad. Math. Bull. 37 (1994), 165-167.
- [7] F. Ghahramani and A. T. M. Lau, Multipliers and ideals in second conjugate algebras related to locally compact groups, J. Funct. Anal. 132 (1995) no. 1, 170-191.
- [8] F. P. Greenleaf, Norm decreasing homomorphisms of group algebras, Pacific J. Math. 15 (1965), 1187-1219.
- [9] A. Ya. Helemskii, Banach cyclic (co)homology and the Connes-Tzygan exact sequence, *J. London Math. Soc.*, (2) 6, (1992), 449-462.
- [10] E. Hewitt and K. A. Ross, *Abstract harmonic analysis* I, Springer-verlage, Berlin, (1963).
- [11] N. V. Ivanov, Second bounded cohomology group, J. Soviet Math., 167 (1988), 117-120.
- [12] B. E. Johnson, Cohomology in Banach algebras, Men. American Math. Soc. 127 (1972), pp. 96
- [13] —, Weak amenability of group algebras, Bull. London Math. Soc. 23, (1991) 281-284.
- [14] —, Permanent weak amenability of group algebras of free groups, Bull. London Math. Soc. **31**, (1999) 569-573.
- [15] S. Matsumoto and S. Morita, Bounded cohomology of certain groups of homeomorphisms, Proc. Amer. Math. Soc. 94 (1985), 539-544.
- [16] A. Pourabbas, Second cohomology of Beurling algebras, Saitama Math. j. 17(1999), 87-94.
- [17] —, Weak amenability of Weighted group algebras, Atti Sem. Math. Fis. Uni. Modena 48, (2000) no. 2, 299-316.

- [18] —, Second cohomology group of group algebras with coefficients in iterated duals. Proc. Amer. Math. Soc. **132** (2004) no. 5, 1403-1410.
- [19] A. M. Sinclair and R. R. Smith, *Hochschild cohomology of von Neumann algebras*, London Math. Soc. Lecture Note Series **203** (1995), pp. 196.
- [20] T. Soma, Existence of non-Banach bounded cohomology, Topology **37** (1998), no. 1, 179–193.

Faculty of Mathematics and Computer Science, Amirkabir University of Technology, 424 Hafez Avenue, Tehran Iran email:feyzih@aut.ac.ir, arpabbas@aut.ac.ir