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Abstract

We consider a mathematical model for the process of contact between a

viscoelastic body and a reactive foundation. The material is viscoelastic with

internal state variable which may describe the damage of the system. We

establish a variational formulation for the model and prove the existence and

uniqueness result of the weak solution. Finally we prove a dependence result

with respect to the data.

1 Introduction

The damage subject is extremely important in design engineering, since it directly
affects the useful life of the designed structure or component. There exists a very
large engineering literature on it. Models taking into account the influence of the
internal damage of the material on the contact process have been investigated math-
ematically. General novel models for damage were derived in [3, 4] from the virtual
power principle. Mathematical analysis of one-dimensional problems can be found in
[5, 6]. The three-dimensional case has been investigated in [9]. The damage function
β is restricted to have values between zero and one. When β = 1 there is no damage
in the material, when β = 0 the material is completely damaged, when 0 < β < 1
there is partial damage and the system has a reduced load carrying capacity. Qua-
sistatic contact problems with damage have been investigated in [5, 7, 8, 11]. In this
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paper, the equation used for the evolution of the damage field is

dβ

dt
− k △ β + ∂ϕK(β) ∋ φ(ε(u), β),

where K denotes the set of admissible damage functions defined by

K = {ξ ∈ H1(Ω) / 0 ≤ ξ ≤ 1 a.e. in Ω}.

A general viscoelastic constitutive law with damage is given by

σ = A(ε(
.
u)) + G(ε(u), β),

where A is a nonlinear viscosity function and G is a nonlinear elasticity function
which depends on the internal state variable describing the damage of the material
caused by elastic deformations.

In the present paper we consider a mathematical model for the process of contact
between a viscoelastic body and a reactive foundation. Contact is modelled with
the normal damped response condition, see, e.g., [10] . We derive the variational
formulation and we prove existence and uniqueness of the weak solution of the
model.

The paper is organised as follows. In section 2 we present the notation and some
preliminaries. In section 3 we present the mechanical problem, we list the assump-
tions on the data and give the variational formulation of the problem. In section
4 we state our main existence and uniqueness result. It is based on arguments of
time-dependent nonlinear equations with monotone operators, a fixed-point argu-
ment and a classical existence and uniqueness result on parabolic equations. In the
last section we consider a dependence result of the weak solution with respect to the
data.

2 Notation and preliminaries

In this short section, we present the notation we shall use and some preliminary
material. For more details, we refer the reader to [2] .

We denote by Sd the space of second order symmetric tensors on R
d (d = 2, 3),

while (.) and | . | represent the inner product and the Euclidean norm on Sd and
R

d, respectively. Let Ω ⊂ R
d be a bounded domain with a regular boundary Γ and

let ν denote the unit outer normal on Γ. We shall use the notation

H = L2(Ω)d =
{

u = (ui) / ui ∈ L2(Ω)
}

,

H =
{

σ = (σij) / σij = σji ∈ L2(Ω)
}

,

H1 = {u = (ui) / ε(u) ∈ H } ,

H1 = {σ ∈ H / Div σ ∈ H} ,
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where ε : H1 → H and Div : H1 → H are the deformation and divergence operators,
respectively, defined by

ε(u) = (εij(u)), εij(u) =
1

2
(ui,j + uj,i), Div σ = (σij, j).

Here and below, the indices i and j run between 1 to d, the summation convention
over repeated indices is used and the index that follows a comma indicates a partial
derivative with respect to the corresponding component of the independent variable.

The spaces H, H, H1 and H1 are real Hilbert spaces endowed with the canonical
inner products given by

(u,v)H =
∫

Ω
uivi dx ∀u,v ∈ H,

(σ, τ )H =
∫

Ω
σijτij dx ∀σ, τ ∈ H,

(u,v)H1
= (u,v)H + (ε(u), ε(v))H ∀u,v ∈ H1,

(σ, τ )H1
= (σ, τ )H + (Div σ, Div τ )H ∀ σ, τ ∈ H1.

The associated norms on the spaces H , H, H1 and H1 are denoted by | . |H ,
| . |H, | . |H1

and | . |H1
, respectively.

Let HΓ = H
1

2 (Γ)d and let γ : H1 → HΓ be the trace map. For every element
v ∈ H1, we also use the notation v to denote the trace γv of v on Γ and we denote
by vν and vτ the normal and the tangential components of v on the boundary Γ
given by

vν = v.ν, vτ = v − vνν. (2.1)

Similarly, for a regular (say C1) tensor field σ : Ω → Sd we define its normal and
tangential components by

σν = (σν).ν, στ = σν − σνν, (2.2)

and we recall that the following Green’s formula holds:

(σ, ε(v))H + (Div σ,v)H =
∫

Γ
σν.v da ∀v ∈ H1. (2.3)

Finally, for any real Hilbert space X, we use the classical notation for the spaces
Lp(0, T ; X) and W k,p(0, T ; X), C(0, T ; X) denotes the space of continuous functions
from [0, T ] to X, with the norm

| f |C(0,T ;X)= max
t∈[0,T ]

| f(t) |X .

Similarly, C1(0, T ; X) denotes the space of continuously differentiable functions
from [0, T ] to X, with the norm

| f |C1(0,T ;X)= max
t∈[0,T ]

| f(t) |X + max
t∈[0,T ]

|
.

f(t) |X .

Moreover, if X1 and X2 are real Hilbert spaces then X1×X2 denotes the product
Hilbert space endowed with the canonical inner product (., .)X1×X2

. A dot above a
variable represents its derivative with respect to time.
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3 Mechanical and variational formulations

In this paper, we consider a contact problem which involves the evolution of the
mechanical damage in a viscoelastic material. The physical setting is the following.
A viscoelastic body occupies a bounded domain Ω ⊂ R

d (d = 2, 3) with a regular
surface Γ that is divided into three disjoint measurable parts Γ1 , Γ2 and Γ3 such
that meas (Γ1) > 0. Let T > 0 and let [0, T ] be the time interval of interest. The
body is clamped on Γ1×(0, T ), and, therefore, the displacement field vanishes there.
Surface tractions of density f2 act on Γ2 × (0, T ) and a body force of density f0 is
applied in Ω× (0, T ) . We suppose that the body forces and tractions vary slowly in
time, and therefore, the accelerations in the system may be neglected. Neglecting
the inertial terms in the equation of motion leads to a quasistatic approximation of
the process.

The body is in contact with a reactive foundation over the contact surface Γ3.
We assume that contact is locked in the tangential direction, or in the stick state,
and so the tangential displacement on the contact surface vanishes, i.e.,

uτ = 0. (3.1)

We assume that contact is modelled with the normal damped response condition
([10]), so,

σν = −α |
.
uν | . (3.2)

Then, the classical formulation of the mechanical contact problem of a viscoelastic
material with damage is as follows.

Problem P. Find the displacement field u : Ω × [0, T ] → R
d and a stress field

σ : Ω × [0, T ] → Sd and β : Ω × [0, T ] → R such that

σ = Aε(
.
u) + G(ε(u), β), (3.3)

.

β − k △ β + ∂ϕK(β) ∋ φ(ε(u), β), (3.4)

Div σ + f0 = 0 in Ω × (0, T ) , (3.5)

u = 0 on Γ1 × (0, T ) , (3.6)

σν = f2 on Γ2 × (0, T ) , (3.7)

σν = −α |
.
uν | , uτ = 0 on Γ3 × (0, T ) , (3.8)

u(0) = u0 in Ω, (3.9)

∂β

∂ν
= 0 on Γ × (0, T ) , (3.10)

β(0) = β0 in Ω. (3.11)
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Here, the relation (3.3) represents the nonlinear viscoelastic constitutive law with
internal state variable which involves the damage, the relation (3.4) represents the
evolution of the damage field which is governed by the evolution equation where φ is
the mechanical source of damage growth, assumed to be rather general function of
the strains and damage itself, ∂ϕK is the subdifferential of the indicator function of
the admissible damage functions set K, the relation (3.5) represents the equilibrium
equation, since the accelerations are neglected in the equation of motion, leading
to the quasistatic approximation of the process. The relations (3.6)-(3.7) are the
displacement-traction conditions. Here u0 is the given initial displacement and β0 is
the initial material damage. (3.10) represents a homogeneous Newmann boundary
condition where ∂β

∂ν
represents the normal derivative of β.

We denote by u the displacement field, by σ the stress tensor field and by ε(u)
the linearized strain tensor. To simplify the notation, we do not indicate explicitely
the dependence of various functions on the variables x ∈ Ω ∪ Γ and t ∈ [0, T ] .

To obtain a variational formulation of the problem (3.3)-(3.11) we need additional
notation. Let V denote the closed subspace of H1 defined by

V = {v ∈ H1 / v = 0 on Γ1, vτ = 0 on Γ3} .

Since meas(Γ1) > 0, Korn’s inequality holds and there exists a constant Ck > 0
which depends only on Ω and Γ1 such that | ε(v) |H≥ Ck | v |H1

∀v ∈ V. On the
space V , we consider the inner product and the associated norm given by

(u,v)V = (ε(u), ε(v))H ∀u,v ∈ V, | v |V =| ε(v) |H ∀v ∈ V. (3.12)

It follows from Korn’s inequality that | . |H1
and | . |V are equivalent norms on V.

Therefore (V, | . |V ) is a real Hilbert space. Moreover by the Sobolev’s trace theorem
and (3.12), there exists a constant C0 > 0, depending only on Ω, Γ1 and Γ3 such
that

| v |L2(Γ3)≤ C0 | v |V ∀v ∈ V. (3.13)

In the study of the mechanical problem (3.3)-(3.11), we make the following as-
sumptions.

The viscosity operator A : Ω × Sd → Sd satisfies







































(a) There exists a constant LA > 0 such that
| A(x, ε1) −A(x, ε2) |≤ LA | ε1 − ε2 | ∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.
(b) There exists mA > 0 such that
(A(x, ε1) −A(x, ε2)).(ε1 − ε2) ≥ mA | ε1 − ε2 |

2 ∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.
(c) x → A(x, ε) is Lebesgue measurable on Ω.
(d) The mapping x → A(x, 0) ∈ H.

(3.14)

The elasticity operator G : Ω × Sd × R → Sd satisfies
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





























(a) There exists a constant LG > 0 Such that
| G(x, ε1, β1) − G(x, ε2, β2) |≤ LG(| ε1 − ε2 | + | β1 − β2 |)
∀ε1, ε2 ∈ Sd, ∀β1, β2 ∈ R a.e. x ∈ Ω.
(b) For any ε ∈ Sd and β ∈ R, x → G(x, ε, β) is Lebesgue measurable on Ω.
(c) The mapping x → G(x, 0, 0) ∈ H.

(3.15)
The damage source function φ : Ω × Sd × R → R satisfies































(a) There exists a constant L > 0 such that
| φ(x, ε1, β1) − φ(x, ε2, β2) |≤ L(| ε1 − ε2 | + | β1 − β2 |)
∀ε1, ε2 ∈ Sd, ∀β1, β2 ∈ R a.e. x ∈ Ω.

(b) For any ε ∈ Sd and β ∈ R, x → φ(x, ε, β) is Lebesgue measurable on Ω.
(c) The mapping x → φ(x, 0, 0) ∈ H.

(3.16)
We suppose that the body forces and surface tractions satisfy

f0 ∈ C(0, T ; H), f2 ∈ C(0, T ; L2(Γ2)
d), (3.17)

the function α has the following properties:

α ∈ L∞(Γ3), α(x) ≥ α∗ > 0 a.e. on Γ3, (3.18)

k > 0, (3.19)

u0 ∈ V, (3.20)

β0 ∈ K. (3.21)

Next, we define the element f(t) ∈ V by

(f(t),v)V =
∫

Ω
f0(t).v dx +

∫

Γ2

f2(t).v ds , (3.22)

for v ∈ V , a.e. t ∈ (0, T ), and let j : V × V → R, be the functional

j(u,v) =
∫

Γ3

α | uν | vν ds. (3.23)

We note that the conditions (3.17) imply

f ∈ C(0, T ; V ). (3.24)

We define the bilinear form a : H1(Ω) × H1(Ω)d → R by

a(ξ, ϕ) = k
∫

Ω
∇ξ.∇ϕ dx. (3.25)
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Using standard arguments we obtain the following formulation of the mechanical
problem (3.3)-(3.11).

Problem PV . Find the displacement field u : Ω × [0, T ] → R
d and a stress field

σ : Ω × [0, T ] → Sd and a damage field β : Ω × [0, T ] → R such that

σ(t) = Aε(
.
u(t)) + G(ε(u(t)), β(t)) a.e. t ∈ (0, T ) , (3.26)

(σ(t), ε(v))H + j(
.
u(t),v) = (f(t),v)V ∀v ∈ V, a.e. t ∈ (0, T ) , (3.27)

β(t) ∈ K for all t ∈ [0, T ] , (
.

β(t), ξ − β(t))L2(Ω ) + a(β(t), ξ − β(t))

≥ (φ(ε(u(t)), β(t)), ξ − β(t))L2(Ω ) ∀ξ ∈ K, (3.28)

u(0) = u0, β(0) = β0. (3.29)

4 An existence and uniqueness result

Our main existence and uniqueness result is the following.

Theorem 4.1. Let the assumptions (3.14)-(3.21) hold. Then there exists a constant
α0 which depends only on Ω, Γ1 , Γ3 and A such that if | α |L∞(Γ3) < α0, then there
exists a unique solution {u, σ, β} to the problem PV . Moreover, the solution satisfies

u ∈ C1(0, T ; V ), σ ∈ C(0, T ;H1),

β ∈ W 1,2(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)). (4.1)

We conclude that under the assumptions (3.14)-(3.21) the mechanical problem
(3.3)-(3.11) has a unique weak solution with the regularity (4.1), provided α is
sufficiently small.

The proof of this theorem will be carried out in three steps, It is based on argu-
ments on time-dependent nonlinear equations, a fixed-point theorem and a classical
existence and uniqueness result on parabolic equations (see [1 p.124]).

Let η ∈ C(0, T ;H), then there exists a constant α0 which depends only on Ω,
Γ1 , Γ3 and A such that if | α |L∞(Γ3) < α0, there exists a unique solution {uη, ση}
of the following intermediate problem such that, for t ∈ [0, T ],

Problem P η
V : Find a displacement field uη : [0, T ] → V and a stress field

ση : [0, T ] → H1 such that

ση(t) = Aε(
.
uη(t)) + η(t) in Ω, (4.2)

(ση(t), ε(v))H + j(
.
uη(t),v) = (f(t),v)V ∀v ∈ V, (4.3)

uη(0) = u0. (4.4)
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Proposition 4.2. P η
V has a unique weak solution such that

uη ∈ C1(0, T ; V ), ση ∈ C(0, T ;H1). (4.5)

Proof. We define the operator A : V → V by

(Au,v)V = (Aε(u), ε(v))H + j(u,v) ∀u,v ∈ V. (4.6)

Using (4.6), (3.14), (3.23), (3.12) and (3.13), it follows that

| Au − Av |V ≤ (LA + C2
0 | α |L∞(Γ3)) | u − v |V ∀u,v ∈ V, (4.7)

and,

(Au− Av,u− v)V ≥ (mA − C2
0 | α |L∞(Γ3)) | u − v |2V ∀u,v ∈ V. (4.8)

Let α0 = mA

C2

0

, clearly it is a positive constant which depends on Ω, Γ1, Γ3 and A.

Then A is Lipschitz continuous on V and strongly monotone on V if

| α |L∞(Γ3)< α0. (4.9)

Therefore, A is invertible and its inverse A−1 is also strongly monotone Lipschitz
continuous operator on V. Moreover using Riesz Representation Theorem we may
define an element fη ∈ C(0, T ; V ) by

(fη(t),v) = (f(t),v)V −(η (t), ε(v))
H
.

It follows now from classical result (see for example [2] ) that there exists a unique
function vη ∈ C(0, T ; V ) which satisfies

Avη(t) = fη(t) a.e. t ∈ (0, T ) . (4.10)

From the relation (4.2), we conclude that ση (t) ∈ C(0, T ;H). The couple {vη, ση}
represents a unique solution of the intermediate problem P η

V with the following
regularity

vη ∈ C(0, T ; V ), ση ∈ C(0, T ;H1). (4.11)

Let uη : [0, T ] → V be the function defined by

uη(t) =
∫ t

0
vη(s) ds + u0. (4.12)

Using (4.11) and (4.12) we find that (uη, ση) satisfies (4.5).

Let θ ∈ C(0, T ; L2(Ω)). We suppose that the assumptions of Theorem 4.1 hold
and we consider the following intermediate problem.

Problem P θ
V : Find a damage field βθ : [0, T ] → H1(Ω) such that βθ(t) ∈ K, for

all t ∈ [0, T ] and

(
.

βθ(t), ξ − βθ(t))L2(Ω ) + a(βθ(t), ξ − βθ(t))

≥ (θ, ξ − βθ(t))L2(Ω ) ∀ξ ∈ K a.e. t ∈ (0, T ) , (4.13)

βθ(0) = β0. (4.14)
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Proposition 4.3. Problem P θ
V has a unique solution βθ such that

βθ ∈ W 1,2(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)). (4.15)

Proof. We use (3.19), (3.21), (3.25) and a classical existence and uniqueness result
on parabolic equations (see for instance [1 p.124]).

As a consequence of Proposition 4.2 and 4.3, we may define the operator L :
C(0, T ;H× L2(Ω)) → C(0, T ;H× L2(Ω)) by

L(η, θ) = (G(ε(uη), βθ), φ(ε(uη), βθ)), (4.16)

for all (η, θ) ∈ C(0, T ;H× L2(Ω)), we have

Proposition 4.4. The operator L has a unique fixed-point

(η∗, θ∗) ∈ C(0, T ;H× L2(Ω)).

Proof. Let (η1, θ1), (η2, θ2) ∈ C(0, T ;H × L2(Ω)) and let t ∈ [0, T ]. Using (3.15),
(3.16) and (4.16), we deduce that

| L(η1, θ1) − L(η2, θ2) |H×L2(Ω )

≤ C(| uη1
(t) − uη2

(t) |V + | βθ1
(t) − βθ2

(t) |L2(Ω)). (4.17)

Here and below C is a positive constant whose value may change from place to place.
Let η1, η2 ∈ C(0, T ;H) and use the notation uηi

= ui for i = 1, 2. Moreover, using
(4.2) and (4.3) we obtain

(Aε(
.
u1) −Aε(

.
u2), ε(

.
u1) − ε(

.
u2))H + (η1−η2, ε(

.
u1) − ε(

.
u2))V

+j(
.
u1,

.
u1 −

.
u2) − j(

.
u2,

.
u1 −

.
u2) = 0 a.e.t ∈ (0, T ) .

Using (3.12), (3.13), (3.14) and (3.23) we obtain

|
.
u1(t) −

.
u2(t) |V ≤ C | η1(t)−η2(t) |V .

Since u1(0) = u2(0) we have

| u1(t) − u2(t) |V ≤
∫ t

0
|

.
u1(s) −

.
u2(s) |V ds.

From the two previous inequalities we find

| u1(t) − u2(t) |V ≤ C
∫ t

0
| η

1
(s) − η

2
(s) |H ds. (4.18)

We let θ1, θ2 ∈ C(0, T ; L2(Ω)) and use the notation β
θi

= βi for i = 1, 2. From (4.13)
we find

(
.

β1, β2 − β1)L2(Ω) + a(β1, β2 − β1)

≥ (θ1, β2 − β1)L2(Ω) a.e. t ∈ (0, T ) ,
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and,

(
.

β2, β1 − β2)L2(Ω ) + a(β2, β1 − β2)

≥ (θ2, β1 − β2)L2(Ω) a.e. t ∈ (0, T ) .

Adding the previous inequalities we obtain

(
.

β1 −
.

β2, β1 − β2)L2(Ω ) + a(β1 − β2, β1 − β2)

≤ (θ1 − θ2, β1 − β2)L2(Ω) a.e. t ∈ (0, T ) ,

which implies that

(
.

β1 −
.

β2, β1 − β2)L2(Ω ) + a(β1 − β2, β1 − β
2
)

≤| θ1 − θ2 |L2(Ω)| β1 − β2 |L2(Ω) a.e. t ∈ (0, T ) .

Integrating the previous inequality on [0, t] , after some manipulations we obtain

1

2
| β1(t) − β2(t) |

2
L2(Γ3)≤ C

∫ t

0
| θ1(s) − θ2(s) |L2(Ω)| β1(s) − β2(s) |L2(Ω) ds

+C
∫ t

0
| β1(s) − β2(s) |

2
L2(Ω) ds.

Applying Gronwall’s inequality to the previous inequality yields

| β1(t) − β2(t) |L2(Ω)≤ C
∫ t

0
| θ

1
(s) − θ

2
(s) |L2(Ω ) ds. (4.19)

Substituting (4.18) and (4.19) in (4.17), we obtain

| L(η1, θ1) − L(η2, θ2) |H×L2(Ω )≤

C
∫ t

0
| (η

1
, θ1)(s) − (η

2
, θ2)(s) |H×L2(Ω ) ds. (4.20)

Proposition 4.4 is a consequence of the result (4.20) and Banach’s fixed-point theo-
rem.

Proof. Theorem 4.1. Let (uη∗ , ση∗) be the solution to P η
V for η = η

∗ and let βθ∗ be
the solution of P θ

V for θ = θ∗. It is easy to see that (uη∗ , ση∗ , βθ∗) is the solution to
problem PV and

uη∗ ∈ C1(0, T ; V ), ση∗ ∈ C(0, T ;H1),

βθ∗ ∈ W 1,2(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)).

The uniqueness of this solution follows from the uniqueness of the fixed-point of the
operator L defined by (4.16).
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5 Dependence on α

Let α0 = mA

C2

0

and consider a sequence of functions (αn)n∈N and a function α ∈ L∞(Γ3)

satisfying (3.18) and the following assumptions:

α and αn satisfy (4.9), (5.1)

| αn − α |L∞(Γ3)→ 0 when n → +∞. (5.2)

We define the functional jn(u,v) obtained by substituting αn in place of α in j(u,v)
given in (3.23). We obtain a sequence of variational problems P n

V defined for all
n ∈ N as:

Problem P n
V . Find the displacement field un : [0, T ] → V and a stress field σn :

[0, T ] → H and a damage field βn : [0, T ] → H1(Ω) such that

σn(t) = Aε(
.
un(t)) + G(ε(un(t)), βn(t)) a.e. t ∈ (0, T ) , (5.3)

(σn(t), ε(v))H + jn(
.
un(t),v) = (f(t),v)V ∀v ∈ V, a.e. t ∈ (0, T ) , (5.4)

βn(t) ∈ K , ∀t ∈ [0, T ] (
.

βn(t), ξ − βn(t))L2(Ω ) + a(βn(t), ξ − βn(t))

≥ (φ(ε(un(t)), βn(t)), ξ − βn(t))L2(Ω ) ∀ξ ∈ K, (5.5)

un(0) = u0, βn(0) = β0. (5.6)

Theorem 4.1 give us the existence and the uniqueness of the sequence of the solutions
(un, σn, βn)n∈N satisfying (4.1). We denote by (u, σ, β) the solution of the problem
PV having the regularity (4.1). The main result of this section is the following.

Theorem 5.1. Under the assumptions (3.14)-(3.21) and (5.1)-(5.2), we have that
for n → ∞ the following hold:

| un − u |C1(0,T ;V )→ 0, (5.7)

| σn − σ |C(0,T ;H1)→ 0, (5.8)

| βn − β |L2(Ω)→ 0. (5.9)

Proof. Let n ∈ N and t ∈ [0, T ]. From the relations (5.3), (5.4), (3.26) and (3.27) of
the problems P n

V and PV , we find

(Aε(
.
un) −Aε(

.
u), ε(

.
un) − ε(

.
u))H = (G(ε(u), β) − G(ε(un), βn), ε(

.
un) − ε(

.
u))H

+j(
.
u,

.
u−

.
un) − jn(

.
un,

.
u −

.
un) a.e. t ∈ (0, T ) . (5.10)

Using the definitions of the functional j and jn and the relation (3.13), we obtain

j(
.
u,

.
u−

.
un) − jn(

.
un,

.
u−

.
un)

≤ C2
0 | αn − α |L∞(Γ3)|

.
u |V |

.
un −

.
u |V +C2

0 | αn |L∞(Γ3)|
.
un −

.
u |2V . (5.11)

The relation (3.14) leads

(Aε(
.
un) −Aε(

.
u), ε(

.
un) − ε(

.
u))H ≥ mA |

.
un −

.
u |2V . (5.12)
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The relation (3.15) give

(G(ε(u), β) − G(ε(un), βn), ε(
.
un) − ε(

.
u))H ≤

LG(| un − u |V + | βn − β |L2(Ω)). (5.13)

Substituting (5.11), (5.12) and (5.13) in (5.10), we obtain

(mA − C2
0 | αn |L∞(Γ3)) |

.
un −

.
u |V ≤ LG(| un − u |V + | βn − β |L2(Ω))

+C2
0 | αn − α |L∞(Γ3)|

.
u |V . (5.14)

This majoration can be used if the quantity |
.
u |V is bounded independently of n,

then keeping in mind (3.26), (3.27) and (4.8) we find

(mA − C2
0 | αn |L∞(Γ3)) |

.
u |V ≤| A0 | + | f |C(0,T ;V ) +LG | u |V . (5.15)

It follows from Gronwall’s inequality that the function
.
u is bounded independently of

n. We conclude that the function u is bounded independently of n. The assumptions
(5.1) and (5.2) imply that ∃ζ ∈ R

∗ and ∃Nζ an integer different from zero, such that

(mA − C2
0 | αn |L∞(Γ3)) > ζ ∀ζ ≥ Nζ . (5.16)

Keeping in mind the relation (5.15) and (5.16), the inequality (5.14) becomes

|
.
un −

.
u |V ≤ C(| un − u |V + | βn − β |L2(Ω)) + C | αn − α |L∞(Γ3) . (5.17)

Here and below, we denote by C a positive constant which may depend on the data
but is independent of n and whose value may change from place to place. Combining
the inequalities (5.5) and (3.28), we deduce that

(
.

βn(t) −
.

β(t), βn(t) − β(t))L2(Ω ) + a(βn(t) − β(t), βn(t) − β(t))

≤ (φ(ε(un(t)), βn(t)) − φ(ε(u(t)), β(t)), βn(t) − β(t))L2(Ω ) a.e. t ∈ [0, T ]. (5.18)

We obtain from (3.16)

1

2

d

dt
| βn − β |2L2(Ω)≤ L(| un − u |V + | βn − β |L2(Ω)) | βn − β |L2(Ω) . (5.19)

Integrating the previous relation on [0, t], keeping in mind (3.29), (5.6) and applying
Gronwall’s inequality, yields

| βn(t) − β(t) |L2(Ω)≤ C
∫ t

0
| un(s) − u(s) |V ds, (5.20)

and therefore we obtain

| βn(t) − β(t) |L2(Ω)≤ C | un − u |C1(0,T ;V ) . (5.21)

Substituting (5.20) in (5.17), by applying Gronwall’s inequality, after some algebra,
we obtain

| un − u |C1(0,T ;V )≤ C | αn − α |L∞(Γ3) . (5.22)
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The convergence result (5.7) is now a consequence of (5.22) and (5.2). From (5.3)
and (3.26) we find

| σn(t) − σ(t) |H≤ LA |
.
un(t) −

.
u(t) |V

+LG(| un(t) − u(t) |V + | βn(t) − β(t) |L2(Ω)). (5.23)

Moreover from (5.20) and after some algebraic manipulations, we obtain

| σn(t) − σ(t) |H≤ C | un − u |C1(0,T ;V ), (5.24)

since Div σn = Div σ, we have

| σn(t) − σ(t) |H1
≤ C | un − u |C1(0,T ;V ), (5.25)

which implies that

| σn − σ |C(0,T ;H1)≤ C | un − u |C1(0,T ;V ) . (5.26)

The convergence result (5.8) follows from (5.26) and (5.7), and (5.9) is a consequence
of (5.21) and (5.7).
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