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Abstract

We show that on any locally conformal Kähler (l.c.K.) manifold (M,J, g)
with parallel Lee form the unit anti-Lee vector field is harmonic and minimal
and determines a harmonic map into the unit tangent bundle. Moreover, the
canonical distribution locally generated by the Lee and anti-Lee vector fields is
also harmonic and minimal when seen as a map from (M, g) with values in the
Grassmannian Gor

2 (M) endowed with the Sasaki metric. As a particular case
of l.c.K. manifolds, we look at locally conformal hyperkähler manifolds and
show that, if the Lee form is parallel (that is always the case if the manifold is
compact), the naturally associated three- and four-dimensional distributions
are harmonic and minimal when regarded as maps with values in appropriate
Grassmannians. As for l.c.K. manifolds without parallel Lee form, we consider
the Tricerri metric on an Inoue surface and prove that the unit Lee and anti-
Lee vector fields are harmonic and minimal and the canonical distribution
is critical for the energy functional, but when seen as a map with values in
Gor

2 (M) it is minimal, but not harmonic.
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1 Introduction

The theory of harmonic maps is by now well settled: existence and uniqueness
theorems were proved, examples were produced in any dimension of the domain and
codomain. Still, it is important to continue enlarging the class of explicit examples.

Oriented distributions on Riemannian manifolds, unit vector fields in particular,
proved to be a very fruitful source of such examples in two directions. On the
one hand, they can provide examples of critical points of natural generalizations
of the usual energy and volume functionals. On the other hand, they can provide
examples of harmonic maps and/or minimal immersions in appropriate oriented
Grassmannians endowed with the Sasaki metric (in the tangent or unit tangent
bundle when we reduce to vector fields). Based on the fundamental work done
previously in [6], [8], [19], such approach was systematically developed by one of the
present authors and by his collaborators (see, for example, [3], [7] and [10 – 12] and
the references therein). We give the necessary definitions in §2.

One class of Riemannian manifolds naturally endowed with distinguished vector
fields and distributions is the locally conformal Kähler (l.c.K.) class (see [4]). A
leading example of such a manifold is the Hopf manifold. Definitions, examples and
basic properties of l.c.K. structures are given in §3. The Hermitian-Weyl structure
of a l.c.K. manifold canonically determines a one-form (called the Lee form) and two
vector fields, the Lee vector field and its orthogonal by the complex structure, the
anti-Lee vector field. Together they generate a distribution which in some cases is a
foliation (for example when the Lee form is parallel or for the Tricerri metric on the
Inoue surface). It is natural to ask for their Riemannian properties with respect to
the harmonicity and minimality.

The aim of this paper is to use the l.c.K. manifolds, with and without parallel
Lee form, to exhibit new examples of harmonic and minimal unit vector fields and
distributions.

In §4, we discuss l.c.K. manifolds with parallel Lee form. The Lee vector field
being parallel, it trivially has all desired properties. But the anti-Lee vector field
is never parallel and we show that it is harmonic and minimal, but unstable for
both associated functionals and determines a harmonic map from the manifold into
its unit tangent bundle endowed with the Sasaki metric. When the Lee field of
a compact l.c.K. manifold is regular, the manifold fibers (and the projection is a
Riemannian submersion) in circles over an α-Sasakian manifold whose characteris-
tic field is the projection of the anti-Lee field. Even if the characteristic field of a
Sasakian manifold is known to be harmonic and minimal, one cannot derive directly
the conclusion for the anti-Lee field because a theory of the behaviour of harmonic
and minimality properties of vector fields and distributions in a Riemannian sub-
mersion is still lacking. Moreover, most of the known examples of l.c.K. manifolds
with parallel Lee form are non-regular.

A particular case of l.c.K. manifolds with parallel Lee form is formed by the
locally conformal hyperkähler (l.c.h.K.) manifolds. They bear three ”nested” l.c.K.
structures, thus giving rise to a three-dimensional and a four-dimensional distribu-
tion which can be shown to be harmonic and minimal as maps with values in the
appropriate Grassmannians.

In the last section of this paper, we work on an Inoue surface endowed with the
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Tricerri metric. This is an explicit example of a l.c.K. metric without parallel Lee
form on a compact manifold. Still we can prove that the Lee and anti-Lee vector
fields are harmonic and minimal and the canonical distribution is critical for the
energy functional and, when seen as a map with values in Gor

2 (M), it is minimal,
but not harmonic.

We stress that usually l.c.K. manifolds are regarded in the framework of con-
formal geometry and the properties of the complex conformal structure are studied
by means of the Weyl connection. But here we are interested merely in the Rie-
mannian geometry of a fixed metric, the one which is locally conformal with Kähler
ones, hence we shall neglect all conformal setting.

Acknowledgements. This work has been done in the framework of the agreement
between the Royal Flemish Academy of Belgium for Sciences and Arts and the
Romanian Academy. The authors thank both Academies for their support. The
first author also thanks the members of the Section of Geometry of the Department
of Mathematics, Catholic University Leuven, for their warm hospitality during his
visit there in May 2002.

2 Harmonic and minimal sections of tensor bundles

Let (N, g) be a Riemannian manifold and denote by ∇ its Levi Civita connection.
The tangent bundle TN is naturally endowed with the Sasaki metric gS which is
also naturally induced on the hypersurface T1N of unit vectors. Now, any section
ξ ∈ Γ(Q) (where Q stands here for TN or T1N) may be understood as a map
σ : (N, g) → (Q, gS) between Riemannian manifolds. As such, one may ask about
some of its specific properties: harmonicity, shape and volume of its image as an
immersed submanifold, etc. We define the operators ϕξ, Lξ ∈ End(TN) (see [3], [6],
[8] for details) by

ϕξ := −∇ξ,

Lξ := Id +ϕt
ξ ◦ ϕξ

and may compute, for compact N , the energy and volume of ξ:

E(ξ) =
1

2

∫
N

TrLξ µg,

Vol(ξ) =
∫

N

√
det Lξ µg,

where µg is the volume form of (N, g). The critical point conditions for the two

functionals were found in [19] and [8]. Defining Kξ = −
√

det LξL
−1
ξ ◦ ϕt

ξ, these
conditions read respectively:

Tr(Z 7→ (∇Zϕt
ξ)) vanishes on ξ⊥, (2.1)

Tr(Z 7→ (∇ZKξ)) vanishes on ξ⊥. (2.2)

A unit vector field ξ is then called:
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• a harmonic vector field if (2.1) is satisfied. If moreover, Tr(Z 7→ RξϕξZX) = 0
for all X, then ξ is a harmonic map from (N, g) into (T1N, gS). Here and in
the sequel we use the conventions RXY = [∇X ,∇Y ]−∇[X,Y ], R(X,Y, Z, W ) =
g(RXY Z,W ).

• a minimal vector field if it satisfies (2.2) (this is equivalent to the image of ξ
being a minimal submanifold in (T1N, gS)).

A stronger condition can be imposed, namely g((∇Xϕξ)Y, Z) = 0 for any X, Y, Z ⊥
ξ. In this case we say that ξ is strongly normal. The motivation of considering this
condition and naming it like this can be found in [10]. It has been proved that a
strongly normal unit geodesic vector field is harmonic and minimal (see [10], [11]).

These notions can be generalized for sections of any tensor bundle π : Q → N
over N . One may endow Q with a generalization gS of the Sasaki metric (in the
sense that for Q = TN , gS is exactly the Sasaki metric). It can be defined using
Dombrowski’s connection map K of the Levi Civita connection of g as (see [7], for
example):

gS(ξ1, ξ2) = g(π∗ξ1, π∗ξ2) + g(Kξ1, Kξ2).

We now give the necessary definitions and formulas for these Riemannian properties
of σ according to [7].

A p-dimensional oriented distribution σ on N can be viewed as a map σ : N →
Gor

p (N). If {E1, . . . , En} is a positive orthonormal local frame such that σ is locally
generated by {E1, . . . , Ep}, then σ can be identified with the p-vector E1 ∧ · · · ∧Ep

and, as such, it can be considered as a section of the tensor bundle Λp(N). Define

χσ =
n∑

i,j=1

g(REiEj
σ,∇Ej

σ)Ei,

ησ =
n∑

i=1

(∇2σ)(Ei, Ei).

Moreover, let S0
σ(x) be the subspace generated in Λp(TxN) by σ(x) and let S1

σ(x),

S2
σ(x) be the subspaces S generated respectively by the multivectors

σa
j (x) = E1 ∧ · · · ∧ Ea−1 ∧ Ep+j ∧ Ea+1 ∧ · · · ∧ Ep,

σab
ij (x) = E1 ∧ · · · ∧ Ea−1 ∧ Ep+i ∧ Ea+1 ∧ · · · ∧ Eb−1 ∧ Ep+j ∧ Eb+1 ∧ · · · ∧ Ep,

where a, b = 1, . . . p and i, j = 1, . . . n− p. We then have:

Proposition 2.1. [7, Prop. 3.2]
i) The map σ : (N, g) → (Gor

p (N), gS) is a harmonic map if and only if χσ = 0
and ησ(x) belongs to the subspace S0

σ(x) ⊕ S2
σ(x) for all x ∈ N . σ is a harmonic

distribution if and only if ησ(x) belongs to the subspace S0
σ(x) ⊕ S2

σ(x) for all x ∈ N .

ii) The immersion σ : (N, g) → (Gor
p (N), gS) is minimal if and only if

n∑
i=1

{∇Ei
∇PEi

σ −∇P∇Ei
Ei

σ}

belongs to the subspace S0
σ(x)⊕S2

σ(x) for all x ∈ N and for P := L−1
σ∗gS =

√
det A A−1,

where (σ∗gS)(X, Y ) = g(AX, Y ) = g(X, Y ) + g(∇Xσ,∇Y σ).
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3 Locally conformal Kähler manifolds

Let (M, J, g) be a connected Hermitian manifold of complex dimension n ≥ 2. We
denote by Ω its fundamental two-form given by Ω(X, Y ) = g(X, JY ).

(M, J, g) is called locally conformal Kähler, l.c.K. for short, if for each point x of
M there exists an open neighbourhood U of x and a positive function fU on U so
that the local metric gU = e−fU g|U is Kähler. We refer to [4] for a general overview.
Equivalently, (M, J, g) is l.c.K. if and only if there exists a closed one-form ω such
that

dΩ = ω ∧ Ω. (3.1)

Of course, locally, ω|U = dfU .
The one-form ω is called the Lee form and its metrically equivalent vector field

B = ω] is called the Lee vector field. We shall also consider the anti-Lee vector field
JB. Using them, one can give a third equivalent definition in terms of the Levi
Civita connection ∇ of the metric g. Namely, (M, J, g) is l.c.K. if and only if the
following equation is satisfied for any X, Y ∈ X (M):

(∇XJ)Y =
1

2
{ω(JY )X − ω(Y )JX + g(X, Y )JB − Ω(X, Y )B}. (3.2)

Note that the above equation shows that l.c.K. manifolds belong to the class W4 of
the celebrated Gray-Hervella classification [13].

A strictly smaller class of l.c.K. manifolds is the one formed by those with parallel
(with respect to the Levi Civita connection) Lee form, also called Vaisman manifolds
because I. Vaisman was the first to study them systematically under the name of
generalized Hopf manifolds [18]. On such a manifold, the length of the Lee vector
field is constant and we shall always assume it is nonzero. Hence, in what follows,
we shall normalize and consider that on a Vaisman manifold ‖B‖ = ‖JB‖ = 1. The
next proposition gathers the essential facts we shall need.

Proposition 3.1. Let (M, J, g) be a Vaisman manifold. Then the Lee and anti-Lee
vector fields commute ([B, JB] = 0), are Killing (LBg = LJBg = 0) and holomorphic
(LBJ = LJBJ = 0). Consequently, the distribution generated by B and JB is a
holomorphic Riemannian foliation.

We shall denote by F the foliation generated by B and JB. We also note that
the leaves of the foliation generated by the nullity of the Lee form carry an induced
α-Sasakian structure (see [2] as concerns metric contact manifolds) with JB as
characteristic vector field.

Examples of (compact), non-Kähler, l.c.K. manifolds are now abundant. Let
λi ∈ C, i = 1, . . . n, 1 <| λ−1

1 |≤ · · · ≤| λ−1
n | and let Λ = (λ1, . . . , λn). Then all

the Hopf manifolds (Cn \ 0)/ΓΛ, with ΓΛ generated by zi 7→ λ−1
i zi, are known to

admit Vaisman metrics (see [14] for the general case and [5] for the surface case).
Note that these manifolds are diffeomorphic to S1 × S2n−1 and hence cannot be
Kähler. In the simplest case, when λi = 1/2, one recovers the standard Hopf
manifold with l.c.K. metric (read on Cn) g0 = (

∑ |zi|2)−1 ∑
dzi ⊗ dz̄i and Lee form

ω0 = −(
∑ |zi|2)−1 ∑

(z̄idzi + zidz̄i); here the Lee field is the one tangent to the S1

factor.
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More generally, the total space of a flat principal circle bundle over a compact
Sasakian manifold carries a Vaisman metric whose Lee form is identified with the
connection form of the bundle.

The full list of compact complex surfaces which admit l.c.K. metrics with parallel
Lee form was given in [1]. It includes the proper elliptic surfaces, the primary and
secondary Kodaira surfaces and the elliptic Hopf surfaces.

Belgun also proved that the Inoue surfaces cannot admit Vaisman metrics. How-
ever, it was shown by Tricerri in [17] that some Inoue surfaces admit l.c.K. metrics
with non-parallel Lee form. We briefly recall this construction. Let H = {w =
(w1, w2) ∈ C | w2 > 0} and let A = (aij) ∈ SL(3, Z) having one real eigenvalue
α > 1 with eigenvector (a1, a2, a3), and a non-real complex eigenvalue β, with eigen-
vector (b1, b2, b3). The group ΓA generated by the transformations

(w, z) 7→ (αw, βz),

(w, z) 7→ (w + aj, z + bj)

acts on H×C and the quotient is a compact complex surface, the Inoue surface SA.
The metric g = w−2

2 dw ⊗ dw̄ + w2dz ⊗ dz̄ on H × C is globally conformal Kähler
with Lee form ω = d log w2. Being compatible with the action of ΓA, it induces a
l.c.K. metric on SA.

A l.c.K. manifold is naturally endowed with two distinguished vector fields, B
and JB, which also generate a two-dimensional distribution. It is thus natural to
look for their properties of minimality and harmonicity. Note that if the Lee form
is parallel, the properties of B are trivial, so in that case we restrict to looking only
at JB.

A particularly significant class of l.c.K. manifolds appears in the context of
quaternion Hermitian geometry. Namely, a hyperhermitian manifold (M4n, g, J1, J2,
J3) is called locally conformal hyperkähler, l.c.h.K. for short, if for each point x of
M there exists an open neighbourhood U of x and a positive function fU on U
so that the local metric gU = e−fU g|U is hyperkähler (see [15] for the fundamental
properties, formulas and examples). The Lee form locally defined by ω|U = dfU here
satisfies the equation

dΘ = ω ∧Θ, (3.3)

where Θ =
∑3

i=1 Ωi∧Ωi and Ωi is the fundamental 2-form of the Hermitian structure
(M, g, Ja), a = 1, 2, 3. It can be shown that each of the Hermitian structures (g, Ja)
is l.c.K. Moreover, if M is compact, in the conformal class of a l.c.h.K. metric there
is always a metric whose associated Lee form is parallel (see [16]) and hence, when
working on compact l.c.h.K. manifolds, we shall assume that the Lee form is parallel
(and normalized such that the Lee field has length 1).

For a l.c.h.K. manifold with parallel Lee form, (3.2) holds for each Ja. Moreover,

[B, JaB] = 0, [JaB, JbB] = JcB,

where (a, b, c) is any cyclic permutation of (1, 2, 3). Hence, in addition to the three
two-dimensional foliations Fa, associated to each single Vaisman structure (g, Ja), we
have a three-dimensional foliationD locally generated by JaB and a four-dimensional
foliation D̄ locally generated by B and JaB, a = 1, 2, 3. We shall study the har-
monicity and minimality properties of the corresponding distributions at the end of
the next section.



Harmonicity and minimality on l.c.K. manifolds 549

4 Harmonicity and minimality on Vaisman manifolds

Let (M, J, g) be a connected Vaisman manifold of real dimension 2n. Recall that B
is a parallel unit vector field.

4.1 The anti-Lee vector field

We shall study the Riemannian properties of the anti-Lee vector field JB. For
simplicity, denote ϕ := ϕJB = −∇(JB). Then (3.2) together with (∇J)B = ∇(JB)
imply

ϕX =
1

2
{JX − ω(JX)B − ω(X)JB}. (4.1)

Note that ϕB = ϕ(JB) = 0.
Repeated use of (3.2) and (4.1) gives the formula for the covariant derivative of

ϕ:

(∇Xϕ)Y =
1

4
{ω(JY )X − ω(X)ω(JY )B + [g(X, Y )− ω(X)ω(Y )]JB}. (4.2)

Consequently, we obtain

g((∇Xϕ)Y, Z) = 0 for any X,Y, Z ⊥ JB,

proving that JB is a strongly normal (since Killing) and geodesic vector field. This,
moreover, implies that JB is a harmonic and minimal vector field [10], [11].

We now show that JB, viewed as a map from M to T1M , is a harmonic map. To
this end, we have to show (in the notations of §2) that

∑
g(RAJBEiJBJB, Ei) = 0

for any local orthonormal frame {Ei}. But since

g(RAJBEiJBJB, Ei) = R(ϕEi, JB, JB,Ei) = g(RJBϕEi
JB, Ei),

it is enough to show that
∑

g(RJBEi
JB, ϕEi) = 0. Since JB is a Killing vector

field, we get RJBXY = −∇2
XY JB = (∇Xϕ)Y and using (4.1) and (4.2), we obtain

RJBEi
JB =

1

4
{−Ei + ω(Ei)B + g(Ei, JB)JB},

ϕEi =
1

2
{JEi − ω(JEi)B − ω(Ei)JB}.

So, the desired result follows at once. Summing up, we have proved:

Proposition 4.1. On a Vaisman manifold (M, g), the anti-Lee vector field is a
harmonic and minimal vector field. Moreover, it is a harmonic map from (M, g)
into the unit tangent bundle (T1M, gS).

Remark 4.1. For a compact M , we may also determine the volume and energy
of JB. As ϕ is skew-symmetric, we have L = I − ϕtϕ = I − ϕ2. But, since
ϕB = ϕJB = 0, (4.1) gives ϕ2X = 1

2
ϕ(JX) and hence we have

ϕ2X =
1

4
{−X + ω(X)B − ω(JX)JB}. (4.3)
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Then one easily computes:

L =
5

4
Id−1

4
ω ⊗B +

1

4
ω ◦ J ⊗ JB,

L−1 =
4

5
Id +

1

5
ω ⊗B − 1

5
ω ◦ J ⊗ JB.

(4.4)

Note that in an adapted local frame of the form

{E1, . . . , E2n−2, E2n−1 = B, E2n = JB}, (4.5)

the matrix of LJB is diag(5
4
, . . . , 5

4
, 1, 1). Hence, we have

E(JB) =
1

2

∫
M

TrLJB µg =
5n− 1

4
Vol(M),

Vol(JB) =
∫

M

√
det LJB µg =

(
5

4

)n−1

Vol(M).

Moreover, the Hessian forms for the energy and volume were computed in [19] and
[9], respectively. (See also [12].) We have:

(Hess E)ξ(X) =
∫

M
(‖∇X‖2 − ‖X‖2‖ϕξ‖2)µg,

(Hess Vol)ξ(X) =
∫

M

[
‖X‖2αξ(ξ) + (det Lξ)

− 1
2 ((Tr(Kξ ◦ ∇X))2 − Tr(Kξ ◦ ∇X)2)

+ Tr(L−1
ξ ◦ (∇X)t ◦ ϕξ ◦Kξ ◦ ∇X)

+(det Lξ)
1
2 Tr(L−1

ξ ◦ (∇X)t ◦ ∇X)
]
µg, (4.6)

where we have put αξ(X) = Tr(Z 7→ (∇ZKξ)X) and X ⊥ ξ. In general, a unit
harmonic (respectively minimal) ξ is called stable if (Hess E)ξ(X) ≥ 0 (respectively
(Hess Vol)ξ(X) ≥ 0) for any X ⊥ ξ. In our case, with ξ = JB, it is easily seen that
for X = B one obtains (Hess E)JB(B) < 0 and (Hess Vol)JB(B) < 0, hence JB is
not stable neither as a harmonic map nor as a minimal submanifold.

4.2 Harmonicity and minimality of the distribution associated to the folia-
tion F

We shall denote by σ the bivector B ∧ JB.

We first compute η := ησ =
∑∇2

EiEi
σ for any local orthonormal frame {Ei}. We

successively have:

∇Xσ = −B ∧ ϕX =
1

2
B ∧ {−JX + ω(X)JB},

∇Y∇Xσ =
1

2
B ∧ {−∇Y (JX)− 1

2
ω(X)JY + [Y (ω(X) +

1

2
ω(X)ω(Y )]JB},

∇∇XY σ =
1

2
B ∧ {−J∇XY + ω(∇XY )JB}.

(4.7)
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We use these formulas and a local frame of the form (4.5) to compute
∑∇2

EiEi
σ =∑

(∇Ei
∇Ei

σ −∇∇Ei
Ei

σ). We obtain

∑
∇Ei

∇Ei
σ =

1

2
B ∧

∑
{Ei(ω(Ei))JB −∇Ei

(JEi)},∑
∇∇Ei

Ei
σ =

1

2
B ∧

∑
{−J∇Ei

Ei + ω(∇Ei
Ei)JB}.

Hence η = −1
2
B ∧∑

(∇Ei
J)Ei which, using (3.2), gives

η = −n− 1

2
σ.

Next we show that χ := g(X, χσ) =
∑

g(RXEi
σ,∇Ei

σ) = 0 for all X.
As RXEi

= ∇2
XEi

−∇2
EiX

, we may use (4.7) combined with (3.2) to derive

RXEi
σ =

1

4
B ∧ {ω(JX)Ei − ω(JEi)X}.

Now, recall that g(X1 ∧X2, X3 ∧X4) = det(g(Xi, Xj), i = 1, 2, j = 3, 4. Then, by
a straightforward computation, it follows that χ = 0.

Finally, compute ρ :=
∑{∇Ei

∇PEi
σ−∇P∇Ei

Ei
σ}, with P as in Proposition 2.1.

A straightforward computation shows that A is given by putting L := A in (4.4).
It will again be convenient to consider the local orthonormal basis of the form

(4.5). Note that under this assumption, we have

ω(∇Ei
Ei) = 0 as ω(Ei) = g(B, Ei) = const.,

ω(J∇Ei
Ei) = −g(Ei, ϕEi) = 0 as ϕ is skew-symmetric.

With this, we have for the second term:

A−1∇Ei
Ei =

4

5
∇Ei

Ei,

∇A−1∇Ei
Ei

(JB) = −2

5
J∇Ei

Ei.

So, we obtain

∑
∇A−1∇Ei

Ei
σ =

∑
B ∧∇A−1∇Ei

Ei
(JB) = −2

5
B ∧

∑
J∇Ei

Ei. (4.8)

As for the first term, a similar computation, in which we take into account the
formulas ∇A−1Ei

(JB) = −ϕ(A−1Ei) and ϕB = ϕJB = 0, yields

∇A−1Ei
(JB) = −2

5
{JEi − ω(JEi)B − ω(Ei)JB},

∇Ei
∇A−1Ei

(JB) = −2

5
{∇Ei

(JEi) + ω(Ei)ϕEi}.

With (3.2) and recalling the type of basis we are using, we find∑
(∇Ei

J)Ei = (n− 1)JB.
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Hence, we obtain

∑
∇Ei

∇A−1Ei
σ = −2(n− 1)

5
σ − 2

5
B ∧

∑
J∇Ei

Ei.

Together with (4.8), this yields

ρ = −2(n− 1)

5
σ.

Note that neither η nor ρ are zero because n ≥ 2. According to the Proposition 2.1
we thus proved:

Proposition 4.2. The map σ : (M, g) → (Gor
2 (M), gS) is harmonic and its image

is a minimal submanifold.

4.3 Harmonicity and minimality of the distributions D and D̄ on a l.c.h.K.
manifold with parallel Lee form

Let now (M4n, g, J1, J2, J3) be a l.c.h.K. manifold with parallel Lee form and denote
with σ and σ̄ the multivectors corresponding to the distributions D, D̄. Hence,
σ = J1B ∧ J2B ∧ J3B and σ̄ = J1B ∧ J2B ∧ J3B ∧B.

Performing, essentially, the same kind of computations as in the previous sub-
section, and taking into account Proposition 2.1, we may prove:

Proposition 4.3. On a locally conformal hyperkähler manifold (M, g, J1, J2, J3)
with parallel Lee form, the distributions D and D̄ locally generated respectively by
{JaB}, {JaB, B}, a = 1, 2, 3, determine harmonic maps and minimal immersions
of (M, g) into (Gor

3 (M), gS) and (Gor
4 (M), gS), respectively.

5 The Inoue surface

Let SA be the Inoue surface endowed with the metric described in §3. Unless on a
Vaisman manifold, were B is parallel and thus of no interest for our problem, here
it has interesting properties. On the other hand, it turns out that also the anti-Lee
vector field has good properties. Namely we prove:

Proposition 5.1. On an Inoue surface SA endowed with the Tricerri metric, the
following properties hold:

i) the Lee and anti-Lee vector fields are harmonic and minimal;
ii) the distribution locally generated by the Lee and anti-Lee vector fields is har-

monic and determines a minimal immersion of (SA, g) into (Gor
2 (SA), gS).

The proof is computational. We sketch it for i), the proof of ii) is similar to the
one in §4.2. It is convenient to work locally, in the orthonormal frame (see also [4])
as follows:

E1 = w2
∂

∂w1

, E2 = w2
∂

∂w2

= B, E3 =
1

√
w2

∂

∂z1

, E4 =
1

√
w2

∂

∂z2

,
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with dual frame

θ1 =
dw1

w2

, θ2 =
dw2

w2

, θ3 =
√

w2dz1, θ4 =
√

w2dz2,

and use the Cartan structure equations1. The list of connection forms is: θ1
2 = −θ2

1 =
θ1, θ2

3 = −θ3
2 = 1

2
θ3, θ2

4 = −θ4
2 = 1

2
θ4, the other ones being zero. Consequently we

have: ∇E1B = E1, ∇E2B = 0, ∇E3B = 1
2
E3, ∇E4B = 1

2
E4.

As B = E2, we now set ϕ2X = −∇XB. With the above formulas, one now
checks that

∑
g((∇Ei

ϕ2)Ei, Z) = 0 for any Z = Ej with j = 1, 3, 4, and hence B is
a harmonic vector field.

Note that
∑

R(B, ϕ2Ei)Ei 6= 0 and hence, B is not a harmonic map from SA to
T1SA.

In order to show that B is minimal, we need to prove that
∑

(∇Ei
K2)Ei is a

multiple of B, with K2 = −
√

det L2 ◦ L−1
2 ◦ ϕt

2 and L2 = Id +ϕt
2 ◦ ϕ2.

The matrix of ϕ2 in the specified basis is diag(1, 0,−1
2
,−1

2
) and hence ϕ2 = ϕt

2.
Then it is immediate that the matrix of L2 is diag(2, 1, 5

4
, 5

4
) and det L2 = 50

16
. Fur-

ther, the matrix of L−1
2 is diag(1

2
, 1, 4

5
, 4

5
). All in all we find K2X = −5

√
2

8
θ1(X)E1 +

1√
2
θ3(X)E3 + 1√

2
θ4(X)E4. This gives

∑∇Ei
(K2Ei) = −9

√
2

8
E2. As for each i, ∇Ei

Ei

is a multiple of E2 and K2E2 = 0, we finally find
∑

(∇Ei
K2)Ei = −9

√
2

8
E2, as

desired.
As SA is compact, from the previous computations we also obtain (as in Remark

4.1):

E(B) =
1

2

∫
SA

TrL2 µg =
11

4
Vol(SA), Vol(B) =

∫
SA

√
det L2 µg =

5
√

2

4
Vol(SA).

Finally, we discuss the stability for the energy and for the volume of B. We
take X = JB = E1 in the first formula of (4.6). As ∇Ei

E1 = θ1(Ei)E2, we obtain
‖∇E1‖ = 1. We thus have ‖ϕ2‖2 = 3

2
. Hence, by (4.6) we get (Hess(E)B)(JB) =

−1
2
Vol(SA) < 0 and thus B is not stable for the energy functional.
As for the volume functional (the second formula of (4.6)), we first observe that

the image of the endomorphism∇Ei is in the span of E2 for i = 1, 3, 4. As K2E2 = 0,
the second and third terms in the integrand are zero. For the first term, we have
αB(B) = Tr(Z 7→ (∇ZK2)B) =

∑
g(−K2∇Ei

E2, Ei) = −9
√

2
8

. On the other hand,

letting X = JB, for the last term of the integrand we obtain 5
√

2
8

and so, finally we

get (Hess(Vol)B)(JB) = −
√

2
2

Vol(SA) < 0. Hence B is not stable for the volume
functional.

As regards JB = E1, we set ϕ1 = −∇E1 and let L1, K1 be the associated
operators. We find as above

∑
(∇Ei

ϕ1)Ei = E1, and hence JB is a harmonic vector
field. As K1 acts as follows: K1E2 = − 1√

2
E1,K1Ei = 0 for i = 1, 3, 4, we obtain

that
∑

(∇Ei
K1)Ei = 0, proving that JB is a minimal vector field.

Also, E(JB) = 5
2
Vol(SA) and Vol(JB) =

√
2 Vol(SA).

As for the stability of JB, ‖ϕ1‖ = 1. Taking X = E3, we find ‖∇E3‖2 = 1
4
,

hence (Hess(E)JB)(E3) = −3
4
Vol(SA) < 0 and thus JB is not stable for the energy

1For the structure equations, we use the convention dθi = θi
k ∧ θk, dθi

j = −θk
j ∧ θi

k + Ri
j , with

connection forms given by ∇XEj = −θk
j (X)Ek and where Ri

j =
∑

k<l Rijklθ
k ∧ θl, all indices

running from 1 to 4.
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functional. The stability problem for the volume functional is more difficult and up
to now we did not obtain a result.
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