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Abstract

In this paper we study a scalar Neumann problem driven by the ordinary
p-Lapacian and a nonsmooth potential. The nonlinearity exhibits an asym-
metric behavior. Namely growth restriction is imposed in one direction only
(either the positive direction or the negative direction). Using a variational
approach based on the nonsmooth critical point theory for locally Lipschitz
function, we prove the existence of a solution.

1 Introduction

In this paper, we study the following nonlinear Neumann problem with nonsmooth
potential:











−(|x′(t)|p−2x′(t))′ ∈ ∂j(t, x(t)) + g(t), a.e. on T = [0, b],

x′(0) = x′(b) = 0, 1 < p <∞, g ∈ Lq(T ),
1

p
+

1

q
= 1.

(1.1)

The Neumann problem for ordinary differential equations, was studied by Dong
[6] de Figueiredo-Ruf [7], Gupta [9], Iannacci-Nkashama [11], Mawhin-Ward-Willem
[16], Villegas [17](semilinear problems, i.e., p=2) and Dang-Oppenheimer [3], Guo
[8], Kourogenis-Papageorgiou [12] (nonlinear problems involving p-Laplacian type
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differential operators). With the exception of the works of de Figueiredo-Ruf [7],
Villegas [17] and Dong [6], all the other papers proved existence results by imposing
restrictions on the nonlinearity in both directions (i.e. as x → −∞ and as x →
−∞). In the aforementioned works of de Figueiredo-Ruf, Villegas and Dong, the
nonlinearity is restricted only as x → −∞ (we should point out that an analogous
condition for Dirichlet problems, can be found in the work of Ma-Sanchez [14]).
The goal of this paper is to extend the works of de Figueiredo-Ruf, Villegas and
Dong, to equations driven by the ordinary p-Laplacian and having a nonsmooth
potential. Our approach is variational based on the nonsmooth critical point theory
of Chang [1] and Kourogenis-Papageorgiou [13]. From the three relevant semilinear
smooth works of de Figueiredo-Ruf, Villegas and Dong, the first two are also based on
variational methods, while the work of Dong is based on degree theoretic arguments.

In the next section, for the convenience of the reader we recall the basic defi-
nitions and facts from the nonsmooth critical point theory, which is based on the
subdifferential for locally lipschitz functions, due to Clarke.

2 Mathematical Background

We start by recalling the basics from the subdifferential theory for locally Lipschitz
functions. Our main references are the books of Clarke [2] and Denkowski-Migorski-
Papageorgiou [4].

Let X be a Banach space and X∗ its topological dual. By < ·, · > we denote the
duality brackets for the pair (X,X∗). A function ϕ : X → R is said to be locally
Lipschitz, if for every x ∈ X, we can find a neighborhood U of x and a constant
kU > 0 such that |ϕ(z) − ϕ(y)| ≤ kU ||z − y|| for all z, y ∈ U . From convex analysis
we know that if φ : X → R̄ = R ∪ {+∞} is convex, lower semicontinuous and not
identically +∞, then φ is locally Lipschitz in the interior of its effective domain
domφ = {x ∈ X : φ(x) < +∞}. Given a locally Lipschitz function ϕ : X → R, we
define the generalized directional derivative at x in the direction h ∈ X, by

ϕ0(x; h) = lim sup
x′→x

λ↓0

ϕ(x′ + λh) − ϕ(x′)

λ
.

We can easily check that ϕ0(x; ·) is sublinear, continuous and so from the Hahn-
Banach theorem it follows that ϕ0(x; ·) is the support function of a nonempty, convex
and w∗-compact set ∂ϕ(x) ⊆ X∗, defined by

∂ϕ(x) = {x∗ ∈ X∗ :< x∗, h >≤ ϕ0(x; h) for all h ∈ X}.

The set ∂ϕ(x) is known as the generalized (or Clarke) subdifferential of ϕ at
x ∈ X. If ϕ is also convex, then the generalized subdifferential, coincides with the
subdifferential ∂cϕ(x) in the sense of convex analysis, defined by

∂cϕ(x) = {x∗ ∈ X∗ :< x∗, h >≤ ϕ(x+ h) − ϕ(x) for all h ∈ X}.

If ϕ ∈ C1(X), then ∂ϕ(x) = {ϕ′(x)}. Moreover, if ϕ, ψ : X → are locally
Lipschitz functions and λ ∈, then

∂(ϕ + ψ)(x) ⊆ ∂ϕ + ∂ψ and ∂(λϕ)(x) = λ∂ϕ(x) for all x ∈ X
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Next let us say a few things about the critical point theory for locally Lipschitz
not necessary smooth functions. So let ϕ : X → R be a locally Lipschitz function.
A point x ∈ X is a critical point of ϕ, if 0 ∈ ∂ϕ(x). If x ∈ X is a critical point of
ϕ, then c = ϕ(x) is the corresponding critical value. It is easy to check that x is a
local extremum of ϕ (i.e. a local minimum or a local maximum), then x is a critical
point of ϕ (i.e. 0 ∈ ∂ϕ(x)).

As is the case with the smooth theory (i.e. ϕ ∈ C1(X)), in the nonsmooth
critical point theory, a basic tool is a compactness type condition, known as the
“nonsmooth Palais-Smale condition” (nonsmooth PS-condition for short), which
says the following:

A locally Lipschitz function ϕ : X → R satisfies the “nonsmooth PS-condition” if
any sequence {xn}n≥1 ⊆ X such that supn≥1 |ϕ(xn)| < +∞ and m(xn) = inf{||x∗|| :
x∗ ∈ ∂ϕ(xn)} → 0 as n→ ∞, has a strongly convergent subsequence.

If ϕ ∈ C1(X), then as we already said ∂ϕ(x) = {ϕ′(x)} and so we see that the
nonsmooth PS-condition coincides with the smooth one (see for example Denkowski-
Migorski-Papageorgiou [5]).

In our analysis of problem (1.1) we shall need the following basic geometric
notion:

Definition 2.1. Let Z be a Hausdorff topological space and E1, D two nonempyt
subsets of Z. We say that E1 and D “link in Z” if

(a) E1 ∩D = ∅;
(b) there exists a closed set E ⊇ E1 such that for any θ ∈ C(E,Z) with θ|E1

=
idE1

, we have θ(E) ∩D 6= ∅.

Using this geometric notion, Kourogenis-Papageorgiou [13] proved the following
abstract minimax principle. In fact the result of Kourogenis-Papageorgiou [13] is
more general, but the version of the result which follows, suffices for our needs here.

Theorem 2.2. If X is a reflexive Banach space, E1 and D are two nonempty
subsets of X with D closed, E1 and D link in X,ϕ : X → R is a locally Lips-
chitz function which satisfies the nonsmooth PS-condition, supE1

ϕ < infD ϕ and
c = infθ∈Γ supv∈E ϕ(θ(v)) with Γ = {θ ∈ C(E,X) : θ|E1

= idE1
} and E ⊇ E1 is as

in the definition of linking sets, then c ≥ infD ϕ and c is a critical value of ϕ, i.e.,
we can find a critical point x0 ∈ X such that ϕ(x0) = c. Moreover, if c = infD ϕ,
then x0 ∈ D.

Remark 2.3. With appropriate choices of linking sets E1 and D, we can have
nonsmooth versions of the Mountain Pass Theorem, the Saddle Point Theorem
and the Generalized Mountain Pass Theorem. For details we refer to Kouragenis-
Papageorgiou [13].
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3 Some Auxiliary Results

In this section, by solving an optimization problem, we introduce a quantity which
will be used in our hypotheses on the nonsmooth potential j(t, x). As we show this
quantity is in fact the first eigenvalue of the negative scalar p-Laplacian with mixed
boundary conditions.

So we introduce the set

C = {x ∈W 1,p(0, b) : min
T
x = 0}

and we consider the following minimization problem

γ = inf{
||x′||pp
||x||pp

: x ∈ C, x 6= 0}. (3.1)

Proposition 3.1. There exists x ∈ C \ {0} such that γ =
||x′||pp
||x||pp

and x(t) > 0 for all

t ∈ (0, b).

Proof. Let {xn}n≥1 ⊆ C with ||xn||p = 1 be a minimizing sequence, i.e., ||x′n||
p
p ↓ γ

as n → ∞. Evidently, {xn}n≥1 ⊆ W 1,p(T ) is bounded and so by passing to a
subsequence if necessary, we may assume that xn

w
→ x in W 1,p(0, b) and xn → x in

C(T ) (recall that W 1,p(0, b) is embedded compactly in C(T )). So we have ||x||p = 1,
hence x 6= 0. Also if tn ∈ T is such that minT xn = xn(tn), n ≥ 1, then we may
assume that tn → t and so xn(tn) → x(t) = 0, which means that minT x ≤ 0. If
the inequality is strict, we can find s ∈ T such that x(s) = minT x < 0 and then for
n ≥ 1 large enough, we shall have xn(s) < 0, which contradicts the fact that xn ∈ C

for all n ≥ 1. Therefore minT x = 0 and so x ∈ C \ {0}. Moreover, from the weak
lower semicontinuity of the norm functional in a Banach space, we have ||x′||pp ≤ γ,
hence ||x′||pp = γ (since x ∈ C \ {0}).

Next suppose that for some t ∈ (0, b), we have x(t) = 0. We introduce the
following two sets:

C0 = {y ∈W 1,p(0, t) : min
[0,t]

y = 0} and C1 = {y ∈W 1,p(t, b) : min
[t,b]

y = 0}.

To these two sets we correspond the following two quantities:

γ0 = inf{

∫ t
0 |y

′(s)|pds
∫ t
0 |y(s)|

pds
: y ∈ C0, y 6= 0} and γ1 = inf{

∫ b
t |y

′(s)|pds
∫ b
t |y(s)|

pds
: y ∈ C1, y 6= 0}.

From the first part of the proof, we know that both infima are attained. Remark
that the maps x → x̂(s) = x( s

t
b) and x → x̄(s) = x( s−t

b−t
b) are bijections of C onto

C0 and C1 respectively. Therefore it follows that

γ0 = (
b

t
)pγ and γ1 = (

b

b− t
)pγ.
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We have

γ =
||x′||pp
||x||pp

=

∫ t
0 |x

′(s)|pds+
∫ b
t |x

′(s)|pds

||x||pp

≥
γ0

∫ t
0 |x(s)|

pds+ γ1

∫ b
t |x(s)|

pds

||x||pp

≥
min{γ0, γ1}‖x‖

p
p

‖x‖p
p

= min{γ0, γ1} > γ,

a contradiction. So we must have that x(t) > 0 for all t ∈ (0, b). �

In the next Proposition, we identify γ as the first eigenvalue of the negative
scalar p-Laplacian with mixed boundary conditions.

Proposition 3.2. γ is the first eigenvalue of −(|x′(·)|p−2x′(·))′ with boundary con-
ditions x(0) = x′(b) = 0; so

γ =
p− 1

bp





∫ 1

0

ds

(1 − sp)
1

p





p

.

Proof. Let x ∈ C \ {0} be the minimizer of (3.1) obtained in Proposition 3.1. Then
at least x(0) = 0 or x(b) = 0. We may assume without any loss of generality that
x(0) = 0 (otherwise consider the function x(t) = x(b − t)). Then let V = {y ∈

W 1,p(0, b) : y(0) = 0} and λ1 = inf
[

‖y′‖p
p

‖y‖p
p

: y ∈ V, y 6= 0
]

. As before we can check

that this minimization problem has a solution u ∈ V and by virtue of the Lagrange
multiplier rule we can check that u ∈ V is a solution of the following nonlinear
eigenvalue problem:

{

−(|y′(t)|p−2y′(t))′ = λ1|y(t)|
p−2y(t) a.e on T

y(0) = y′(b) = 0

}

So we have that λ1 = p−1
bp (

∫ 1
0

ds
(1−sp)1/p )p and u(t) 6= 0 for all t ∈ (0, b) (see Mawhin

[15]). We have

γ = min{
||y′||pp
||y||pp

: y ∈ C, y 6= 0}

= min{
||y′||pp
||y||pp

: y ∈ C ∩ V, y 6= 0}(see Proposition 3.1)

= min{
||y′||pp
||y||pp

: y ∈ V, y 6= 0} = λ1.

�

So γ > 0 has a natural intrinsic characterization in terms of the p-Lpalacian
differential operator of the problem. We shall use γ in the hypotheses for the nons-
mooth potential j(t, x).
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4 The Neumann Problem

In this section, using a variational approach based on the nonsmooth critical point
theory, we prove an existence theorem for problem (1.1) by imposing unilateral
asymptotic conditions on the nonsmooth potential j(t, x). More precisely, our hy-
potheses on j(t, x) are the following:

H(j) : j : T × R → R is a function such that j(·, 0) ∈ L1(T ) and
(i) for all x ∈, t→ j(t, x) is measurable;
(ii) for almost all t ∈ T, x→ j(t, x) is locally Lipschitz;
(iii) for every r > 0, there exists ar ∈ Lq(T )+(1

p
+ 1

q
= 1) such that for almost all

t ∈ T , all |x| ≤ r and all u ∈ ∂j(t, x), we have |u| ≤ ar(t).
(iv) lim supx→+∞

u
xp−1 ≤ h(t) uniformly for almost all t ∈ T and all u ∈ ∂j(t, x)

with h ∈ L1(T )+ such that h(t) ≤ γ a.e. on T and this inequality is strict on a set
of positive Lebesgue measure;

(v) lim supx→−∞{maxu∈∂j(t,x) u} < −g(t) < lim infx→+∞{minu∈∂j(t,x) u} uniformly
for almost all t ∈ T .

Remark 4.1. Hypothesis H(j) (iv) imposes a unilateral growth restriction on j(t, ·)
(only in the positive direction). We have no growth restriction in the negative direc-
tion. So the nonsmooth potential in general exhibits an asymmetric behavior.

Let ϕ : W 1,p(0, b) → R be the functional defined

ϕ(x) =
1

p
||x′||pp −

∫ b

0
j(t, x(t))dt−

∫ b

0
g(t)x(t)dt, x ∈W 1,p(0, b).

We know that ϕ is locally Lipschitz (see Clarke [2], p.80 or Denkowski-Migorski-
Papageorgiou [4], p.616).

Proposition 4.2. If hypotheses H(j) hold, then ϕ satisfies the nonsmooth PS-
condition.

Proof. Let {xn}n≥1 ⊆ W 1,p(0, b) be a sequence such that

|ϕ(xn)| ≤M, for some M1 > 0 and all n ≥ 1 and m(xn) → ∞ as n→ ∞.

Because ∂ϕ(xn) ⊆ W 1,p(0, b)∗ is weakly compact and the norm functional in a
Banach space is weakly lower semicontinuous, by the Weierstrass theorem, we can
find x∗n ∈ ∂ϕ(xn) such that m(xn) = ||x∗n||, n ≥ 1. Let A : W 1,p(0, b) → W 1,p(0, b)∗

be the nonlinear operator defined by

< A(x), y >=
∫ b

0
|x′(t)|p−2x′(t)y′(t)dt for all x, y ∈W 1,p(0, b).

(hereafter by < ·, · > we denote the duality brackets for the pair (W 1,p(0, b)∗,
W 1,p(0, b))). It is easy to see that A is monotone, demicontinuous, thus it is maximal
monotone (see Hu-Papageorgiou [10], p.309). We know that

x∗n = A(xn) − un − g, n ≥ 1

with un ∈ Lq(T ), un(t) ∈ ∂j(t, xn(t)) a.e. on T (see Clarke [2], p.83 or Denkowski-
Migorski-Papageorgiou [4], p.617).
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We claim that the sequence {xn}n≥1 ⊆ W 1,p(0, b) is bounded. Suppose that this
is not true. Then by passing to a suitable subsequence if necessary, we may assume
that ||xn|| → ∞. Set yn = xn

||xn||
, n ≥ 1. We may assume that

yn
w
→ y in W 1,p(0, b) and yn → y in C(T ) as n→ ∞.

From the choice of the sequence {xn}n≥1, we have that

| < x∗n, z > | ≤ εn||z|| for all z ∈W 1,p(0, b) with εn ↓ 0.

Choose z ≡ 1 ∈W 1,p(0, b). We obtain

|
∫ b

0
un(t)dt| ≤ ε′n + |

∫ b

0
g(t)dt| with ε′n ↓ 0.

Dividing with ||xn||
p−1, we get

|
∫ b

0

un(t)

||xn||p−1
dt| ≤

ε′n
||xn||p−1

+
||g||1

||xn||p−1
→ 0 as n→ ∞. (4.1)

By virtue of hypothesis H(j) (iv), we know that given ε > 0, we can find M2 =
M2(ε) > 0 such that for almost all t ∈ T , all x ≥ M2 > 0 and all u ∈ ∂j(t, x), we
have

u ≤ (h(t) + ε)xp−1. (4.2)

Moreover, from hypothesis H(j) (v), we see that we can find M3 > 0 such that for
almost all t ∈ T , all x ≥M3 and all u ∈ ∂j(t, x), we have

0 ≤ u+ g(t). (4.3)

Therefore finally, we can say that for almost all t ∈ T , all x ≥ M4 = max{M2,M3}
and all u ∈ ∂j(t, x), we have

|u+ g(t)| = u+ g(t) ≤ (h(t) + ε)xp−1 + g(t) (see (4.2) and (4.3)),

=⇒ |u| ≤ (h(t) + ε)|x|p−1 + 2|g(t)|. (4.4)

On the other hand, from hypotheses H(j) (iii) and (v), we can find M5 ≥ M4

such that for almost all t ∈ T , all x < M5 and all u ∈ ∂j(t, x), we have

|u| ≤ a(t) − u for some a ∈ Lq(T )+ (4.5)

we can take a(t) = aM5
(t) + |g(t)|. Then we have

∫ b

0

|un(t)|

||xn||p−1
dt =

∫

{xn≥M5}

|un(t)|

||xn||p−1
dt+

∫

{xn<M5}

|un(t)|

||xn||p−1
dt. (4.6)

Using (4.4), we have

∫

{xn≥M5}

|un(t)|

||xn||p−1
dt ≤

∫

{xn≥M5}
(h(t) + ε)|yn(t)|

p−1dt+
∫

{xn≥M5}

2|g(t)|

||xn||p−1
dt

≤
∫ b

0
(h(t) + ε)|y+

n (t)|p−1dt+
∫ b

0

2|g(t)|

||xn||p−1
dt (4.7)

(here y+
n = max{yn, 0}).
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Also using (4.5), we have

∫

{xn<M5}

|un(t)|

||xn||p−1
dt ≤

||a||1
||xn||p−1

−
∫

{xn<M5}

un(t)

||xn||p−1
dt

=
||a||1

||xn||p−1
−

∫ b

0

un(t)

||xn||p−1
dt+

∫

{xn≥M5}

un(t)

||xn||p−1
dt

≤
||a||1

||xn||p−1
−

∫ b

0

un(t)

||xn||p−1
dt

+
∫ b

0
(h(t) + ε)|y+

n (t)|p−1dt+ ε′′n with ε′′n ↓ 0

(see 4.2). (4.8)

Returning to (4.6), using (4.7) and (4.8) and recalling also (4.1), we obtain that

∫ b

0

|un(t)|

||xn||p−1
dt ≤M6 (for some M6 > 0 and all n ≥ 1),

=⇒
{ un(·)

||xn||p−1

}

n≥1
⊆ L1(T ) is bounded. (4.9)

From the choice of the sequence {xn}n≥1 ⊆W 1,p(0, b), we have

| < x∗n, yn − y > | ≤ εn||yn − y|| with εn ↓ 0,

=⇒ | <
x∗n

||xn||p−1
, yn − y > | ≤

εn

||xn||p−1
||yn − y||,

=⇒ | < A(yn), yn − y > −
∫ b

0

un(t)

||xn||p−1
(yn − y)(t)dt−

∫ b

0

g(t)

||xn||p−1
(yn − y)(t)dt|

≤
εn

||xn||p−1
||yn − y||. (4.10)

Because of (4.9) and since yn → y in C(T ), it follows that

∫ b

0

un(t)

||xn||p−1
(yn − y)(t)dt→ 0 as n→ ∞.

Clearly we also have that

∫ b

0

g(t)

||xn||p−1
(yn − y)(t)dt→ 0 as n→ ∞.

Therefore from (4.10), we obtain

< A(yn), yn − y >→ 0 as n→ ∞.

But A being maximal monotone, it is generalized pseudomonotone (see Hu-
Papageorgiou [10], p.365) and so we have

< A(yn), yn >→< A(yn), y >,

=⇒ ||y′n||p → ||y′||p as n→ ∞.
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Since y′n
w
→ y′ in Lp(T ) and the latter space is uniformly convex, from the Kadec-

Klee property we have that y′n → y′ in Lp(T ). Therefore we infer that yn → y in
W 1,p(T ). Since ||yn|| = 1 for all n ≥ 1, it follows that ||y|| = 1 and so y 6= 0.

Recall that for all z ∈W 1,p(0, b), we have

| < x∗n, z > | ≤ εn||z|| with εn → 0.

Taking as a test function z ≡ 1 ∈W 1,p(0, b), we obtain

|
∫ b

0
un(t)dt+

∫ b

0
g(t)dt| ≤ εn,

=⇒ |
∫ b

0
un(t)dt→ −

∫ b

0
g(t)dt as n→ ∞. (4.11)

We shall use (4.11) to establish that y has roots on T . We proceed by contra-
diction. So suppose that y has no roots on T . We may assume that y(t) > 0 for
all t ∈ T (the analysis is similar if we assume that y(t) < 0 for all t ∈ T ). Then
xn(t) → +∞ for all t ∈ T as n → ∞. We claim that this convergence is uniform
in t ∈ T . To this end choose δ > 0 such that 0 < δ < minT y. Because yn → y in
C(T ), we can find n0 = n0(δ) ≥ 1 such that

|yn(t) − y(t)| < δ for all n ≥ n0 and all t ∈ T,

=⇒ yn(t) ≥ y(t) − δ = δ1 > 0 for all n ≥ n0 and all t ∈ T.

Since ‖xn‖ → ∞, given β > 0, we can find n1 = n1(β) ≥ 1 such that

‖xn‖ ≥ β > 0 for all n ≥ n1.

Then for all n ≥ n2 = max{n0, n1} and all t ∈ T , we have

xn(t)

β
≥
xn(t)

‖xn‖
= yn(t) ≥ δ1 > 0

(recall that xn(t) > 0 for all n ≥ n0 and all t ∈ T ),

=⇒ xn(t) ≥ βδ1 > 0.

Since β > 0 is arbitrary, we conclude that minT xn → +∞ as n → ∞. Using
this fact in conjunction with hypothesis H(j)(v) and Fatou’s Lemma, we infer that

∫ b

0
g(t)dt < lim inf

n→∞

∫ b

0
un(t)dt. (4.12)

Comparing (4.11) and (4.12), we reach a contradiction. This proves that y has roots
on T .

Next let y+ = max{y, 0} ∈ W 1,p(0, b) (see Denkowski-Migorski-Papageorgiou
[4]). We consider two cases:
Case I: y+ ≡ 0

Then maxT y = 0, since y has roots on T . Also from (4.7) and (4.8) and recalling
that (4.1) holds and that y+

n → y+ in C(T ), we obtain

un

‖xn‖p−1
→ 0 in L1(T ) as n→ ∞. (4.13)
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From the choice of the sequence {xn}n≥1 ⊆W 1,p(0, b), we have
∣

∣

∣

∣

∣

< A(xn), y > −
∫ b

0
un(t)y(t)dt−

∫ b

0
g(t)y(t)dt

∣

∣

∣

∣

∣

≤ εn‖y‖ with εn ↓ 0,

=⇒

∣

∣

∣

∣

∣

< A(yn), y > −
∫ b

0

un(t)

‖xn‖p−1
y(t)dt−

∫ b

0

g(t)

‖xn‖p−1
y(t)dt

∣

∣

∣

∣

∣

≤
εn

‖xn‖p−1
‖y‖ (4.14)

Remark that A(yn)
w
→ A(y) in W 1,p(0, b)∗(since yn → y in W 1,p(0, b) and A is

demicontinuous),
∫ b
0

un(t)
‖xn‖p−1 y(t)dt → 0 (see (4.13)) and

∫ b
0

g(t)
‖xn‖p−1y(t)dt → 0. So by

passing to the limit as n→ ∞ in (4.14), we obtain

< A(y), y >= ‖y′‖p
p = 0,

=⇒ y ≡ ξ ∈ R

Because maxT y = 0, we have that y = ξ = 0, a contradiction to the fact that
‖y‖ = 1.
Case II: y+ 6= 0.

Because y has roots on T , we must have minT y
+ = 0 and so y+ ∈ C \ {0}.

Recall that

| < x∗n, z > | ≤ εn‖z‖ for all z ∈W 1,p(0, b) and with εn ↓ 0.

Use as a test function z = y+
n ∈W 1,p(0, b) and divide with ‖xn‖

p−1. We obtain
∣

∣

∣

∣

∣

‖(y+
n )′‖p

p −
∫ b

0

un(t)

‖xn‖p−1
y+

n (t)dt−
∫ b

0

g(t)

‖xn‖p−1
y+

n (t)dt

∣

∣

∣

∣

∣

≤ εn‖y
+
n ‖

=⇒ ‖(y+
n )′‖p

p ≤ εn‖y
+
n ‖ +

∫ b

0

un(t)

‖xn‖p−1
χ{yn>0}(t)yn(t)dt

+
∫ b

0

g(t)

‖xn‖p−1
y+

n (t)dt. (4.15)

For every n ≥ 1, we have

un(t) ∈ ∂j(t, xn(t)) a.e on T,

=⇒ χ{yn>0}(t)un(t) ∈ χ{yn>0}(t)∂j(t, xn(t)) a.e on T.

Because x+
n (t) → +∞ uniformly in t ∈ T , by virtue of hypothesis H(j)(iv)(see

also (4.2)), given ε > 0, we can find n0 = n0(ε) ≥ 1 such that for all n ≥ n0 and
almost all t ∈ T , we have

χ{yn>0}(t)
un(t)

‖xn‖p−1
≤ χ{yn>0}(t)(h(t) + ε)|yn(t)|

p−1 = (h(t) + ε)|y+
n (t)|p−1.

Using this in (4.15), we obtain

‖(y+
n )′‖p

p ≤ εn‖y
+
n ‖ +

∫ b

0
(h(t) + ε)|y+

n (t)|p−1dt

+
∫ b

0

g(t)

‖xn‖p−1
y+

n (t)dt for all n ≥ n0. (4.16)
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Note that
∫ b
0

g(t)
‖xn‖p−1 y

+
n (t)dt→ 0 as n→ ∞. So if we pass to the limit as n→ ∞

in (4.16) and eventually let ε ↓ 0, we obtain

‖(y+
n )′‖p

p ≤
∫ b

0
h(t)|y+

n (t)|pdt ≤ γ‖y+(t)‖p
p (see hypothesis H(j)(iv)),

=⇒ ‖(y+)′‖p
p = γ‖y+(t)‖p

p ( since y+ ∈ C \ {0}).

Then from Proposition 3.1 we know that y+(t) > 0 for all t ∈ (0, b). So returning
to (4.17) we have

‖(y+)′‖p
p < γ‖y+(t)‖p

p,

a contradiction to the fact that y+ ∈ C \ {0}.
So the analysis of Cases I and II implies that {xn}n≥1 ⊆ W 1,p(0, b) is bounded.

Hence by passing to a suitable subsequence if necessary, we may assume that

xn
w
→ x in W 1,p(0, b) and xn → x in C(T ).

Recall that
∫ b
0 un(t)(xn − x)(t)dt → 0(see hypothesis H(j)(iii)) and

∫ b
0 g(t)(xn −

x)(t)dt→ 0. So it follows that

lim < A(xn), xn − x >= 0.

Because A is maximal monotone, it is generalized pseudomonotone and so

< A(xn), xn > → < A(x), x >

=⇒ ‖x′n‖p → ‖x′‖p.

As before via the Kadec-Klee property of Lp(T ), we conclude that xn → x in
W 1,p(0, b). �

Next we want to show that ϕ
∣

∣

∣

C
is coercive, thus bounded below. This requires

the following Lemma

Lemma 4.3. There exists β0 > 0 such that ‖x′‖p
p −

∫ b
0 h(t)x(t)

pdt ≥ β0‖x
′‖p

p for all
x ∈ C.

Proof. Let ψ(x) ≡ ‖x′‖p
p −

∫ b
0 h(t)x(t)

pdt, x ∈ C. From hypothesis H(j)(iv) and
Proposition 1, we see that ψ ≥ 0. Suppose that the claim of the Lemma is not
true. Then exploiting the (p-1)-homogeneity of of ψ, we can find {xn}n≥1 ⊆ C with
‖x′n‖p = 1 such that ψ(xn) ↓ 0. From Proposition 1 we know that ‖xn‖p ≤ 1

γ
‖x′n‖p

and so {xn}n≥1 ⊆ W 1,p(0, b) is bounded. Therefore we may assume that xn
w
→ x in

W 1,p(0, b) and xn → x in C(T ), with x ∈ C. We have

limψ(xn) = 0 ≥ ‖x′‖p
p −

∫ b

0
h(t)x(t)pdt,

=⇒ ‖x′‖p
p ≤

∫ b

0
h(t)x(t)pdt ≤ γ‖x‖p

p (see hypothesis H(j)(iv)), (4.17)

=⇒ ‖x′‖p
p = γ‖x‖p

p ( since x ∈ C).

If x ≡ 0, then x′n → 0 in Lp(T ), a contradiction to the fact that ‖x′n‖p = 1. So
x 6= 0 and from Proposition 1 we have that x(t) > 0 for all t ∈ (0, b). Using this
fact in (4.17), we obtain

‖x′‖p
p < γ‖x‖p

p,

a contradiction to the fact that x ∈ C \ {0}. �
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Using this Lemma, we can now prove that ϕ
∣

∣

∣

C
is coercive, thus bounded below.

Proposition 4.4. If hypotheses H(j) hold, then ϕ
∣

∣

∣

C
is coercive, thus bounded below.

Proof. In what follows by | · |1 we denote the Lebesgue measure on R. By hypothesis
H(j)(ii) for all t ∈ T \N , |N |1 = 0, the function x → j(t, x) is locally Lipschitz. So
for all t ∈ T \ N , the function x → j(t, x) is differentiable at every x ∈ R \ D(t),
|D(t)|1 = 0 and for all x ≥ 0, we have

j(t, x) − j(t, 0) =
∫ x

0
j′r(t, r)dr

≤
∫ x

0
(h(t) + ε)rp−1dr + 2|g(t)|x

( recall that j′r(t, r) ∈ ∂j(t, r) and see 4.4)

≤
1

p
(h(t) + ε)xp + aε(t) +

ε

ρ
xp (4.18)

with ε > 0 and aε(t) ∈ L1(T )+ ( by Young’s inequality ).

So if x ∈ C, we have

ϕ(x) =
1

p
‖x′‖p

p −
∫ b

0
j(t, x(t))dt−

∫ b

0
g(t)x(t)dt,

≥
1

p
‖x′‖p

p −
1

p

∫ b

0
h(t)x(t)pdt−

2ε

p
‖x‖p

p − ‖aε‖1 −
∫ b

0
g(t)x(t)dt

(see 4.17),

≥
1

p
‖x′‖p

p −
1

p

∫ b

0
h(t)x(t)pdt−

3ε

p
‖x‖p

p − ξε for some ξε > 0

(by Young’s inequality),

≥
β0

p
‖x′‖p

p −
3ε

p
‖x‖p

p − ξε (see Lemma 4.3),

≥
β0

p
‖x′‖p

p −
3ε

γp
‖x′‖p

p − ξε (recall the definition of γ).

Choose ε < β0γ
3

. Then

ϕ(x) ≥ β1‖x
′‖p

p − ξε for some β1 > 0 and all x ∈ C.

Because ‖x‖p
p ≤

1
γ
‖x′‖p

p, it follows that

ϕ(x) ≥
βγ

1 + γ
‖x‖p − ξε for all x ∈ C,

=⇒ ϕ
∣

∣

∣

C
is coercive, thus bounded below.

�
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Proposition 4.5. If hypotheses H(j) hold, then ϕ
∣

∣

∣

R
is anticoercive, i.e ϕ(ξ) → −∞

as |ξ| → ∞, ξ ∈ R.

Proof. From the mean value theorem for locally Lipschitz functions (see Clarke [2],
p.41 or Denkowski-Migorski-Papageorgiou[4], p.609), we know that for all t ∈ T \N ,
|N |1 = 0 and all x < y < 0, we have

j(t, x) − j(t, y) = u(x− y) with u ∈ ∂j(t, λx+ (1 − λx)), λ ∈ (0, 1)

(u, λ depending on t ∈ T \N).
Also by virtue of hypothesis H(j)(v), we can find δ > 0 and M7 > 0 such that if

y ≤ −M7 < 0, then

u ≤ −g(t) − δ for all t ∈ T \N, |N |1 = 0.

Hence for t ∈ T \N , |N |1 = 0 and x < y ≤ −M7 < 0, we have

j(t, x) − j(t, y) = u(x− y) ≥ δ|x− y| − g(t)x+ g(t)y

=⇒
∫ b

0
j(t, x)dt+

∫ b

0
g(t)xdt ≥ δ|x− y| +

∫ b

0
g(t)ydt,

=⇒ lim
x→−∞

[

∫ b

0
j(t, x)dt+

∫ b

0
g(t)xdt

]

= +∞.

Similarly, we show that

lim
x→+∞

[

∫ b

0
j(t, x)dt+

∫ b

0
g(t)xdt

]

= +∞.

Therefore finally we conclude that

ϕ(ξ) = −
∫ b

0
j(t, ξ)dt−

∫ b

0
g(t)ξdt→ −∞ as |ξ| → ∞, ξ ∈ R.

�

Now we are ready for an existence theorem for problem (1.1).

Theorem 4.6. If hypotheses H(j) hold and g ∈ Lq(T )(1
p

+ 1
q

= 1), then problem

(1.1) has a solution x ∈ C1(T ) with |x′|p−2x′ ∈W 1,q(0, b).

Proof. By virtue of Proposition 4.4 and 4.5, we can find ξ ∈ R+ \ {0}, such that

ϕ(±ξ) < inf
C
ϕ.

Let E1 = {±ξ}, E = {y ∈ W 1,p(0, b) : −ξ ≤ y(t) ≤ ξ for all t ∈ T} and

Γ = {θ ∈ C(E,W 1,p(0, b)) : θ
∣

∣

∣

E1

= idE1
}. For θ ∈ Γ we have θ(−ξ) = −ξ < 0 <

ξ = θ(ξ). Also the function y → minT θ(y) is continuous from E ⊆ W 1,p(0, b) into
W 1,p(0, b). To see this let yn → y in E. Then θ(yn) → θ(y) in W 1,p(0, b) and so
θ(yn) → θ(y) in C(T ). Let tn ∈ T be such that θ(yn)(tn) = minT θ(yn), n ≥ 1. We
may assume that tn → t̂ ∈ T . Then θ(yn)(tn) → θ(y)(t̂). For every n ≥ 1 and every
t ∈ T we have θ(yn)(tn) ≤ θ(yn)(t). So passing to the limit as n → ∞ we obtain
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θ(y)(t̂) ≤ θ(y)(t) for all t ∈ T and so θ(y)(t̂) = minT θ(y). This proves the continuity
of y → minT θ(y) from E into R. Since minT θ(−ξ) = −ξ and minT θ(ξ) = ξ, from
the intermediate value theorem we can find y ∈ E such that minT θ(y) = 0. Hence
θ(E) ∩ C = ∅ while E1 ∩ C = ∅. So the sets E1 and C link in W 1,p(0, b). Because
of Proposition 3.2, we can apply Theorem 2.2 and obtain x ∈ W 1,p(0, b) such that
0 ∈ ∂ϕ(x) and infC ϕ ≤ ϕ(x). From the inclusion 0 ∈ ∂ϕ(x), we obtain

A(x) = u+ g with u ∈ Lq(T ), u(t) ∈ ∂j(t, x(t))a.e on T (4.19)

=⇒ < A(x), η >=
∫ b

0
(u(t) + g(t))η(t)dt for all η ∈ C1

c (0, b). (4.20)

We know that |x′|p−2x′ ∈ W−1,q(0, b) = W
1,p
0 (0, b)∗ (see Denkowski-Migorski-

Papageorgiou[4], p.363). Thus if by < ·, · >0 we denote the duality brackets for the
pair (W−1,q(0, b),W 1,p(0, b)), from (4.20), we have

< −(|x′|p−2x′, η) >0=
∫ b

0
(u(t) + g(t))η(t)dt for all η ∈ C1

c (0, b). (4.21)

But C1
c (0, b) is dense in W 1,p

0 (0, b). So from (4.21) it follows that

−(|x′(t)|p−2x′(t)) = u(t) + g(t) a.e on T. (4.22)

From (4.22) it follows that x ∈ C1(T ). Also from Green’s identity, for every
ζ ∈W 1,p(0, b) we have

−
∫ b

0
(|x′(t)|p−2x′(t))′ζ(t)dt = −|x′(b)|p−2x′(b)ζ(b) + |x′(0)|p−2x′(0)ζ(0)

+
∫ b

0
|x′(t)|p−2x′(t)ζ ′(t)dt,

=⇒
∫ b

0
(u(t) + g(t))ζ(t) = −|x′(b)|p−2x′(b)ζ(b) + |x′(0)|p−2x′(0)ζ(0)

+
∫ b

0
|x′(t)|p−2x′(t)ζ ′(t)dt ( see (4.22)),

=⇒ |x′(0)|p−2x′(0)ζ(0) = |x′(b)|p−2x′(b)ζ(b) ( see (4.19)).

Since ζ ∈W 1,p(0, b) is arbitrary, it follows that

|x′(0)|p−2x′(0) = |x′(b)|p−2x′(b) = 0,

=⇒ x′(0) = x′(b) = 0.

So we conclude that x ∈ C1(T ) with |x′|p−2x′ ∈ W 1,q(0, b), is a solution of (1.1).
�

Following the same reasoning (with the obvious modifications), we can have on
existence result when the growth restriction on j(t, ·) is imposed in the negative
direction. So our hypothesis on j(t, x) are the following:
H(j)′: j : T × R → R is a function such that j(·, 0) ∈ L1(T ), hypothesis H(j)(i),
(ii), (iii) and (v) hold an (iv) lim supx→−∞

u
|x|p−2x

≤ h(t) uniformly for almost all

t ∈ T and all u ∈ ∂j(t, x), with h ∈ L1(T )+ such that h(t) ≤ γ a.e on T and this
inequality is strict on a set of positive Lebesgue measure.

Under these hypotheses we can prove the following existence theorem, which
extends and improves the work of Villegas[17].
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Theorem 4.7. If hypotheses H(j)′ hold and g ∈ Lq(T ) (1
p
+ 1

q
= 1), then the problem

(1.1) has a solution x ∈ C1(T ) with |x′|p−2x′ ∈W 1,q(0, b).

We derive three corollaries which extend and improve the work of de Figueiredo-
Ruf [7].

Corollary 4.8. If hypotheses H(j)(i)→ (iv) or H(j)′(i)→ (iv) hold and

lim
x→−∞

[

max
u∈∂j(t,x)

u

]

= −∞ and lim
x→+∞

[

min
u∈∂j(t,x)

u

]

= +∞ uniformly for a.a t ∈ T,

then problem (1.1) has a solution x ∈ C1(T ) with |x′|p−2x′ ∈ W 1,q(0, b) for every
g ∈ Lq(T ).

Corollary 4.9. If hypotheses H(j)(i),(ii),(iii) hold and

(iv) 0 < lim inf
x→+∞

u

xp−1
≤ lim sup

x→+∞

u

xp−1
≤ h(t) uniformly for almost all t ∈ T and all

u ∈ ∂j(t, x) with h ∈ L1(T )+ such that h(t) ≤ γ a.e on T with strict inequality on a

set of positive Lebesgue measure and lim supx→−∞

[

maxu∈∂j(t,x) u
]

= −∞ uniformly

for a.a t ∈ T ,or (iv)′ 0 < lim inf
x→−∞

u

xp−1
≤ lim sup

x→−∞

u

xp−1
≤ h(t) uniformly for almost all

t ∈ T and all u ∈ ∂j(t, x) with h ∈ L1(T )+ such that h(t) ≤ γ a.e on T with strict

inequality on a set of positive Lebesgue measure and lim infx→+∞

[

minu∈∂j(t,x) u
]

=

+∞ uniformly for a.a t ∈ T ,then problem (1.1) has a solution x ∈ C1(T ) with
|x′|p−2x′ ∈W 1,q(0, b) for every g ∈ Lq(T ).

Corollary 4.10. If hypothesis H(j)(i),(ii),(iii) hold and lim
x→−∞

[

max
u∈∂j(t,x)

u

]

= −∞,

lim
x→+∞

[

min
u∈∂j(t,x)

u

]

= lim
x→+∞

[

max
u∈∂j(t,x)

u

]

= 0 uniformly for a.a t ∈ T , or

lim
x→−∞

[

max
u∈∂j(t,x)

u

]

= 0, lim
x→+∞

[

min
u∈∂j(t,x)

u

]

= +∞ uniformly for a.a t ∈ T , then prob-

lem (1.1) has a solution x ∈ C1(T ) with |x′|p−2x′ ∈ W 1,q(0, b) for every g ∈ Lq(T )
with g(t) < 0 a.e on T or g(t) > 0 a.e on T respectively.
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