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Abstract

We characterize some eigenfunctions of Landau Hamiltonian on the hy-
perbolic disc which are Poisson integrals of square integrable functions at the
disc boundary.

1 Introduction

In this Letter, we will be concerned with the second order differential operator in
the complex unit disc D ={z € C, |z| < 1} :

Ap =4 (1 — !z|2) <(1 - |z!2) E)f;g + Bzaaz - Bz;z + Bz>

acting in the space C* (ID,C) of complex—valued C'*°—functions. This operator is
obtained from the operator

2 2
Hp = y? (a + a) — 22’By2
Yy ox

in the complex upper half plane H?> = {w = z + iy, C,x € R,y > 0} by

Apf(2) =4 (“’"‘)B Hp (“"i)Bﬂc (w)),

w1 w1
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where f € C* (D,C) and z = C (w) € D is the image of w € H? under the Cayley
transform : w — C (w) = (w —14) (w+14)"".

In physics, the operator Hp represents the Hamiltonian of a uniform magnetic
field on H? of magnitude proportional to |B|, B € R. The latter being the Curl
of the vector potential represented by the 1—form : wg = By 'dx in the Landau
gauge (see [1] and references therein). If B = 0, Ay is the Lobachevsky Laplacian on

the unit disc D endowed with the metric ds* = (1 - |z\2)72 (dz? + dy?). For B # 0,
we will call Ap the Landau Hamiltonian on D.

In [4],p.582, H.O. Kim and E.G. Kwon have established a necessary and sufficient
condition for some eigenfunctions of the Bergman Laplacian on the unit ball of C"
to be represented by a Poisson integral of square integrable functions at the ball
boundary.

Here, we deal with an analogous question in the context of the unit disc D and for

the Landau Hamiltonian Apg with the associated Poisson integral transform defined
for a C'*° function ¢ on the boundary T = 9D (see [2],p.308) by

P 1e] () = [ exp(aLogP (2,)) exp (2iBarg (1 - 20)) ¢ (¢) dor (€)

T

where
L— |z
P(‘ZvC) =7 (Zag) € DxT
‘1 —2¢ ’
being the Poisson-Szego kernel of the unit disc D, o € C, LogP (z, () is the principal
branch and do denotes the measure area on T.

We precisely characterize eigenfunctions of Ag in C* (D,C) with eigenvalues
p(a) := 4a(a — 1), which are Poisson integrals of functions of L? (T, do) in the
case when the parameter o € C satisfies Rea # 1 and o # |B| — m, m € Z,.

The organization of this Letter is as follows. In section 2, we establish series
expansion of eigenfunctions of Ag in C*° (ID,C), and we discuss some spectral prop-
erties of this operator. Section 3 deals with some required properties of the Poisson
integral transform Pf as its action on spherical harmonics of T and its injectiveness .
In section 4, we give the precise statement of our announced result and we establish
its proof.

2 Eigenfunctions of Ap

In this section, we shall give the general form of eigenfunctions of Apg. For this we
have to fix some notations. Let a € C be a fixed complex number and let &, g denote
the space of all eigenfunctions f of Ap associated with the eigenvalue 4o (av — 1).
Since the differential operator Ap is elliptic on D, therefore the eigenfunctions f are
in C®(D,C). ie, Ep ={f € C®(D,C),Apf =4a(a—1) f}. In the following,
we give series expansion in C'* (D,C) of any function in &, p.
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Proposition 2.1.For every eigenfunction f € &, p there exists a family of com-
plex numbers (cpak)peqg Such that

£ (pe”) =
a k| + k k| —k ,
(1—p2> ZcB’a,k oF |a+ B+ k] + ,a— B+ 1] 1+ k|, p? plklgik?
keZ 2 2
in C*(D,C), pe? € D,0<p<1,0<60<2r.
Proof. Let f € €, p. Then f satisfies the equation
Apf =4da(a—1)f. (2.1)

Since f is C*° on D, it can be expanded into its Fourier series as

f (peia) => 7 (p) et 0<p<1,0<6<2r (2.2)
keZ

where p — i (p) is C* on [0, 1] for each k € Z. Writing Ap into polar coordinates
(p,0) :

0% 210 21 02 9] )
and inserting the expansion (2.2) of f (pei9> in Eq. (2.1), we obtain that every
Fourier coefficient 7y (p) satisfies the second order differential equation :

(1) 9 (0)+ (1= ) 0k ()

+ [4a (1 — ) p* + 4B%p? (1 — p2) — k? (1 — p2)2 — 4k Bp? (1 — p2)] Y (p) = 0.

(2.3)
Observe that p = 0 is a singular point and that the characteristic polynomial is
X2 — |k|” whose zeros are |k| and -|k|. Then, every solution of this equation is
a linear combination of two functions u (p),us (p) whose behaviour at p = 0 is
respectively like pl®l and p~I¥I. Since 7, (p) is bounded near zero , we shall look for
regular solution of Eq.(2.3 ) in the form v, (p) = pl*lhy (p?) with hy € C= ([0, 1]) .We
reduce Eq.(2.3 ) into a standard hypergeometric equation ([3],p.1045 — 1046.) , by
making the change of function hy (p?) =(1 — p?)” ¥y (p?) . After calculations, we
find that Wy (p?) is given , up to a multiplicative constant, by

1
JF, <a+B+ (k] + k), o= B+ o (1] —k),1+\kl,p2>
Consequently, there exists a family of complex numbers (cp a,k),cy Such that
£ (pe”) =
(1 — p2>a Z CB.a.k 2F1 (O( + B +

keZ

|k + & k] —

k .
B FEE ,p2) il
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Remark 2.1. One can also consider the operator Apg acting in the weighted
-2
Hilbert space H:= L? (]D, (1 — |Z|2) dv (z)), where dv (z) being the Lebesgue mea-

sure on D . Therefore, general spectral properties of the operator A acting in H
are similar to those of the operator Hp acting in L? (H?,y 2dx A dy) . Namely, Ap
is an essentially self-adjoint operator in the Hilbert space H. The spectrum of
Ap in H consists of two parts : (i) an absolutely continuous spectrum |—oo, 0]
which corresponds to scattering states, (i) a point spectrum consisting of a finite
number of infinitely degenerate eigenvalues given by e,, = (|B| —m) (|B| —m — 1),
0 <m < |B|—1/2 when |B| > 1/2, which correspond to bound states.

3 The integral transform P35

Let us write the integral transform Pg associated with Ag as

[0}

Pylel() = [ | 8| e @iBars(1-20) 0@ do () (3

T -2
2 \[1-=C
for every continuous function ¢ on T. At first, one can use direct calculations to
establish the following :

Proposition 3.1. Let B € R and o € C. Then, Pglp] € Eup for every
p € L2 (T, do).

Now, since functions of L? (T, do) can be expanded into series in the basis of
spherical harmonics {Y;} of T : ¢ — Y, (¢) = ¢*, k € Z, we need then to compute
the action of Pg on these functions {Y;}. This is given by the following:

Lemma 3.1. Let Be R, a € C and k € Z. Then we have

Pyl () = NP0y ® (|2l exp (ikarg2), = € D,

where
s 27T (a+ B+ (|k| + k) T (o = B+ § (|k] — k) 52)
B I'(1+|k))T(a+ B)I'(a — B) '

and
o (|2]) = 21" (1= |2)) A <a+B+ |k|2+k,a—B+ ““‘2_ SESLP \z|2>
(3.3)

Proof. By (3.1), the action of Pg on Y} can be written as

P (=) = (1= 1:P)" [ (1 =207 (1= 0)

T

—(a+B

)
¢*do (¢). (3.4)
Making use of the binomial formula

(1—z)"= > [latp) o (3.5)




Poisson Integral Representation 253

then, (3.4) transforms to

I'a—B+j)T(a+ B+1)z2!
[@a—B) TD(a+B) jl

PRl (2) = (1- )" ¥

0<j,k<+00

/ ¢4 do (¢)
(3.6)

But since

/ T do (¢) = 270k
T

we set j =n+1(Jk| — k) and k =n+ 1 (|k| + k), therefore the double sum in (3.6)
reduces to

Py Yi] (2) =

or (1— )" 2 30

0<n<+o0

D(a—B+n+3i(lkl—k)D(a+B+n+3(|k+k)
I'(a— B) ['(a+ B)
1

ik arg z

X
T(n+2(kl—k)+1)0(n+ 3 (k| + k) +1) (| | )
Recalling the series of the hypergeometric function

Fla+n)T(b+n) I(c) a
I'(a) I'b) I'(c+n)n!

2F1 (a,b,c,x): Z

0<n<+oo
(see [3],p.1039), we obtain the result.

Proposition 3.2. The Poisson transform Pg is injective if and only if o #

|B| —m, m e Z+.
Proof. Let ¢ €L? (T,do) be such that P& [¢] = 0. Expanding ¢ into its Fourier

series as : Ylg) = § C k, € T, Cr € C with § Cr. 2 < 400 then, we can write :
keZ keZ

=> AP (|2]) exp (ikarg z) = 0 (3.6)

keZ

where AP" and ®” (|z|) are given in (3.2) and (3.3). Now, since &7 (|2|) is a
nonvanishing term, then equality (3.6) is equivalent to /\g’B =0 if ¢ # 0. Thus, a
necessary and sufficient condition for Pg to be injective is that « + B and o — B
avoid poles of the Gamma function. i.e., « # |B| —m,m € Z,.

Remark 3.1. If a = «,, := |B| — m, m € Z,, the integral transform Py is
noninjective and yet we still have P3™ [¢] € E,,, 5, for all ¢ € L*(T, do). In this
case it would be of interest to characterize all those functions in L?(T,do) which
are mapped via Pg™ into the space &,,, g N 'H of bound states associated with a
hyperbolic Landau level in D when |B| > % . For instance, images of spherical
harmonics (Yj),., under Pg™ belong to &, s NH. This is due to the fact that
the hypergeometric function arising in the expression of Pg™ [Yi]| (2) is always a
polynomial function in the variable |z|*,z € D, therefore one can easily establish

that the norm ||Pg™ [Y;]l],, is finite.
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4 A characterization theorem

In this section, we shall establish the following characterization theorem

Theorem 4.1. Let o € C with Rea # § and o # |B| —m, m € Z,. Then, a
function f: D — C satisfies f = P§|[¢] for a certain ¢ € L* (T, do) if and only if
Apf=p(a)f and

.Muwzsu>Ql—fYQMﬂl/vumeww)<+m

0<p<1

Proof. We deal the case Rea < . Let f : D —C be such that f = Pg [¢] with

¢ € L*(T,do). By proposition 3.1, we have that Agpf = u(a) f. Next, to prove
that the quantity A (f) is finite, we start by the inequality

</(1‘50 e (C)]do (<). (11)

Set z = pw where p € [0,1] and w € T are polar coordinates, then we can write
inequality (4.1) as
[ (o)l < (G0 * [¢]) () (4.2)

where the convolution is taken in T and

1 _102 Rea
= () T

We apply Hausdorff-Young inequality to the convolution in (4.2) :

@0 * [l < Ml bpall i ey 1l 2y - (4.3)

This leads us to compute the L'—norm of ¢, ,. For this, we make use of the binomial
formula in (3.5) and we obtain that

Rea

_ I'(Rea+j) (1-p%) y
(el _o<j,2k<oo (T (Rea))’ T(L+/)T(1+ a4 /C Cdo (¢
=927 (1 — pQ)Rea o F1 (Re a,Rea, 1, p2> : (4.4)

Now, in view of (4.2),(4.3) and (4.4), we get
Rea 2
17 (o)l dor () < (27 (1= 92)™" 2Py (R Rea,1,72) ) gl
T

Making use of the identity ([3],p.1042) :

F'(e)T'(c—a—10)
I'(c—a)T(c—1b)

o F (a,b,c,1) = Rec > Re(a+0b)
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for the increasing function p —, F; (Rea,Rea, 1, p?), we obtain the following in-

equality L1 2Req)
—2Rea

Fy (Rea,Rea,1,p?) < , 0<p<l.
1Fi (Rea, Rea p)_(F(l—Rea))2 =7
Therefore,
—2Rea 27T (1 —2Rea)\”,
1—p? / *d < ) 4.5
(1=7") £ (o) a<w>_((r(1_Rm))Q> Il (45)

T

and the proof of the necessary condition is completed by taking the sup with respect
to p € [0, 1] in left side of inequality (4.5).

Conversely, let f € &, p with N (f) < 4o00. By proposition 2.1 there exists a
family of complex numbers (cp ),z Such that

£ (pe”) =
a k| + k k| — k |
(1=0")" Y cBak 2F1 <a+B+ Mk oy FR || 7p2> pFle™?.
keZ
(4.6)
Setting

GO =Y epan(NF)¢h CeT
keZ
where ()\?B) are the quantities defined in (3.2) , then obviously ¢ satisfies P§ [¢)] =
f. Tt remains to prove that ¢ belongs to L? (T, do) . For this, we apply the Parseval
formula in L? (T, do) to the expansion given in (4.6), and we get for each fixed
p € [0, 1] the estimate :

k| + k 2

2

k]~ k
2

,a— B+

Z ’CB,a,k|2 /02|k| ‘2F1 (a + B+
keZ

,1+|/<?|,p2>

SN (f) < 4oo. (4.7)

From (4.7) we can write for every fixed [ € Z, the following estimate

k| + k
Z ‘CB,a,k’sz‘k‘ ‘2F1 (a + B+ L,a — B+

k<t 2

|k =k

1+ |k, p?
5 ,+H,p>

Using the functional relation ([3],p.1043)

I'(c—a—0b)T(c)

2 (@b, 62) = T T e =)

oF (a,b,a+b—c+1,1—1x)

I'c)I'(a+b—c)
I'(a)T (D)

we establish by computation the limit :

(1—2)""" R (c—ac—bec—a—b+11—z)

2

k| + K
2

k] — K
2

,Oé—B—l- 71+|k|7/02>

p—1

lim p2|k| ’2F1 (Oé + B +
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i IT(1—2a)T (14 k)
T (a+ B+ 52T (0 - B+ Bok)P

Now, letting p goes to 1 in (4.8) ,we get that

2 T (1—2a) T (1 + [k])|*
Z |CB,a,k|

N
|k|<l ‘F(O‘JFB“LWT%)F(Q—BJFWT—’“)‘?_ (f)

. . . B .
and in view of the expression of \;"” | we can also write

2< II'(a«+ B)I' (a« — B)

|2
for all Z
< T(1— 20 N(f), foralll € Z,

>

|k|<

-1
a,B
()\k ) CB,a,k

This proves that ¢ € L? (T,do) .
Making use of the identity ([3],p.1043)

oF (a,b,c,2) = (1—2) " yF (c—a,c—b,c,x),

we treat the case when Rea > % in a similar manner. We get

(1- PQ)_QO_RW)/V(W)P do (w) < <2Wf;?ie;); 1>> el 2

as analog of (4.5). And as analog of (4.6), we write

) =0-5)"

X:CB’Q’]C o <1—Oé—|—B—|—

keZ

|k| + K
2

|k =k
2

,1—a—B+ ,1+\k\,p2>><p|k|eik9.

Remark 4.1. We note that for Rea = % there are difficulties in performing a
natural condition on eigenfunctions of &, g to be in the range of Pg.



Poisson Integral Representation 257

References

[1] Albeverio S A, Exner P and Geyler V' A, Geometric phase related to point-
interaction transport on a magnetic Lobachevsky plane, Letters in Mathematical
physics 55:pp. 9-16 (2001).

[2] Elstrodt J, Die resolvente zum eigenwertproblem der automorphen Formen in
der hyperbolischen Ebene, Math. Ann.203, pp. 295-330 (1973).

[3] Gradshteyn I S and Ryzhik I M, Table of Integrals , Series and Products, Aca-
demic Press, INC (1980).

[4] Kim O H and Kwon E G, M-Subspaces of X, Illinois.J.Math,Vol 37, No 4
(1993) .

Zouhair Mouayn

Department of Mathematics,

Faculty of Sciences and Technics (M’Ghila),
Cadi Ayyad University

BP.523, Béni Mellal, Morocco

E-mail : mouayn@math.net



