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Hans Cuypers

Abstract

Let Π = (P,L) be a partial linear space in which any line contains three
points and let K be a field. Then by LK(Π) we denote the free K-algebra
generated by the elements of P and subject to the relations xy = 0 if x and
y are noncollinear elements from P and xy = z for any triple {x, y, z} ∈ L.

We prove that the algebra LK(Π) is a Lie algebra if and only if K is of
even characteristic and Π is a cotriangular space satisfying Pasch’s axiom.

Moreover, if Π is a cotriangular space satisfying Pasch’s axiom, then a
connection between derivations of the Lie algebra LK(Π) and geometric hy-
perplanes of Π is used to determine the structure of the algebra of derivations
of LK(Π).

1 Introduction

A cotriangular space is a partial linear space Π = (P, L) with point set P and set
of lines L such that each line contains 3 points and, given a point not on a line, the
point is collinear with zero or two points of the line. We say that a cotriangular
space satisfies Pasch’s axiom, if any pair of intersecting lines generates a subspace
isomorphic to the dual affine plane of order 2 (i.e., a Fano plane from which a point
and the three lines through that point are removed).

Examples of cotriangular spaces can be found as follows. Let V be a vector
space over the field F2 equipped with a symplectic form f . Let P be a subset of
V \ {0} with the property that for any two elements v, w ∈ P with f(v, w) = 1, the
element v + w is also in P . If we denote by L the set of triples {u, v, w} from P
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with u + v + w = 0 and f(v, w) = f(v, u) = f(u, w) = 1, then it is easily checked
that (P, L) is a cotriangular space satisfying Pasch’s axiom.

While Shult [8] and Hall [2] have studied abstract cotriangular spaces, Seidel [7]
and Kaplansky [4] considered subsets P of a symplectic space (V, f) as described
above in relation with Lie algebras. (A Lie algebra L is a vector space together with a
product satisfying xy = −yx and the so called Jacobi identity (xy)z+(yz)x+(zx)y =
0 for all x, y, z ∈ L.) Seidel was motivated by a question of Hamelink [3] on Lie
algebras and Kaplansky [4] used these subsets P to construct some classes of Lie
algebras. Given such a set P , Kaplansky constructs a Lie algebra on the vector
space over a field of even characteristic with basis P . The Lie product on the basis
elements v, w ∈ P equals

vw = f(v, w) · (v + w).

More recently Rotman and Weichsel, [5, 6], also considered the connection be-
tween Kaplansky’s Lie algebras, special subsets of vectors of a symplectic space and
cotriangular spaces. Some questions and results arising from their work form the
motivation for the work that led to this paper.

Let Π = (P, L) be an arbitrary partial linear space of order 2 (i.e., each line
consists of three points) and suppose K is a field.

On the vector space KP over the field K with basis P we define the algebra
L = LK(Π) by the linear extension of the following product defined on the basis
elements. If x and y are two collinear points in Π, then the product xy of x and y
equals the third point of the unique line in L through x and y. If x and y are not
collinear or x = y, then xy is defined to be 0 ∈ L.

Our first result describes a connection between cotriangular spaces and Lie alge-
bras.

Theorem 1.1. Let Π = (P, L) be an partial linear space of order 2 and K a field.
The algebra LK(Π) is a Lie algebra if and only if the field K has even characteristic
and Π is a cotriangular space satisfying Pasch’s axiom.

So, if Π is a cotriangular space satisfying Pasch’s axiom, then the product in
LK(Π) has the following properties for x, y and z in P :

(i) x2 = 0;

(ii) xy = 0 or xy ∈ P and (xy)x = y;

(iii) (xy)z + (yz)x + (zx)y = 0, the Jacobi identity.

We will characterize such a Lie algebra L by the existence of a class of generating
elements satisfying the above.

Theorem 1.2. Let L be a Lie algebra over a field K of even characteristic containing
some class X of elements such that:

(i) L is generated by X;

(ii) for all x and y in X we have either xy = 0 or xy ∈ X and (xy)y = x.
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Then there is a cotriangular space Π satisfying Pasch’s axiom such that L is iso-
morphic to a quotient of LK(Π).

Moreover, if L is simple, then it is isomorphic to LK(Π).

A derivation δ of a Lie algebra L is a linear map from L to itself satisfying
δ(xy) = xδ(y) + yδ(x) for all x, y ∈ L. For all derivations δ1 and δ2 of L we define
the product δ1δ2 to be the composition of δ1 with δ2. By [δ1, δ2] we denote δ1δ2+δ2δ1,
which is again a derivation of L. The product [·, ·] defines a Lie algebra structure on
the space space Der(L) of all derivations of L. For each x ∈ L the map ad x : L → L,
defined by ad x(y) = xy is a derivation of L. It is called an inner derivation of L.
The inner derivations form a subalgebra of the Lie algebra L denoted by IDer(L).
Derivations not in IDer(L) are called outer derivations.

In the proof of the above result, we use some properties of special derivations of
the Lie algebra L. In particular, we use that the map (ad x)2, x ∈ X, is an outer
derivation of L, as was already noticed by Rotman and Weichsel, [6]. In [6] Rotman
and Weichsel conjecture that for finite irreducible Π (see Section 2 for notation)
the Lie algebra Der(L) of derivations of L equals the direct sum of IDer(L), the
algebra of inner derivations, and the subalgebra generated by the outer derivations
(ad x)2, with x ∈ X.

This conjecture is not completely correct. In Section 4 of this paper, we show
that each geometric hyperplane H of Π, i.e., a subset H of P meeting every line in
one or all points, gives rise to a derivation δH of L. Here δH(x) = x for all x ∈ X \H
and δ(x) = 0 for x ∈ H . The derivation (ad x)2 is a derivation of the form δH , where
H is the hyperplane x⊥ consisting of x and all points of Π equal to or not collinear
to x.

If H1 and H2 are two hyperplanes of Π, then their symmetric difference H1 +H2

is also a geometric hyperplane. In this way we can put an F2-vector space structure
on the set of all geometric hyperplanes of Π. We denote this F2-vector space of all
geometric hyperplanes of Π by U(Π)∗. As δH1+H2

= δH1
+ δH2

and [δH1
, δH2

] = 0, we
see that Der(LK(Π)) contains a commutative Lie subalgebra isomorphic to K ⊗F2

U(Π)∗. With the notation introduced above, we can give the following description
of the algebra Der(L) of derivations.

Theorem 1.3. Suppose Π is a finite irreducible cotriangular space. Then the algebra
Der(LK(Π)) of derivations of LK(Π) is isomorphic to

(K ⊗F2
U(Π)∗) ⊕ IDer(LK(Π)).

The spaces U(Π)∗ have been determined by Hall [2], see Section 2. As it turns
out, the space U(Π)∗ is not always generated by the set of hyperplanes of the form
x⊥, x ∈ P , which implies that the subalgebra of derivations generated by the outer
derivations (ad x)2, x ∈ P , is not always a complement to IDer(L) in Der(L),
thereby disproving Rotman and Weichsel’s conjecture.

The organization of the remainder of this paper is as follows. In Section 2 we
discuss some results on cotriangular spaces due to Hall [2]. Section 3 is concerned
with the proof of both Theorem 1.1 and Theorem 1.2. Then in the final section we
determine the structure of the algebra of derivations of the Lie algebra LK(Π) where
K is a field of even characteristic and Π a finite irreducible cotriangular space. In
particular, we prove Theorem 1.3.
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2 Cotriangular Spaces

In this section we briefly discuss some results on cotriangular spaces. But first we
give some definitions.

A partial linear space is a pair (P, L) consisting of a set P of points and a set L
of lines, where a line is a subset of P of cardinality at least 2, such that any two
points are contained in at most one line. A subspace of a partial linear space (P, L)
is a subset X of the point set P closed under lines, i.e., if a line meets X in at least
two points, then it is contained in X. A subspace X is often identified with the
partial linear space induced on it by all lines meeting it in at least two points.

As the intersection of a collection of subspaces is again a subspace, we can define
the subspace generated by some subset Y of P to be the smallest subspace containing
Y .

A cotriangular space Π = (P, L) is a partial linear space in which every line
contains exactly 3 points and in which a point not on a line is collinear with zero or
two points of that line. If in a cotriangular space the union of any two intersecting
lines generates a subspace isomorphic the dual of an affine plane of order 2, then we
say that the space satisfies Pasch’s axiom.

If Π is a cotriangular space, then for each point x ∈ P we denote by x⊥ the set
of points y ∈ P that are equal to x or not collinear to x. By x6⊥ we denote the
complement of X⊥ in X. So, x6⊥ denotes the set of points y 6= x that are collinear
to x. The space Π is called connected, if its collinearity graph is connected and it is
called reduced, if x⊥ = y⊥ implies x = y for all points x, y ∈ P . We call Π irreducible
if it is connected and reduced.

We describe some examples of cotriangular spaces.

Suppose Ω is a set and P the set of subsets of Ω of size 2. By L we denote the set
of all triples {p1, p2, p3} of P with p1 ∪ p2 ∪ p3 of size three. The space TΩ = (P, L)
is a cotriangular space. For |Ω| > 4, this cotriangular space is irreducible.

If (V, f) is a symplectic space over F2, then Sp(V, f) denotes the partial linear
space (P, L) where P consists of all the vectors of V not in the radical of the form
f . A line in L is the set of three nonzero vectors in a 2-dimensional subspace W
of V on which f does not vanish. The space Sp(V, f) is an irreducible cotriangular
space if and only if the form f is nondegenerate.

Finally we consider the spaces N (V, Q), where (V, Q) is an orthogonal F2-space.
Let f denote the symplectic form associated to Q with radical Rad(f). Here the
points are the vectors v ∈ V \ Rad(f) with Q(v) = 1. A typical line is the set of
three nonzero vectors in an elliptic 2-space, i.e., a 2-space in which Q(v) = 1 for any
nonzero vector v contained in it. Clearly, N (V, Q) is contained in Sp(V, f). The
space N (V, Q) is irreducible if it contains lines and the form f is nondegenerate.

Now we have the following theorem.

Theorem 2.1. (J.I. Hall [2]) Let Π be an irreducible cotriangular space. Then Π
satisfies Pasch’s axiom and is isomorphic to one of the following spaces:

1. the space TΩ for some set Ω of size at least 5;

2. the space Sp(V, f) for some nondegenerate symplectic geometry (V, f) over F2;
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3. the space N (V, Q) for some nondegenerate orthogonal geometry (V, Q) over
F2.

A (geometric) hyperplane H of a partial linear space Π = (P, L) is a subset H
of the point set P with the property that each line of L meets H in one point or is
contained in H .

A proper embedding of a partial linear space Π = (P, L) is a faithful map φ from
P into the point set of a projective space P, such that lines of Π are mapped onto
lines of P, and the image φ(P ) of P generates P.

If Π is embedded into a projective space via φ, then the pre-image of the inter-
section of φ(P ) with a hyperplane of P yields a hyperplane of Π. Below we describe
embeddings of the various irreducible cotriangular spaces and recall a result of Hall
stating that all hyperplanes can be obtained as hyperplane sections from that em-
bedding.

If Π = TΩ, where |Ω| ≥ 5, then let U(Π) be the subspace EF2Ω of the F2 vector
space F2Ω with basis Ω generated by the vectors ω1 + ω2, where ω1, ω2 ∈ Ω. The
map φΠ : P → P(EF2Ω) given by φΠ({ω1, ω2}) = 〈ω1 + ω2〉, where {ω1, ω2} is a
point of Π, is a proper embedding of Π. (Notice that the standard dot product on
F2Ω induces a symplectic form on EF2Ω.)

If Π = (P, L) equals Sp(V, f) for some nondegenerate symplectic space (V, f),
then denote by U(Π) the space V̂ = V ⊕ 〈v∞〉, where v∞ is a vector not in V . Let
Q : V → F2 be a quadratic form on V with associated bilinear form equal to f .
Then we can extend Q to a quadratic form Q̂ on V̂ by

Q̂(v + λv∞) = Q(v) + λ,

where v ∈ V and λ ∈ F2.
The map φΠ : P → P(U(Π)) defined by

φΠ(v) = 〈v + (1 − q(v))v∞〉,

where v ∈ V \ {0}, yields an embedding of Π into P(U(Π)).
For the space N (V, Q), where (V, Q) is a nondegenerate orthogonal F2-space with

dim(V ) ≥ 6, we define φΠ to be the natural embedding into U(Π) = V , except when
(V, Q) is 6-dimensional of hyperbolic type. In that case N (V, Q) is isomorphic to
T{1,...,8} and U(Π) is 7-dimensional, as defined above.

With this notation, the following result of Hall classifies all geometric hyperplanes
of reduced cotriangular space.

Theorem 2.2. (J.I. Hall, [2]) Let Π = (P, L) be an irreducible cotriangular space.
Then every geometric hyperplane of Π can be obtained as the pre-image of the in-
tersection of φΠ(P ) with a hyperplane of P(U(Π)).

Since in a cotriangular space lines contain three points, the symmetric difference
of any two hyperplanes is again a geometric hyperplane. So, the operation ‘taking the
symmetric difference’ defines an F2-vector space structure on the set of all geometric
hyperplanes of (P, L). If Π is an irreducible cotriangular space, then this space is
isomorphic to the dual U(Π)∗ of U(Π).

Let Π = (P, L) be a finite irreducible cotriangular space. If a subset Y of P
generates Π, its image φΠ(Y ) generates P(U(Π)). So Y contains at least as many
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points as the (vector space) dimension of U(Π). The following result is also due to
Hall.

Proposition 2.3. (J.I. Hall, [1]) Let Π = (P, L) be a finite irreducible cotriangular
space. Then Π can be generated by dim(U(Π)) points.

3 Lie Algebras

The purpose of this section is to prove the Theorems 1.1 and 1.2.
Suppose K is a field. Let L be a commutative K-algebra generated by a set X

of elements such that for all x, y ∈ X

(i) x2 = 0;

(ii) xy = 0 or xy ∈ X and (xy)x = y.

Let L(X) be the set of triples {x, y, xy} from X inside the subalgebras generated
by elements x and y, where x and y are elements from X with xy 6= 0. The elements
in X will be called points, those in L(X) lines. As the product of any two of the
three elements of a line is the third point of the line, Π = (X, L(X)) is a partial
linear space with 3 points per line. Thus L is a quotient of the free commutative
K-algebra LK(Π) generated by the elements in X subject to the relations x2 = 0 for
all x ∈ X, xy = 0 for noncollinear x, y ∈ X, and xy = z for all triples {x, y, z} ∈ L.

Now Theorem 1.1 follows from the following proposition when taking L to be
equal to LK(Π).

Proposition 3.1. L is a Lie algebra if and only if Π is a cotriangular space satisfying
Pasch’s axiom and the characteristic of K is even.

Proof. Suppose K has even characteristic. Let Π be a cotriangular space satisfying
Pasch’s axiom. We show that L is a Lie algebra. Let us check the Jacobi identity
(xy)z + (yz)x + (zx)y = 0 for x, y and z in X.

Since we are working in characteristic 2, the identity is trivial if x, y and z are
not all distinct. Thus assume that x, y and z are three distinct points in X. If
there is a point, without loss of generality we can assume it to be z, not collinear
to the other two, then xz = yz = 0, and either xy = 0 or z is not collinear to
xy and (xy)z = 0. Hence (xy)z + (yz)x + (zx)y = 0 + 0 + 0 = 0. Thus we can
assume that there is a point, again we may assume it to be z, collinear with the
other two, x and y. If x, y and z are collinear, then xy = z, yz = x and zx = y,
so that (xy)z + (yz)x + (zx)y = zz + xx + yy = 0. Finally assume that x, y and
z are not collinear. So they generate a dual affine plane π. If xy = 0, we find
that y is collinear to xz and (xz)y = (yz)x is the unique point of π not collinear to
z. Hence (xy)z + (yz)x + (zx)y = 0. If xy 6= 0, then xz and yz are not collinear
to y, respectively, x, and xy is the unique point of π not collinear to z. Hence
(xy)z = (xz)y = (yz)x = 0, and (xy)z + (yz)x + (zx)y = 0.

Now suppose L is a Lie algebra. Then, as the product on L is assumed to be
commutative, K has even characteristic. Let x, y and z be three noncollinear points
in X. Suppose that xy 6= 0. If both xz and yz are 0, then also (xy)z = 0, as follows
from the Jacobi identity.
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Thus, assume that z is collinear with two points of the line through x and y, say
the points x and y.

Then we have the identity:

0 = ((xy)z + (yz)x + (zx)y)z
= ((xy)z)z + ((yz)x)z + ((zx)y)z
= ((xy)z)z + (xz)(yz) + (z(yz))x + (yz)(zx) + (z(zx))y
= ((xy)z)z.

Hence, as xy 6= 0, we have (xy)z = 0. Similarly, (yz)x and (zx)y = 0. By the
Jacobi identity this implies that (xy)(xz) = yz, and the 6 points x, y, xy, z, xz,
yz and (yz)x are the 6 points of a subspace isomorphic to a dual affine plane in Π.
Hence Π is a cotriangular space satisfying Pasch’s axiom. �

The remainder of this section is devoted to the proof of Theorem 1.2. Let L be
a Lie algebra over K, a field of characteristic 2, not necessarily simple, generated by
a set of elements X satisfying the hypothesis of Theorem 1.2.

By Proposition 3.1, Π = (X, L(X)) is a cotriangular space satisfying Pasch’s
axiom.

As the identity map on X induces a morphism from LK(Π) onto L, we have
proved the first part of Theorem 1.2.

Proposition 3.2. The Lie algebra L is isomorphic to a quotient of LK(Π).

If x ∈ X, then by x⊥ we denote the set of elements y ∈ X with xy = 0. By x6⊥

we denote the set of all y ∈ X with x(xy) = y.

Lemma 3.3. If Π is irreducible, then X is a basis for L and L is simple.

Proof. Assume that Π is irreducible. Suppose λ1x1 + · · · + λkxk = 0 for xi ∈ X,
λi ∈ K∗ and k > 1 minimal.

Since Π is irreducible, we can assume that there is an element x in x⊥
1 but not

in x⊥
2 . Then

0 = x0 = x(λ1x1 + · · ·+ λkxk) = 0 + λ2xx2 + · · ·+ λkxxk.

Since λ2xx2 6= 0, this contradicts the minimality of k. Hence X is an independent
set of vectors. As the vector space L is spanned by X, we have shown that X is a
basis for L.

It remains to prove simplicity of L. The arguments are similar to the above.

Suppose I is a proper ideal of L. Choose an element y = λ1x1 + · · · + λkxk in
the ideal with xi ∈ X, λi ∈ K∗ and k minimal. As I is a proper ideal, k > 1. Now
suppose x ∈ x⊥

1 but not in x⊥
2 . Then

xy = x(λ1x1 + · · ·+ λkxk) = 0 + λ2xx2 + · · ·+ λkxxk ∈ I.

Minimality of k implies that xy = 0. But, as xx2 6= 0, that contradicts X being a
basis. �
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Notice, that the above lemma also applies to LK(Π). So, if Π is irreducible, then
LK(Π) is simple. To prove Theorem 1.2, it remains to check that Π is irreducible
provided L is simple. But first we consider some derivations of L.

Let Der(L) be the algebra of derivations of L and IDer(L) its subalgebra of
inner derivations.

For all x ∈ L we have δx = (ad x)2 is a derivation. Indeed,

δx(yz) = x(x(yz))
= x(y(zx) + z(xy))
= y((zx)x) + (zx)(xy) + z((xy)x) + (xy)(xz)
= y(x(xz)) + z(x(xy))
= yδx(z) + zδx(y).

Then for x, y, z ∈ L we find

δx+y(z) = (x + y)((x + y)z)
= x(xz) + x(yz) + y(xz) + y(yz)
= δx(z) + (xy)z + δy(z)
= [δx + δy + (ad xy)](z).

Hence
δx+y = δx + δy + ad xy.

By ∆ : L → Der(L)/IDer(L) we denote the map x ∈ L 7→ δx + IDer(L). The
above implies that ∆ is a semi-linear map.

For a subset Y of X we denote by 〈Y 〉 the linear span of Y in the vector space
L.

Lemma 3.4. If x ∈ X, then ad x : L → L has kernel 〈x⊥〉 and image 〈x6⊥〉 and
L = 〈x⊥〉 ⊕ 〈x6⊥〉 .

Proof. Clearly, 〈x⊥〉 is contained in the kernel of ad x and 〈x6⊥〉 in its image. As
(ad x)2 is the identity on 〈x6⊥〉, the vector space L equals 〈x⊥〉 ⊕ 〈x6⊥〉. We have
proved the lemma. �

Lemma 3.5. Suppose l ∈ L. Then for any element x ∈ X we find ad l(x) 6= x.

Proof. Let l ∈ L. As X is closed under multiplication, it generates L as a vector
space. So we can write l as Σy∈Xλyy with λy ∈ K. Now suppose x ∈ X with
ad l(x) = x. Then x = ad l(x) = Σy∈Xλyyx ∈ 〈x6⊥〉, by Lemma 3.4. However, the
same lemma implies that x 6∈ 〈x6⊥〉 and we have reached a contradiction. �

Corollary 3.6. If x ∈ X, then δx is not an inner derivation.

Proof. Any element y ∈ x6⊥ is fixed by δx, so, by the above lemma, δx is not inner.
�
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Lemma 3.7. If L is simple, then Π is irreducible.

Proof. Suppose L is simple. As L is generated by X, we find Π to be connected.
Let I be the subspace of L generated by the elements x + y, where x, y ∈ X with
x⊥ = y⊥. For each element x + y, where x, y ∈ X with x⊥ = y⊥ we find δx+y to be
0. Indeed, for all z in X we have (zx)x = (zy)y. Hence ∆ maps the whole space I
to 0.

On the other hand, ∆(x) 6= 0 for all x ∈ X. Thus I is a proper subspace of L.
Suppose x, y ∈ X with x⊥ = y⊥ and z ∈ x6⊥ = y 6⊥. If u ∈ (xz)⊥, then the dual
affine plane spanned by x, y and z is either contained in u⊥ or meets u⊥ in xz, yz.
So (xz)⊥ is contained in (yz)⊥ and by symmetry of the argument we have hence
(xz)⊥ = (yz)⊥. So if x, y ∈ X with x⊥ = y⊥, then (x + y)z ∈ I for all z ∈ X. In
particular, as X generates L, we have proved that I is an ideal of L. By simplicity
of L the ideal I is equal to 0. Hence, for any two elements x and y with x⊥ = y⊥

we have x + y = 0, so that x = y. Thus Π is irreducible. �

Now suppose L is a simple Lie algebra as in the hypothesis of Theorem 1.2. Then
Lemma 3.7 implies that Π is irreducible. So, also LK(Π) is a simple Lie algebra by
Lemma 3.3. But then Proposition 3.2 finishes the proof of Theorem 1.2.

We notice that for each x ∈ X the map τx : L → L defined by

τx = Id + ad x + (ad x)2,

where Id is the identity map on L, is an automorphism of L. Indeed, τx maps
X to X, fixing x and all elements of X not collinear to x and permuting the two
points distinct from x on any line through x. So, as is shown in [2], τx induces an
automorphism on Π(X), which clearly extends to an automorphism of L.

The elements τx, with x ∈ X, form a set of 3-transpositions in Aut(L), see also
[2].

4 Derivations

Let Π = (X, L) be a cotriangular space, K a field of even characteristic and L =
LK(Π) the corresponding Lie algebra over the field K. In this section we study the
algebra Der(L). In particular, we prove:

Theorem 4.1. If Π is finite and irreducible, then Der(L) is isomorphic to (K ⊗F2

U(Π)∗) ⊕ IDer(L).

As corollaries we obtain:

Corollary 4.2. If Π is finite and irreducible, then H1(L,L) is isomorphic to K ⊗F2

U(Π)∗.

Proof. This is immediate as H1(L,L) ≃ Der(L)/IDer(L). �

Corollary 4.3. If Π1 and Π2 are two finite irreducible cotriangular spaces, then
LK(Π1) ≃ LK(Π2) if and only if Π1 ≃ Π2.
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Proof. Suppose LK(Π1) ≃ LK(Π2). Then Π1 and Π2 have the same number of
points, and by Theorem 4.1 the same number of hyperplanes. Going over the list
of finite irreducible cotriangular spaces as given in Section 2, one easily finds that
Π1 ≃ Π2. �

In the previous section we already encountered the derivations ad x and δx where
x ∈ X. It follows from Lemma 3.4 that the kernel of both ad x and δx restricted to
X is the geometric hyperplane x⊥ of Π.

The linear subspace of Der(L) generated by the elements δx with x ∈ X is
isomorphic to the subspace of the vector space K ⊗F2

U∗ of geometric hyperplanes
of Π generated by the elements of the form x⊥, where x is a point in Π.

The remaining hyperplanes of Π, however, do also give rise to derivations of the
corresponding Lie algebra L in the following way. If H is a geometric hyperplane,
then define δH : L → L by δH(x) = 0 for x ∈ H and δH(x) = x for all other other
points of Π, and extend it linearly to L. For H = x⊥ it is just δx.

Lemma 4.4. For each hyperplane H of Π, the map δH is an outer derivation of L.

Proof. Let x, y ∈ X. If xy = 0, then xδH(y) equals x0 = 0 or xy = 0, and similarly
yδH(x) = 0. So δH(xy) = 0 = xδH(y) + yδH(x).

If xy = z ∈ X, then either H contains {x, y, z} and δH(x) = δH(y) = δH(z) = 0
from which we easily deduce that 0 = δH(xy) = xδH(y) + yδH(x), or H meets
{x, y, z} in a unique element. If H ∩ {x, y, z} = {z}, then δH(z) = 0 = xy + yx =
xδH(y)+yδH(x). If H ∩{x, y, z} = {x} or {y}, then we have z = δH(z) = xy +y0 =
xδH(y)+yδH(x) or z = δH(z) = x0+yx = xδH(y)+yδH(x), respectively. In any case
we find δH(xy) = xδH(y) + yδH(x). So, δH is a derivation. Moreover, as δH(z) = z
for all z ∈ X \ H , Lemma 3.5 implies that δH is not inner. �

Lemma 4.5. Let δ be a derivation. Then the kernel of δ meets X in a subspace of
Π.

Proof. Suppose x, y ∈ X are collinear points with δ(x) = δ(y) = 0. Then δ(xy) =
xδ(y) + yδ(x) = 0 + 0 = 0. �

Lemma 4.6. Suppose Π is irreducible. Let δ ∈ Der(L). If x ∈ X, then δ(x) ∈
〈x6⊥〉 ⊕ 〈x〉.

Proof. Let x be a point of Π. Suppose δ(x) = a + b with a ∈ 〈x⊥ \ {x}〉 and
b ∈ 〈x6⊥, x〉. If a 6= 0, we can find a point y ∈ x⊥, with ay 6= 0. Notice that the
element ay is in 〈x⊥ \ {x}〉, whereas the element by is in 〈x6⊥〉. But we also have
0 = δ(xy) = δ(x)y + δ(y)x. Hence δ(x)y = ay + by = δ(y)x ∈ 〈x6⊥〉, see Lemma 3.4.
But this contradicts that L = 〈x6⊥〉 ⊕ 〈x⊥〉, again see Lemma 3.4. Hence a = 0. �

Now let V be the subspace of Der(L) generated by all inner derivations and
derivations δH , where H runs through the set of geometric hyperplanes of Π. As the
derivations δH , with H a hyperplane of Π, generate a commutative Lie subalgebra of
Der(L) isomorphic to (K ⊗F2

U∗), we find V to be isomorphic to IDer(L)⊕ (K ⊗F2

U∗). We prove the following:
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Proposition 4.7. Der(L) = V .

Proof. Suppose δ ∈ Der(L). Let Y be a generating set for Π of size dim(U(Π)), see
Proposition 2.3. With induction on the number of elements in Y but not in Ker(δ)
we will show that δ ∈ V .

If all elements from Y are in the kernel of δ, then δ = 0 and hence in V .
Now suppose Y meets the kernel of δ in a proper subset Y0 of Y . Let H be a

hyperplane of Π containing Y0. Such a hyperplane exists. Indeed, since Y0 contains
less than dim(U(Π)) elements, we can take for H the pre-image of the intersection
of φΠ(X) with a hyperplane of P(U(Π)) containing φΠ(Y0).

Now suppose x ∈ Y \Y0. Write δ(x) = λ0x+λ1x1+· · ·+λnxn, where xi ∈ X\{x},
λ0 ∈ K and λi ∈ K∗. By Lemma 4.6 we find xi ∈ x6⊥.

If y ∈ Y0 ∩ x⊥, then 0 = δ(xy) = xδ(y) + yδ(x) = yδ(x). Hence yxi = 0, for
1 ≤ i ≤ n. In particular, xi and hence also xxi is contained in y⊥ for all 1 ≤ i ≤ n.

If y ∈ Y0 ∩ x6⊥, then x = y(yx). Hence δ(x) = δ(y(yx)) = yδ(yx) + (yx)δ(y) =
yδ(yx). In particular, for i ∈ {1, . . . , n} we find xi ∈ 〈y 6⊥〉 and again xxi ∈ y⊥. So,
the derivation

δ′ = δ + λ0δH + λ1ad(xx1) + · · ·+ λnad(xxn)

is zero on x and Y0. By induction we have δ′ ∈ V . But then also δ ∈ V . �

The above proposition finishes the proof of Theorem 4.1.

If Π is infinite, then the subalgebra of Der(L) generated by the inner derivations
and the derivations δH , where H runs through the set of hyperplanes of Π, only
contains derivations whose kernel intersects X in a subspace X0 with 〈φΠ(X0)〉
having finite codimension in U(Π).

We notice that the above proof actually shows, that each derivation δ of L with
X0 with 〈φΠ(X0)〉 having finite codimension in U(Π) is in this subalgebra. However,
this is not true for all derivations of L as follows from the next example.

Let Π be TΩ, where Ω is an infinite set. For K take a field of even characteristic
and of cardinality at least |Ω|. Inside K we take a set of distinct elements αi, where
i ∈ Ω. Let L = LK(Π) and define δ : L → L to be the linear map defined by

δ({i, j}) = (αi + αj){i, j}

where i, j ∈ Ω, i 6= j. (Notice that here {i, j} is considered as an element from the
Lie algebra L.) Then δ is indeed a derivation. For, let i, j, k ∈ Ω be distinct, then

δ({i, j}{j, k}) = δ({i, k})
= (αi + αk){i, k}
= (αi + αj){i, k} + (αj + αk){i, k}
= δ({i, j}){j, k} + {i, j}δ({j, k}).

However, as αi + αj 6= 0 for i 6= j, the kernel of δ meets X trivially.

We end this paper with some examples of not necessarily commutative Lie al-
gebras closely related to the partial linear spaces and Lie algebras studied in this
paper. They are all algebras containing a generating set X satisfying
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(i) x2 = 0 and

(ii) xy = 0 or xy ∈ X and (xy)x = y for all x, y ∈ X.

These examples are due to Jonathan Hall.
Suppose K is a field. Let Ω be a set and denote by Ω2 the set of ordered 2-tuples

(ω1, ω2) of Ω, with ω1 6= ω2. By LK(Ω2) we denote the K-vector space generated by
the elements in Ω2 subject to the relations (ω1, ω2) = −(ω2, ω1) for all ω1 6= ω2 ∈ Ω.
On LK(Ω2) we define a product · by linear extension of the following.

(ω1, ω2) · (ω3, ω4) = (ω1, ω4) if ω1 6= ω4 and ω2 = ω3,
= −(ω1, ω3) if ω2 = ω4 and ω1 6= ω3,
= 0 else.

One easily checks that the product · imposes a Lie algebra structure on LK(Ω2).
If the field K is of even characteristic, we find LK(Ω2) to be equal to LK(TΩ). For
all fields K, the set Ω2 satisfies the conditions (i) and (ii) described above.

A second class of examples can obtained as follows. Let P be the Fano plane
with point set {e0, . . . , e6} and with as lines the seven triples {ei, ei+1, ei+3}, where
indices are taken modulo 7. For any field K consider the vector space LK(P) over
K with as basis {e0, . . . , e6}. The linear extension to LK(P) of the product · defined
by

ei · ei = 0,

(ei · ej) · ei = 0 or ei,

ei · ei+1 = −ei+1 · ei = ei+3,

with i, j ∈ {0, . . . , 7} and indices modulo 7, turns LK(P) into an algebra. This
algebra is a Lie algebra if and only if the field K is of characteristic 3. The set
X = {±ei | 1 ≤ i ≤ 7} is a generating set for LK(P) satisfying the conditions (i)
and (ii) described above.
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