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Abstract

An elementary combinatorial method is presented which can be used for
proving the closeness of the range of a probability on specific systems, like the
set of all linear or affine subsets of a Euclidean space.

The motivation for this note came from the second author’s research in statistics:
high breakdown point estimation in linear regression. By a probability distribution
P , defined on the Borel σ-field of Rp, a collection of regression design points is
represented; then, a system V of Borel subsets of Rp is considered. Typical examples
of V are, for instance, the system V1 of all linear, or V2 of all affine proper subspaces
of Rp. The question (of some interest in statistical theory) is:

Is there an E0 ∈ V such that P (E0) = sup{P (E) : E ∈ V}? (1)

For some of V , the existence of a desired E0 can be established using that (a) V
is compact in an appropriate topology; (b) P is lower semicontinuous with respect
to the same topology. The construction of the topology may be sometimes tedious;
moreover the method does not work if, possibly, certain parts of V are omitted,
making V noncompact. Also, a more general problem can be considered:

Is the range {P (E) : E ∈ V} closed? (2)

The positive answer to (2) implies the positive one to (1). The method outlined
by (a) and (b) cannot answer (2) — we have only lower semicontinuity, not full
continuity.
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Nevertheless, an elementary method provides the desired answer, for general P
and V . The method does not require a topologization of V , and it works also for
various, possibly noncompact, subsets of V . The main idea can be regarded as an
extension of a simple fact that the probabilities of pairwise disjoint events cannot
form a strictly increasing sequence. Linear subspaces are not disjoint; however, the
intersection of two distinct ones with the same dimension is a subspace with a lower
dimension. Iterating this process further, we arrive to the unique null-dimensional
subspace. If, say, instead of linear subspaces the affine ones are considered, the
method works in a similar way — only the terminal level is slightly different.

A well-known related property — to be found, for instance, in [1], Ch. II, Ex.
48–50 — says that the range {P (E) : E ∈ S} is closed for every probability space
(Ω,S, P ). However, here the background is different: probabilities of general events
can form an increasing sequence — this is not true in our setting.

Theorem. Let (Ω,S, P ) be a probability space. If A0 ⊆ A1 ⊆ · · · ⊆ An are sets of
events such that cardA0 = 1 and for every k = 1, 2, . . . , n, the intersection of two
distinct events from Ak belongs to Ak−1, then the set {P (E) : E ∈ An} is closed.

Corollary. Under the assumptions of Theorem, (1) is true with V = An.

Applying Theorem for V = V1, we set n = p − 1; Ak consists of all proper
subspaces of dimension less or equal to k. Note that An = V1 and A0 = {0};
the other assumptions hold as well. According to Theorem, the range of P on An
is closed and the supremum is attained. The cases of other V are treated in an
analogous way.

We shall call a system A0,A1, . . . ,An satisfying the assumptions of Theorem
an intersection system. Suppose that B is a set of events such that B ⊆ An. If
A′0,A′1, . . . ,A′ν is another intersection system such that B ⊆ A′ν, we can form an
intersection system A′′0,A′′1, . . . ,A′′m by taking consecutivelyA′′m = An∩A′ν , A′′m−1 =
An−1 ∩ A′ν−1, . . . , identifying A′′0 with the first set with cardinality 1 obtained in
this process. As a result, we have m ≤ min(n, ν) and B ⊆ A′′m. The similar
construction can be carried out with more than two intersection systems; if there
is any intersection system A0,A1, . . . ,An such that B ⊆ An, then the intersection
of all intersection systems with this property will be called the intersection system
generated by B. Note that for all k, the set Ak−1 contains exactly all pairwise
intersections of events from Ak. Hence if Ak is finite, so is Ak−1. If Ak is (at most)
countable, so is Ak−1.

Let 1 ≤ k ≤ n. An intersection system is said to satisfy a finiteness condition at
level k, if any event from Ak−1 is a subset of at most a finite number of events from
Ak. Note that if the finiteness condition is satisfied at level k and Ak is infinite, so
is Ak−1. As a consequence, an intersection system with infinite An cannot satisfy
the finiteness condition at all levels k = 1, 2, . . . , n.

Lemma. Suppose that the intersection system A0, A1, . . . , An generated by
{E1, E2, . . .} satisfies the finiteness condition at levels k = 2, . . . , n and A0 = {∅}.
Then limi→∞ P (Ei) = 0.

Proof. By assumptions, A1,A2, . . . ,An are countably infinite. For any F ∈ Ak,
k = 1, 2, . . . , n, let F̃ = F r

⋃Ak−1. Note that F̃ = F for F ∈ A1, since A0 = {∅}.
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For all k, the elements of {F̃ : F ∈ Ak} are pairwise disjoint. Fix ε > 0. Pick
B1 ⊆ A1 such that A1 r B1 is finite and

P
( ⋃
F∈B1

F
)

= P
( ⋃
F∈B1

F̃
)

=
∑
F∈B1

P (F̃ ) ≤ ε. (3)

Given Bk−1, and assuming that Ak−1rBk−1 is finite, we construct inductively a set
Ck to be the set of all F ∈ Ak such that there is no G ∈ Ak−1 r Bk−1 which is a
subset of F ; then Bk ⊆ Ck is picked in a way that Ck r Bk is finite and

P
( ⋃
F∈Bk

F̃
)

=
∑
F∈Bk

P (F̃ ) ≤ ε. (4)

Since Ak−1 rBk−1 is finite, by the finiteness condition (at level k) also Ak r Ck and
hence Ak r Bk are finite. Starting from (3), we proceed inductively, using (4):

P
( ⋃
F∈Bk

F
)
≤ P

( ⋃
F∈Bk

(
F r

⋃
G∈Bk−1

G
)
∪

⋃
G∈Bk−1

G

)

= P

( ⋃
F∈Bk

(
F r

⋃
G∈Ak−1

G
))

+ P
( ⋃
G∈Bk−1

G
)

= P
( ⋃
F∈Bk

F̃
)

+ P
( ⋃
G∈Bk−1

G
)
≤ ε+ (k − 1)ε = kε,

(5)

the first equality due to the fact that Bk ⊆ Ck. Since (5) holds also for k = n and
ε was arbitrary, the statement follows: given δ > 0, there is only a finite number of
Ei for which

P (Ei) ≤ P
( ⋃
Ei∈Bn

Ei

)
≤ δ

does not hold. �

Proof of Theorem. The statement holds if An is finite. Suppose that An is infi-
nite. Fix a sequence E1, E2, . . . of events from An such that P (Ei) is convergent.
Proving that there is an E0 ∈ B such that limi→∞ P (Ei) = P (E0) is a trivial
task if {E1, E2, . . .} is finite; suppose that the events Ei are pairwise distinct. Let
B0,B1, . . . ,Bν be the intersection system generated by {E1, E2, . . . }. There is an
m ≥ 1, m ≤ ν, such that the finiteness condition holds for k = ν, ν − 1, . . . , m+ 1
and fails for k = m. Consequently, an infinite number of pairwise intersections
of elements of Bm coincide — let the corresponding element of Bm−1 be denoted
by E0. Let C0, C1, . . . , Cν−m+1 be the intersection system generated by the set
{F1, F2, . . . } ⊆ {E1, E2, . . . } consisting of those events from Bn which contain E0 as
a subset. Note that C0 = {E0} and Ck for k ≥ 1 is the set of all events from Bm+k−1

which contain E0 as a subset. By the choice of E0, C1 is countably infinite; hence so
are C2, . . . , Cν−m+1. Let Dk = {F r E0 : F ∈ Ck}. The system D0,D1, . . . ,Dν−m+1

satisfies all assumptions of Lemma. Hence,

lim
i→∞

P (Ei) = lim
i→∞

P (Fi) = P (E0) + lim
i→∞

P (Fi r E0) = P (E0).

The statement follows, since E0 ∈ Bm−1 ⊆ An. �



624 V. Balek – I. Mizera

Reference
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