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Abstract

An elementary combinatorial method is presented which can be used for
proving the closeness of the range of a probability on specific systems, like the
set of all linear or affine subsets of a Euclidean space.

The motivation for this note came from the second author’s research in statistics:
high breakdown point estimation in linear regression. By a probability distribution
P, defined on the Borel o-field of R?, a collection of regression design points is
represented; then, a system ) of Borel subsets of R? is considered. Typical examples
of V are, for instance, the system V; of all linear, or V, of all affine proper subspaces
of RP. The question (of some interest in statistical theory) is:

Is there an Fy € V such that P(FEy) = sup{P(E): E € V}? (1)

For some of V, the existence of a desired FEy can be established using that (a) V
is compact in an appropriate topology; (b) P is lower semicontinuous with respect
to the same topology. The construction of the topology may be sometimes tedious;
moreover the method does not work if, possibly, certain parts of V are omitted,
making ) noncompact. Also, a more general problem can be considered:

Is the range {P(F): E € V} closed? (2)
The positive answer to (2) implies the positive one to (1). The method outlined
by (a) and (b) cannot answer (2) — we have only lower semicontinuity, not full
continuity.
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Nevertheless, an elementary method provides the desired answer, for general P
and V. The method does not require a topologization of V, and it works also for
various, possibly noncompact, subsets of V. The main idea can be regarded as an
extension of a simple fact that the probabilities of pairwise disjoint events cannot
form a strictly increasing sequence. Linear subspaces are not disjoint; however, the
intersection of two distinct ones with the same dimension is a subspace with a lower
dimension. Iterating this process further, we arrive to the unique null-dimensional
subspace. If, say, instead of linear subspaces the affine ones are considered, the
method works in a similar way — only the terminal level is slightly different.

A well-known related property — to be found, for instance, in [1], Ch. II, Ex.
48-50 — says that the range {P(F): E € S} is closed for every probability space
(Q, S, P). However, here the background is different: probabilities of general events
can form an increasing sequence — this is not true in our setting.

Theorem. Let (2, S, P) be a probability space. If Ay C Ay C --- C A, are sets of
events such that card Ag = 1 and for every k = 1,2,...,n, the intersection of two
distinct events from Ay belongs to Ay_1, then the set {P(E): E € A,} is closed.

Corollary. Under the assumptions of Theorem, (1) is true with ¥V = A,

Applying Theorem for V = V;, we set n = p — 1; A, consists of all proper
subspaces of dimension less or equal to k. Note that A, = V; and Ay = {0};
the other assumptions hold as well. According to Theorem, the range of P on A4,
is closed and the supremum is attained. The cases of other V are treated in an
analogous way.

We shall call a system Ay, Ay,..., A, satisfying the assumptions of Theorem
an intersection system. Suppose that B is a set of events such that B C A,. If

0, A, ..., A is another intersection system such that B C A/, we can form an
intersection system Aj, A7, ..., A" by taking consecutively A’ = A,NA Al | =
A, A_ ..., identifying A{ with the first set with cardinality 1 obtained in
this process. As a result, we have m < min(n,v) and B C A’ . The similar
construction can be carried out with more than two intersection systems; if there
is any intersection system Ay, A, ..., A, such that B C A, then the intersection
of all intersection systems with this property will be called the intersection system
generated by B. Note that for all k, the set Ax_; contains exactly all pairwise
intersections of events from Ay. Hence if Ay, is finite, so is Ax_1. If Ay is (at most)
countable, so is Aj_1.

Let 1 < k <n. An intersection system is said to satisfy a finiteness condition at
level k, if any event from Aj_; is a subset of at most a finite number of events from
Ayr. Note that if the finiteness condition is satisfied at level & and Ay is infinite, so
is Ax_1. As a consequence, an intersection system with infinite 4, cannot satisfy
the finiteness condition at all levels k = 1,2,... n.

Lemma. Suppose that the intersection system Ao, Ai, ..., A, generated by
{E\, Es, ...} satisfies the finiteness condition at levels k = 2,...,n and Ay = {0}.
Then lim;_,o, P(E;) = 0.

Proof. By assumptions, A;, A, ..., A, are countably infinite. For any F' € Ay,
k=1,2,...,n,let F = F~UA;_1. Note that F' = F for F' € Ay, since Ay = {0}.
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For all k, the elements of {F: F € A} are pairwise disjoint. Fix ¢ > 0. Pick
B C A; such that A; ~ B; is finite and

P(U F>:P<Uﬁ’>:2p(ﬁ’)§g. (3)

FeB; Feb, FeB;

Given By_1, and assuming that Ax_1 \ By_1 is finite, we construct inductively a set
Cr to be the set of all I € A, such that there is no G € Aj_; ~ Bi_; which is a
subset of F'; then By C Ci is picked in a way that C, ~ B is finite and

P( U F> - Y P(F)<-. (4)

FeBy FeBy

Since Aj_1 \ By_1 is finite, by the finiteness condition (at level k) also Ay \ Ci, and
hence Ay, \ By, are finite. Starting from (3), we proceed inductively, using (4):

P(U F>§P<U<F\ U G>U U ¢

FEB]g FEB]g GEBk_l GEBk_l )

:P(Fgg (F\Gegj_ G>> +P(G€Léj_ G) (5)
—P(U F)+P( U G)<e+(h-De=ke,

FeBy, GEBL_1

the first equality due to the fact that B, C Cg. Since (5) holds also for k& = n and
€ was arbitrary, the statement follows: given § > 0, there is only a finite number of
E; for which

P(E) < P( U E> <5
EiEBn
does not hold. n

Proof of Theorem. The statement holds if A,, is finite. Suppose that A, is infi-
nite. Fix a sequence Fi, Fs, ... of events from A,, such that P(E;) is convergent.
Proving that there is an Fy € B such that lim,; .. P(E;) = P(FEp) is a trivial
task if {F4, Es, ...} is finite; suppose that the events E; are pairwise distinct. Let
By, Bi, ..., B, be the intersection system generated by {Fi, Fa,...}. There is an
m > 1, m < v, such that the finiteness condition holds for k = v,v —1,... . m+1
and fails for £ = m. Consequently, an infinite number of pairwise intersections
of elements of B, coincide — let the corresponding element of B,,_1 be denoted
by Ey. Let Co,Ci,...,Ch_mi1 be the intersection system generated by the set
{F1,Fy,...} C{E1, E,, ...} consisting of those events from B, which contain Ej as
a subset. Note that Co = {Ep} and Ci, for k > 1 is the set of all events from B, 11
which contain Ej as a subset. By the choice of Ey, C; is countably infinite; hence so
are CQ, c. ,Cy_m_H. Let Dk = {F AN EQI F e Ck} The System DQ,Dl, c. ,Dy_m+1
satisfies all assumptions of Lemma. Hence,
lim P(E;) = lim P(F;) = P(Ey) + lim P(F; \ Ey) = P(Ep).

1— 00 1— 00 1— 00

The statement follows, since Ey € B,,_1 C A,. n
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