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Abstract

In this paper, the method of quasilinearization has been extended to pe-

riodic boundary value problems of nonlinear functional differential equations.

It is shown that monotone iterations converge to the unique solution and this

convergence is semi–superlinear.

1 Introduction

Put C0 = C(J0, R), C1 = C(J × C0, R) with J0 = [−τ, 0], J = [0, T ] for some
τ, T > 0. Let g ∈ C0 and g(0) = 0. We shall study the following periodic boundary
value problems for functional differential equations

(1)

{

x′(t) = f(t, xt), t ∈ J,

x(s) = g(s) + x(0), s ∈ J0, x(0) = x(T ),

where f ∈ C1, and for any t ∈ J, xt ∈ C0 is defined by xt(s) = x(t + s) for s ∈ J0.

Note that g is given on J0. If we take g(s) = 0 on J0, then the boundary condition
in (1) has the form x(s) = x(0) = x(T ), s ∈ J0.

The differential equation from problem (1) is a very general type. It includes,
for example, as special cases, ordinary differential equations if τ = 0, differential–
difference equations, and integro–differential equations too.
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It is known that the method of quasilinearization offers an approach for obtain-
ing approximate solutions of nonlinear differential equations ( for details, see, for
example [5], [7]). Recently, this method has been extended so as to be applicable to
a much larger class of nonlinear problems (see, for example [2], [4]–[10]). The pur-
pose of this paper is to show that it can be applied successfully to periodic boundary
value problems of functional differential equations. Under suitable assumptions it
is shown that linear iterations converge to the unique solution of our problem and
this convergence is semi–superlinear.

2 Assumptions

Choose M > 0, and rewrite the differential equation of (1) as

(2) x′(t) = −Mx(t) + Mx(t) + f(t, xt), t ∈ J.

Then, by variation of parameters formula, equation (2) takes the form

x(t) = e−Mt

{

x(0) +
∫ t

0
eMs [Mx(s) + f(s, xs)] ds

}

, t ∈ J.

Since x(0) = x(T ), it follows that

x(0) =
1

eMT − 1

∫ T

0
eMs[Mx(s) + f(s, xs)]ds.

It shows that problem (1) is equivalent to the following one

(3)











x(t) =
e−Mt

eMT − 1

∫ T

0
G(t, s)eMs[Mx(s) + f(s, xs)]ds, t ∈ J,

x(s) = x(0) + g(s), s ∈ J0,

where

G(t, s) =

{

eMT if 0 ≤ s < t,

1 if t ≤ s ≤ T.

A function v ∈ C̄ ≡ C(J̄ , R)∩C1(J, R), J̄ = [−τ, T ] is said to be a lower solution
of problem (1) if

{

v′(t) ≤ f(t, vt), t ∈ J,

v(s) = g(s) + v(0), s ∈ J0, v(0) ≤ v(T ),

and an upper solution of (1) if the above inequalities are reversed.

Now, we list the following assumptions for later use.

H1 f ∈ C1, g ∈ C0, g(0) = 0,

H2 y0, z0 ∈ C̄ are lower and upper solutions of problem (1) and y0(t) ≤ z0(t) on
J,

H3 the Frechet derivative fΦ exists, is a continuous linear operator satisfying:
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(a) |fΦ(t, φ)vt| ≤ L max
[−τ,t]

|v(s)|, L > 0 for t ∈ J, φ, vt ∈ C0,

(b) f(t, v2) ≥ f(t, v1) + fΦ(t, v2)(v2 − v1) for t ∈ J, v1, v2 ∈ C0 such that
y0,t ≤ v1 ≤ v2 ≤ z0,t,

(c) if v1 ≤ v2, v, v1, v2 ∈ C0, then fΦ(t, v)v1 ≤ fΦ(t, v)v2 for y0t ≤ v ≤
z0,t, t ∈ J,

(d) if v, v̄, V ∈ C0, V ≥ 0, then

fΦ(t, v)V ≥ fΦ(t, v̄)V for t ∈ J, y0,t ≤ v̄ ≤ v ≤ z0,t,

(e)
∫ T
0 fΦ(s, u)vsds > 0 if u, vt ∈ C0, v(s) > 0, s ∈ J̄ ,

H4 there exist constants L1 > 0 and α ∈ [0, 1] such that the condition

|fΦ(t, v1)− fΦ(t, v2)| ≤ L1|v1 − v2|
α
0

holds for t ∈ J, v1, v2 ∈ C0 with |v|0 = max
s∈[−τ,0]

|v(s)|.

3 Existence, uniqueness results

In this section we give existence/uniqueness results both for initial and boundary
value problems of functional differential equations.

Theorem 1. Let Assumption H3(a) hold. Assume that h ∈ C0, b ∈ C(J, R).
Then the problem

{

x′(t) = fΦ(t, u)xt + b(t), t ∈ J, u ∈ C0, x ∈ C̄,

x(s) = h(s), s ∈ J0

has a unique solution.

Proof. To show it we can use the Banach fixed point theorem with the norm

|v|∗ = max
t∈J

e−Kt|v(t)| for K ≥ L.

We omit the details.

Lemma 1. Let Assumption H3(a, e) hold. Then the problem

(4)

{

α′(t) = fΦ(t, u)αt, t ∈ J, u ∈ C0, α ∈ C̄,

α(s) = α(0) = α(T ), s ∈ J0

has only zero solution.

Proof. Note that α(t) = 0, t ∈ J̄ is a solution of (4). Suppose that problem (4)
has another solution w. Let B = {tk ∈ J : w(tk) = 0}. Assume that t0 ∈ B. If t0 = 0
or t0 = T, then w(0) = 0. Hence w(t) = 0, t ∈ J̄ since the initial problem has only
one solution, by Theorem 1. It is a contradiction. If 0 < t0 < T, then w(t0) = 0
showing that w(t) = 0 on [t0, T ]. Since w(T ) = 0 and w(T ) = w(0), so w(t) = 0 on
J̄ . It is a contradiction again. If we assume that w(t) > 0, t ∈ J̄ , then

w(t) = w(0) +
∫ t

0
fΦ(s, u)wsds, t ∈ J.
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Note that w(T ) > w(0) because
∫ T
0 fΦ(s, u)wsds > 0, by Assumption H3(e). It is a

contradiction. Same argument holds if we assume that w(t) < 0 on J. It proves that
problem (4) has only one solution. It ends the Proof.

The next theorem gives sufficient conditions for the uniqueness of the solution
of (1) but it does not guarantee the existence of the solution.

Theorem 2. Assume that Assumptions H1, H3(a, e) hold. Then problem (1)
has at most one solution.

Proof. Assume that problem (1) has two solutions x and y. Put p = x − y.

Then p(s) = p(0) = p(T ), s ∈ J0. Moreover, by a mean value theorem, we get

p′(t) = f(t, xt)− f(t, yt) =
∫ 1

0
fΦ(t, sxt + (1− s)yt)dspt, t ∈ J.

This and Lemma 1 prove that p(t) = 0 on J̄ showing that problem (1) has at most
one solution. It ends the Proof.

Lemma 2. Let Assumptions H1, H2 and H3 hold. Then, for t ∈ J, u ∈ Ω, the
periodic boundary value problem

(5)

{

p′(t) = f(t, u) + fΦ(t, u)[pt − u], t ∈ J, p ∈ C̄,

p(0) = p(T ) and p(s) = g(s) + p(0), s ∈ J0

has a unique solution. The set Ω is defined by

Ω = {φ ∈ C0 : y0,t ≤ φ ≤ z0,t, t ∈ J}.

Proof. Using (2) and (3), for M > 0, we see that problem (5) is equivalent to
the following











p(t) =
e−Mt

eMT − 1

∫ T

0
G(t, s)eMs [Mp(s) + fΦ(s, u)(ps − u) + f(s, u)]ds ≡ Ap(t), t ∈ J,

p(s) = p(0) + g(s), s ∈ J0.

Assumptions H2 and H3(b, d) imply that

y′0(t) ≤ f(t, y0,t)− f(t, u) + f(t, u) ≤ f(t, u) + fΦ(t, u)[y0,t − u], t ∈ J,

and
z′0(t) ≥ f(t, z0,t)− f(t, u) + f(t, u) ≥ f(t, u) + fΦ(t, z0,t)[z0,t − u]

≥ f(t, u) + fΦ(t, u)[z0,t − u], t ∈ J.

Knowing that y0(0) ≤ y0(T ), z0(0) ≥ z0(T ), and using the above inequalities
and the method of integration by substitution, we see that

Ay0(t) =
e−Mt

eMT − 1

∫ T

0
G(t, s)eMs {My0(s) + fΦ(s, u)[y0,s − u] + f(s, u)}ds

≥
e−Mt

eMT − 1

∫ T

0
G(t, s)eMs[y′0(s) + My0(s)]ds

=
e−Mt

eMT − 1

{

eMT
[

eMty0(t)− y0(0)
]

+ eMT y0(T )− eMty0(t)
}

≥ y0(t), t ∈ J,
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and

Az0(t) =
e−Mt

eMT − 1

∫ T

0
G(t, s)eMs {Mz0(s) + fΦ(s, u)[z0,s − u] + f(s, u)}ds

≤
e−Mt

eMT − 1

∫ T

0
G(t, s)eMs[z′0(s) + Mz0(s)]ds

=
e−Mt

eMT − 1

{

eMT
[

eMtz0(t)− z0(0)
]

+ eMT z0(T )− eMtz0(t)
}

≤ z0(t), t ∈ J.

Let v1, v2 ∈ C(J̄ , R) and y0(t) ≤ v1(t) ≤ v2(t) ≤ z0(t), t ∈ J̄ , so y0,t ≤ v1,t ≤
v2,t ≤ z0,t, t ∈ J. Then, by Assumption H3(c), we have

Av1(t) =
e−Mt

eMT − 1

∫ T

0
G(t, s)eMs {Mv1(s) + fΦ(s, u)[v1,s − u] + f(s, u)}ds

≤
e−Mt

eMT − 1

∫ T

0
G(t, s)eMs {Mv2(s) + fΦ(s, u)[v2,s − u] + f(s, u)}ds = Av2(t)

showing that the operator A maps the segment [y0, z0] into itself. Since A is a com-
pletely continuous operator on [y0, z0], so the sequences yn+1(t) = Ayn(t), zn+1(t) =
Azn(t) converge to the fixed points y, z ∈ [y0, z0] of A and y(t) ≤ z(t) on J.

Now we are going to show that problem (5) has one solution. Assume that it
has two solutions, x and y. Set q = x− y, so q(s) = q(0) = q(T ), s ∈ J0. Then

{

q′(t) = fΦ(t, u)qt, t ∈ J,

q(s) = q(0) = q(T ), s ∈ J0.

By Lemma 1, this problem has only zero solution. This proves that x(t) = y(t) on
J, so problem (5) has a unique solution.

It ends the Proof.

Lemma 3. The assertion of Lemma 2 also holds if problem (5) is replaced by
the following

{

p′(t) = f(t, v) + fΦ(t, u)[pt − v], u, v ∈ Ω, u ≤ v, p ∈ C̄,

p(s) = g(s) + p(0) and p(0) = p(T ).

Proof. Obviously, we see that

y′0(t) ≤ f(t, y0,t)− f(t, v) + f(t, v) ≤ f(t, v) + fΦ(t, v)[y0,t − v]

≤ f(t, v) + fΦ(t, u)[y0,t − v],

and
z′0(t) ≥ f(t, z0,t)− f(t, v) + f(t, v) ≥ f(t, v) + fΦ(t, z0,t)[z0,t − v]

≥ f(t, v) + fΦ(t, u)[z0,t − v], t ∈ J.

The rest of this proof is similar to the proof of Lemma 2 with the operator A defined
by

Ap(t) =
e−Mt

eMT − 1

∫ T

0
G(t, s)eMs [Mp(s) + fΦ(s, u)(ps − v) + f(s, v)] ds, t ∈ J.



460 T. Jankowski

We omit the details.

Lemma 4. Let Assumptions H1, H2, H3 hold. Let u, v ∈ C̄ be lower and upper
solutions of problem (1) such that y0(t) ≤ u(t) ≤ v(t) ≤ z0(t), t ∈ J. Then the
problems
(6)
{

p′(t) = f(t, ut) + fΦ(t, ut)[pt − ut], t ∈ J, p(0) = p(T ), p(s) = g(s)+p(0), s ∈ J0

q′(t) = f(t, vt) + fΦ(t, ut)[qt − vt], t ∈ J, q(0) = q(T ), q(s) = g(s) + q(0), s ∈ J0

have their unique solutions (p, q). Moreover u(t) ≤ p(t) ≤ q(t) ≤ v(t), t ∈ J.

Proof. By Lemmas 2 and 3, there exists a unique solution (p, q) of (6). We need
to show that p, q ∈ [u, v] and p(t) ≤ q(t), t ∈ J. Note that, for M > 0,

p(t) = A(t, u, p), q(t) = B(t, v, q), t ∈ J,

where

A(t, u, p) =
e−Mt

eMT − 1

∫ T

0
G(t, s)eMsU(s, u, p)ds,

B(t, u, q) =
e−Mt

eMT − 1

∫ T

0
G(t, s)eMsU(s, v, q)ds,

U(t, v, p) = Mp(t) + fΦ(t, ut)[pt − vt] + f(t, vt).

Let
{

pn+1(t) = A(t, u, pn), p0(t) = u(t), t ∈ J,

qn+1(t) = B(t, v, qn), q0(t) = v(t), t ∈ J.

Observe that

U(t, u, u) = Mu(t) + f(t, ut) ≥ Mu(t) + u′(t),

U(t, v, v) = Mv(t) + f(t, vt) ≤ Mv(t) + v′(t)

because u, v are lower and upper solutions of (1), respectively. Now, using the
method of integration by substitution, we get

p1(t) = A(t, u, u) =
e−Mt

eMT − 1

∫ T

0
G(t, s)eMsU(s, u, u)ds

≥
e−Mt

eMT − 1

∫ T

0
G(t, s)eMs[Mu(s) + u′(s)]ds

=
e−Mt

eMT − 1

{

(eMT − 1)u(t)eMt + eMT [u(T )− u(0)]
}

≥ u(t) = p0(t),

q1(t) = B(t, v, v) ≤
e−Mt

eMT − 1

∫ T

0
G(t, s)eMs[Mv(s) + v′(s)]ds

=
e−Mt

eMT − 1

{

(eMT − 1)v(t)eMt + eMT [v(T )− v(0)]
}

≤ v(t) = q0(t).

Suppose that α(t) ≤ β(t) on J̄ . Then,

U(t, u, α) = Mα(t) + fΦ(t, ut)[αt − βt + βt − ut + vt − vt] + f(t, ut)

≤ Mβ(t) + fΦ(t, ut)[βt − vt] + fΦ(t, ut)[vt − ut] + f(t, ut)− f(t, vt) + f(t, vt)

≤ U(t, v, β)
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Hence

p1(t) =
e−Mt

eMT − 1

∫ T

0
G(t, s)eMsU(s, u, u)ds

≤
e−Mt

eMT − 1

∫ T

0
G(t, s)eMsU(s, v, v)ds = q1(t), t ∈ J,

so

p0(t) ≤ p1(t) ≤ q1(t) ≤ q0(t), t ∈ J.

By mathematical inductions, we are able to show that

p0(t) ≤ p1(t) ≤ · · · ≤ pn(t) ≤ qn(t) ≤ · · · ≤ q1(t) ≤ q0(t), t ∈ J.

It yields pn → p, qn → q, p, q ∈ [u, v] and p(t) ≤ q(t), t ∈ J. It ends the Proof.

4 Main result

A fundamental result of this paper is the following.

Theorem 3. Assume that Assumptions from H1 until H4 are satisfied. Then
there exist monotone sequences {yn}, {zn} which converge uniformly to the unique
solution x of problem (1) and that convergence is semi–superlinear i.e.

max
t∈J

|x(t)− yn+1(t)| ≤ a1 max
t∈J

|pn,t|
α+1
0 + a2 max

t∈J
|pn,t|0,

max
t∈J

|x(t)− zn+1(t)| ≤ a3 max
t∈J

|pn,t|
α
0 |qn,t|0 + a4 max

t∈J
|qn,t|

α+1
0 + a5 max

t∈J
|qn,t|0

for some nonnegative constants ci and pn = x− yn, qn = zn − x.

Proof. Let yn+1(s) = g(s) + yn+1(0), zn+1(s) = g(s) + zn+1(0), s ∈ J0 and

y′n+1(t) = f(t, yn,t) + fΦ(t, yn,t)[yn+1,t − yn,t], yn+1(0) = yn+1(T ),

z′n+1(t) = f(t, zn,t) + fΦ(t, yn,t)[zn+1,t − zn,t], zn+1(0) = zn+1(T )

for t ∈ J, n = 0, 1, · · · .

Note that the elements y1, z1 are well defined, by Lemmas 2 and 3. Lemma 4
asserts that

y0(t) ≤ y1(t) ≤ z1(t) ≤ z0(t), t ∈ J.

Now we prove that y1, z1 are lower and upper solutions of problem (1), respec-
tively. By Assumption H3(b, d), we get

y′1(t) = f(t, y0,t) + fΦ(t, y0,t)[y1,t − y0,t]− f(t, y1,t) + f(t, y1,t)

≤ f(t, y1,t)− fΦ(t, y1,t)[y1,t − y0,t] + fΦ(t, y0,t)[y1,t − y0,t] ≤ f(t, y1,t)

and
z′1(t) = f(t, z0,t) + fΦ(t, y0,t)[z1,t − z0,t]− f(t, z1,t) + f(t, z1,t)

≥ f(t, z1,t) + fΦ(t, z0,t)[z0,t − z1,t] + fΦ(t, y0,t)[z1,t − z0,t]

≥ f(t, z1,t).

It proves that y1, z1 are lower and upper solutions of (1).
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Let us assume that

y0(t) ≤ y1(t) ≤ · · · ≤ yk−1(t) ≤ yk(t) ≤ zk(t) ≤ zk−1(t) ≤ · · · ≤ z1(t) ≤ z0(t), t ∈ J,

and let yk, zk be lower and upper solutions of problem (1) for some k ≥ 1. Then,
by Lemmas 2 and 3, the elements yk+1, zk+1 are well defined. Moreover, Lemma 4
yields

yk(t) ≤ yk+1(t) ≤ zk+1(t) ≤ zk(t), t ∈ J.

Hence, by induction, we obtain

y0(t) ≤ y1(t) ≤ · · · ≤ yn(t) ≤ zn(t) ≤ · · · ≤ z1(t) ≤ z0(t), t ∈ J

for all n. Employing standard techniques [5], it can be shown that the sequences
{yn}, {zn} converge uniformly and monotonically to the solutions y, z of (1), so
yn → y, zn → z and y(t) ≤ z(t) on J. By Theorem 2, y = z. It means that the
sequences {yn}, {zn} converge to the unique solution x of problem (1).

It remains only to show that the convergence of yn, zn to the unique solution x

of problem (1) is semi–superlinear. For this purpose, we put

pn+1(t) = x(t)− yn+1(t) ≥ 0, qn+1(t) = zn+1(t)− x(t) ≥ 0 t ∈ J̄ .

Note that pn+1(s) = pn+1(0) = pn+1(T ), qn+1(s) = qn+1(0) = qn+1(T ), s ∈ J0.

Observe that

pn+1(t) = x(t)− yn+1(t) + yn(t)− yn(t) ≤ pn(t)

qn+1(t) = zn+1(t)− x(t)− zn(t) + zn(t) ≤ qn(t).

Choose M > 0. Using Assumptions H3 and H4, we obtain

p′n+1(t) = f(t, xt)− f(t, yn,t)− fΦ(t, yn,t)[yn+1,t − yn,t]

=
∫ 1

0
fΦ(t, sxt + (1− s)yn,t)pn,tds− fΦ(t, yn,t)[pn,t − pn+1,t]

=
∫ 1

0
[fΦ(t, sxt + (1− s)yn,t)− fΦ(t, yn,t)]pn,tds + fΦ(t, yn,t)pn+1,t

≤ L1

∫ 1

0
sα|pn,t|

α+1
0 ds + fΦ(t, yn,t)pn+1,t

≤ D + L max
s≤t

pn(s) + Mpn+1(t)−Mpn+1(t)

≤ D + (L + M) max
t∈J

|pn,t|0 −Mpn+1(t) ≡ D̄ −Mpn+1(t)

with D = L1 max
t∈J

|pn,t|
α+1
0 . Hence, the differential inequality yields

pn+1(t) ≤ e−Mt

[

pn+1(0) +
D̄

M

(

eMt − 1
)

]

, t ∈ J.

Since pn+1(0) = pn+1(T ), we get pn+1(0) ≤
D̄

M
, so pn+1(t) ≤

D̄

M
, t ∈ J. Hence, we

finally obtain

max
t∈J

|pn+1(t)| ≤
1

M

[

L1 max
t∈J

|pn,t|
α+1
0 + (L + M) max

t∈J
|pn,t|0

]

.
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By a similar way, we can obtain

q′n+1(t) = f(t, zn,t)− f(t, xt) + fΦ(t, yn,t)[zn+1,t − xt + xt − zn,t]

=
∫ 1

0
fΦ(t, szn,t + (1− s)xt)qn,tds + fΦ(t, yn,t)[qn+1,t − qn,t]

=
∫ 1

0
[fΦ(t, szn,t + (1− s)xt)− fΦ(t, xt) + fΦ(t, xt)− fΦ(t, yn,t)] qn,tds

+ fΦ(t, yn,t)qn+1,t ≤ L1 [|qn,t|
α
0 + |pn,t|

α
0 ] qn,t + fΦ(t, yn,t)qn+1,t

≤ P + (L + M) max
t∈J

|qn,t|0 −Mqn+1(t), t ∈ J,

where

P = L1 max
t∈J

[

|qn,t|
α+1
0 + |pn,t|

α
0 |qn,t|0

]

.

Consequently

max
t∈J

|qn+1(t)| ≤
1

M

[

L1 max
t∈J

|pn,t|
α
0 |qn,t|0 + L1 max

t∈J
|qn,t|

α+1
0 + (L + M) max

t∈J
|qn,t|0

]

.

The proof is complete.

Remark 3. If α = 1, then the convergence of sequences {yn} and {zn} to x is
semi–quadratic.
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