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Abstract

A coherent exposition of the connection of alternating tree automata and
modal µ-calculus is given, advocating an automaton model specifically tailored
for working with modal µ-calculus. The advantage of the automaton model
proposed is that it can deal with arbitrary branching in a very natural way. It
is really equivalent to the modal µ-calculus with respect to expressive power,
just as the one proposed by Janin and Walukiewicz, but simpler. The main
focus is on the model checking and the satisfiability problem for µ-calculus.
Both problems are solved by reductions to corresponding problems on al-
ternating tree automata, namely to the acceptance and the (non-)emptiness
problem, respectively. These problems, in turn, are solved using parity games.

Résumé
On donne une présentation cohérente du lien entre les automates d’arbres

alternants et le mu-calcul modal, grâce à un modèle d’automate spécialement
adapté au mu-calcul. L’avantage du modèle d’automate proposé est qu’il
peut prendre en compte des branchements d’ordre arbitraire de manière très
naturelle. Il a un pouvoir d’expression équivalent à celui du mu-calcul, tout
comme celui proposé par Janin et Walukiewicz. mais il est plus simple. L’accent
est principalement mis sur la vérification et le problème de la satisfiabilité
du mu-calcul. Ces deux problèmes sont résolus par réduction aux problèmes
correspondants sur les automates d’arbres alternants, à savoir l’acceptance et
le problème du vide respectivement. Ces problèmes sont à leur tour résolus en
utilisant des jeux à parié.
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1 Introduction

Since Dexter Kozen’s seminal paper in 1983, [12], modal µ-calculus has received
ever growing interest, mainly for two reasons: (1) its mathematical theory (model
theory) is very rich; (2) modal µ-calculus is well suited for specifying properties of
transition systems. The interest was further stimulated by Ken McMillan’s obser-
vation, [15], that specifications in modal µ-calculus can be checked efficiently for
finite transition systems when the state space and the transition relation are rep-
resented “symbolically” (by ordered binary decision diagrams). This is the basis for
numerous industrial-strength model checkers.

Modal µ-calculus is best investigated using an automata-theoretic approach. In
fact, most of the deep results on modal µ-calculus (such as the completeness of
Kozen’s axiom scheme, [12, 26, 27], the exact complexity of the satisfiability problem,
[6], and the strictness of the fixed point alternation hierarchy, [1, 2, 3, 4, 13]) have
been (can be) obtained using automata theory.

The full beauty of the connection between modal µ-calculus and (alternating)
tree automata was first revealed in the fundamental study [19] by Damian Niwiński.
While in [19], a very general approach, applying to a wide range of lattices, is taken,
here the definitions are designed to work particularly well with modal µ-calculus.
A coherent exposition of the connection of alternating tree automata and modal
µ-calculus is given, advocating an automaton model specifically tailored for working
with modal µ-calculus. The advantage of the automaton model proposed is that it
can deal with arbitrary branching in a very natural way. It is really equivalent to
the modal µ-calculus with respect to expressive power, just as the one used in [9],
but simpler.

The main focus is on the model checking and the satisfiability problem. The ap-
proach is modular in that the two problems are first reduced to corresponding prob-
lems on alternating tree automata, the acceptance and the nonemptiness problem,
respectively. Then these two problems are in turn reduced to the winner problem
for parity games. The reduction from the acceptance problem is straightforward
while the reduction from the nonemptiness problem is quite involved and makes use
of Safra’s fundamental determinization result, [22, 17].

This paper resulted from an invited talk given at the Journées Montoises, Marne-
la-Vallée, March 2000. It has improved a lot through numerous discussions I had
with the participants of the GI Dagstuhl workshop on Automata, Logic and Infinite
Games, held in Wadern in February, 2001.

Ordinals. Von Neumann’s convention on ordinals is used, in particular, when n
denotes a natural number, then n = {0, . . . , n − 1}. Following this convention, the
set of natural numbers is denoted by ω.

Sequences. A finite sequence over some set M is a function n → M where n
is a natural number; an infinite sequence over some set M is a function ω → M .
Sequence means finite or infinite sequence. The length of a sequence u is denoted
by |u|. (Observe that |u| coincides with dom(u), for von Neumann’s convention
is used.) When u is a finite nonempty sequence, then u(|u| − 1) denotes its last
element; for simplicity in notation, we will also write u(∗) instead.
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Let f : M → ω be any (possibly partial) function with an infinite domain and a
finite image. Then the set of all elements occurring infinitely often in the image, the
set given by {n ∈ N | |f−1(n)| = ∞}, is a nonempty finite set of natural numbers
and we denote its maximum by sup(f). Often, we will consider functions f that
result from composing several other functions; it will be convenient to write gh for
the composition of g and h, defined by gh(x) = h(g(x)).

Graphs. In this paper, the term graph means directed graph. That is, a graph is
a pair (V, E) where V is an arbitrary set of vertices and E is an arbitrary subset of
V × V . The successors of a vertex v in a graph G will be denoted by ScsG(v). So
if G = (V, E), then ScsG(v) = {v′ ∈ V | (v, v′) ∈ E}.

A vertex v is a dead end of a graph G = (V, E) if ScsG(v) = ∅. A path through
a graph G is a sequence π over V satisfying (π(i), π(i + 1)) ∈ E for every i with
i + 1 < |π|.

Let M be an arbitrary set. An M-vertex-labeled graph is a tuple (V, E, λ) where
(V, E) is an ordinary graph and λ, V →M is a so-called labeling function.

Structures. As usual, mathematical objects like graphs, trees, automata, etc.
will be defined as fixed length tuples with certain components, just as a graph is
a pair (V, E). To refer to the individual components of a structure denoted S, the
superscript S is used. For instance, the vertex set of a graph G is denoted by V G.

Trees. In this paper, the term tree means directed tree. A branch of a tree T is a
maximum path through T starting in the root. So a branch is either a finite path
starting in the root and ending in a dead end or an infinite path starting in the root.
The root of a tree T will be denoted by ρT .

We will use the following operations on trees. Assume T is an arbitrary tree.
Let V ′ be a subset of V T not containing the root of T . Then T − V ′ is the tree
obtained from T by removing all vertices in V ′ from T and all their descendants.
Let v be some vertex in T . Then T ↓v is the subtree of T rooted at v. Let U be a
set of pairs (v,T ′) where v is a vertex of T and T ′ a tree. Then T · U is the tree
that is obtained from T by adding, for every (v,T ′) ∈ U , a copy of T ′ to T at v
in such a way that an edge from v to the root of T ′ is inserted. If necessary, the
vertices of the trees T ′ are renamed.

We will use the following lemma about trees.

Lemma 1. Let T = (V, E) be a tree and U ⊂ V . For every ordinal λ, define Uλ as
follows.

• U0 = ∅.

• A vertex v belongs to Uλ+1 if v ∈ U and all descendants of v (excluding v)
belong to

⋃
λ′≤λ Uλ′ ∪ (V \ U).

• Uλ =
⋃
λ′<λ Uλ′ for every limit ordinal λ.

Then the following are equivalent for every v ∈ U .

• There exists some ordinal λ such that v ∈ Uλ.

• Every branch of T ↓v contains only a finite number of elements from U .
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Projections. When t = (t0, . . . , tn−1) is a tuple and i < n, then πi(t) denotes the
i-th component of t, that is, πi(t) = ti.

2 From Modal µ-Calculus to Alternating Tree Automata

Our first goal is to understand the semantics of modal µ-calculus in terms of al-
ternating tree automata. We will prove that each modal µ-calculus formula can
be converted into an equivalent alternating tree automaton. In the first subsec-
tion, the basics on modal µ-calculus are recalled and basic notation is explained.
In the second subsection, the model of alternating tree automaton used in this pa-
per is introduced. The third subsection presents the desired conversion from modal
µ-calculus to alternating tree automata and a correctness proof of this conversion.

2.1 Modal µ-Calculus

Modal µ-calculus is modal logic augmented by operators for least and greatest fixed
points. For simplicity, this paper only deals with the unimodal case, but all the
definitions, results, and proofs given here extend canonically to the multi-modal
case. An extension to backward modalities as treated in [25] is not too difficult
either.

2.1.1 Kripke Structures

Modal µ-calculus—just as modal logic—is a logic to express properties of Kripke
structures.

A Kripke structure is a directed graph together with an interpretation (or as-
signment) of propositional variables in each vertex of the graph. Once and for all,
we fix a countably infinite supply Q of propositional variables. Formally, a Kripke
structure is a tuple

K = (W, A, κ) (1)

where

• W , the universe of K, is a set of worlds,

• A ⊆ W ×W is an accessibility relation, and

• κ : Q → 2W is an interpretation of the propositional variables, which assigns
to each propositional variable the set of worlds where it holds true.

The class of all Kripke structures is denoted by K.
A pointed Kripke structure is a pair (K, w) where K is a Kripke structure and

w a world of it, which is called the distinguished world of (K, w). The class of all
pointed Kripke structures is denoted by P.

A Kripke structure or pointed Kripke structure K is finite if WK is finite and
κK(q) = ∅ for almost all q. Such a Kripke structure can easily be encoded as a
finite string and can thus serve as an input for decision procedures. This will be
important in the next section.
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A Kripke query1 is a class of pointed Kripke structures, that is, a subclass of P.
There is a natural one-to-one correspondence between Kripke queries and mappings
assigning to each Kripke structure K a subset of WK, as explained in the next
paragraph.

With every Kripke query Q, one associates the mapping

K 7→ {w ∈ WK | (K, w) ∈ Q} ; (2)

conversely, with every mapping Q : K 7→ Q(K) where Q(K) ⊆WK , one associates
the Kripke query

{(K, w) ∈ P | w ∈ Q(K)} . (3)

For notational convenience, we will not make a distinction between a Kripke query
(a subclasses of P) and its “mapping view” as explained above, in (2). In particular,
a Kripke query may be defined as a mapping which assigns to every Kripke structure
K a subset of WK . Also, when Q denotes a Kripke query, we may write Q(K) for
{w ∈WK | (K, w) ∈ Q}.

2.1.2 Syntax

As stated above, modal µ-calculus is a unimodal logic augmented by least and
greatest fixed points operators.

The formulas of modal µ-calculus are built from the constant symbols ⊥ and
>, the symbols from Q and their negations, using disjunction and conjunction, the
modalities 2 and 3, and operators for least and greatest fixed points, µ and ν, with
some minor restriction on the use of the fixed point operators.2 Formally, the set of
all Lµ formulas is defined inductively as follows.

• The symbols ⊥ and > are Lµ formulas.

• For every q ∈ Q, q and ¬q are Lµ formulas.

• If ϕ and ψ are Lµ formulas, then ϕ ∨ ψ and ϕ ∧ ψ are Lµ formulas.

• If ϕ is an Lµ formula, then 2ϕ and 3ϕ are Lµ formulas.

• If q ∈ Q and ϕ is an Lµ formula where q occurs only positive (that is, ¬q does
not occur), then µqϕ and νqϕ are Lµ formulas.

The restriction on the application of the least and greatest fixed point operator
expressed in the last rule above is imposed to justify the terminology: this restriction
ensures that the argument of a fixed point operator can be viewed as a monotone
function and that a fixed point actually exists (for details, see below).

Fixed point operators are viewed as quantifiers, and the standard terminology
and notation used with quantifiers is adopted. For instance, the set of all proposi-
tional variables occurring free in an Lµ formula ϕ is denoted by free(ϕ).

1The term “query” is (should be) reminiscent of the terminology used in finite model theory.
2In this paper, no distinction is made between symbols for propositional constants and propos-

itional variables.
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A fixed point formula is an Lµ formula where a fixed point operator is the out-
ermost connective, that is, a fixed point formula is an Lµ formula of the form ηqψ
where η = µ or η = ν. The set of all fixed point formulas is denoted Fη. This set is
partitioned into two sets according to their prefix: the set of all fixed point formulas
starting with µ is denoted Fµ, while the set of all fixed point formulas starting with
ν is denoted Fν . We also speak of µ- and ν-formulas, respectively.

2.1.3 Substitution

Assume ϕ, ψ0, . . . , ψl−1 are Lµ formulas and q0, . . . , ql−1 are distinct predicate sym-
bols whose free occurrences in ϕ are positive. Then

ϕ[ψ0/q0, . . . , ψl−1/ql−1] (4)

denotes the Lµ formula that is obtained from ϕ by substituting in parallel each free
occurrence of qi by ψi. As with predicate logic, a renaming of the bound variables
in ϕ takes place. Note that it is necessary to require that the free occurrences of the
qi’s in ϕ are positive because otherwise the resulting syntactic object will not be an
Lµ formula.

2.1.4 Semantics

The formulas of modal µ-calculus are interpreted in Kripke structures. Inductively,
it is defined to which set of worlds an arbitrary Lµ formula is evaluated in a given
Kripke structure. More precisely, for every Kripke structureK and every Lµ formula
ϕ a set ||ϕ||K ⊆ WK is defined.

The semantics of the atomic formulas is determined by

||⊥||K = ∅ , ||>||K = WK , (5)

||q||K = κK(q) , ||¬q||K = WK \ κK(q) . (6)

Disjunction and conjunction are interpreted as union and intersection, respectively,

||ϕ0 ∨ ϕ1||K = ||ϕ0||K ∪ ||ϕ1||K , (7)

||ϕ0 ∧ ϕ1||K = ||ϕ0||K ∩ ||ϕ1||K . (8)

The modal operators are interpreted in the usual way:

||2ϕ||K = {w ∈WK | ScsK(w) ⊆ ||ϕ||K} , (9)

||3ϕ||K = {w ∈WK | ScsK(w) ∩ ||ϕ||K 6= ∅} . (10)

The definition of the semantics of the fixed point operators needs a little preparation.
When K is a Kripke structure, q is a propositional variable, and W ⊆ WK , then
K[q 7→ W ] denotes the Kripke structure defined by

K[q 7→ W ] = (WK, AK, κK [q 7→W ])

where κK[q 7→ W ] itself is given by

κK[q 7→ W ](q′) =

{
W if q′ = q,
κK(q′) if q′ 6= q,

(11)
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that is, κK [q 7→W ] is identical to κK except at q where its value is W .
The semantics of the fixed point operators is now defined by

||µqϕ||K =
⋂
{W ⊆ WK | ||ϕ||K[q 7→W ] ⊆ W} , (12)

||νqϕ||K =
⋃
{W ⊆ WK | ||ϕ||K[q 7→W ] ⊇ W} . (13)

Let ϕ be an arbitrary Lµ formula and K a Kripke structure. Then it is easy

to see that W 7→ ||ϕ||K[q 7→W ] is a monotone function on 2W
K

. Therefore, this
function has a least and a greatest fixed point (with respect to set inclusion). By
the Knaster/Tarski Theorem, these fixed points are identical with the sets denoted
by the right-hand sides of (12) and (13), respectively.

We also have the following characterization. Let f be the above function on
2W

K
. For every ordinal λ, let Wλ ⊆ WK be defined by

• W0 = ∅,

• Wλ+1 = f(Wλ),

• Wλ =
⋃
λ′<λ Wλ′ for every limit ordinal.

The set Wλ is called the λ-approximant of the least fixed point of f . Then {Wλ}λ∈On

is a monotone sequence that at some point becomes stationary and reaches the least
fixed point of f . A symmetric statement holds for the greatest fixed point of f ,
where approximation starts with W0 = WK .

Given a pointed Kripke structure K, we will write (K, w) |= ϕ for w ∈ ||ϕ||K.

Example 1. Consider the following simple formula, ϕ0 = µq0(2q0). In every Kripke
structure K, ||ϕ0||K is the set of all worlds of K where no infinite path starts.

Next, consider the formula ϕ1 = µq1(q0 ∨ 3q1). For every Kripke structure K,
||ϕ1||K is the set of all worlds of K from which, in a finite number of steps, possible
0, a world is reachable where q0 holds. Similarly, ϕ′1 = 3ϕ1 defines the property
that in a finite number of steps, but at least 1, a world is reachable where q0 holds.
Thus, ϕ2 = νq2(ϕ

′
1[q2 ∧ q0/q0]) defines the property that there exists a path where

at infinitely many positions q0 holds.

2.1.5 Query-Based Semantics

It will be useful to have a different view of the semantics of Lµ. Clearly, when ϕ
is an Lµ formula, then K 7→ ||ϕ||K is a Kripke query, which we denote by ||ϕ||.
For every connective or operator of Lµ, we will define a corresponding operation on
Kripke queries.

Disjunction and conjunction are easy to deal with. Clearly,

||ϕ ∨ ψ|| = ||ϕ|| ∪ ||ψ|| , (14)

||ϕ ∧ ψ|| = ||ϕ|| ∩ ||ψ|| , (15)

for arbitrary Lµ formulas ϕ and ψ.
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For the modalities 3 and 2 we define two new operators on Kripke queries. For
every Kripke query Q, we define

3Q : K 7→ {w ∈WK | ScsK(w) ∩Q(K) 6= ∅} , (16)

2Q : K 7→ {w ∈WK | ScsK(w) ⊆ Q(K)} . (17)

Then,

||3ϕ|| = 3||ϕ|| , ||2ϕ|| = 2||ϕ|| , (18)

for every Lµ formula ϕ.
Similarly, we define operators on Kripke queries corresponding to the two fixed

point operators. For every Kripke query Q and propositional variable q we define
Kripke queries µqQ and νqQ by

µqQ : K 7→
⋂
{W ⊆ WK | Q(K[q 7→W ]) ⊆ W} , (19)

νqQ : K 7→
⋃
{W ⊆ WK | Q(K[q 7→W ]) ⊇ W} . (20)

Then,

||µqϕ|| = µq||ϕ|| , ||νqϕ|| = νq||ϕ|| , (21)

for every Lµ formula ϕ.
Finally, we consider substitution, even though substitution is neither part of the

definition of the syntax of Lµ nor involved in the definition of its semantics. But it
will turn out to be useful to have a counterpart to substitution on the query side.
It will be enough to consider substitutions with one variable only.

Assume Q and Q′ are Kripke queries and q is a propositional variable. The query

Q[q 7→ Q
′] (22)

is defined by

K 7→ Q(K[q 7→ Q′(K)]) . (23)

Using a straightforward induction, one can now prove that if q is a propositional
variable, ϕ an Lµ formula positive in q, and ψ ∈ Lµ, then

||ϕ[ψ/q]||= ||ϕ||[q 7→ ||ψ||] . (24)

This is the analogue of the substitution principle in predicate logic. Note that it
is necessary to require that ϕ be positive in q because otherwise the substitution is
not defined.

2.1.6 Fixed Point Alternation

Besides its length, the most important characteristic of a modal µ-calculus formula
is its fixed point alternation depth, that is, the number of alternations between least
and greatest fixed point operators. There are several ways to define an appropriate
concept of fixed point alternation. The simplest one is to count syntactic alternations
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between least and greatest fixed point operators. A more involved one, which was
tailored specifically for the purposes of efficient model-checking, was introduced by
Emerson and Lei, [7]. It gives rise to a coarser hierarchy. The one we use here
defines an even coarser hierarchy and was introduced by Damian Niwiński, [18]. His
definition turned out to be the most useful one in the sense that it yields the best
complexity bounds.

We denote the relation “is proper subformula of” by <. Let ϕ be an Lµ formula.
An alternating µ-chain in ϕ of length l is a sequence

ϕ ≥ µq0ψ0 > νq1ψ1 > µq2ψ2 > · · · > µ/νql−1ψl−1 (25)

where, for every i < l − 1, the variable qi occurs free in every formula ψ with
ψi ≥ ψ ≥ ψi+1. The maximum length of an alternating µ-chain in ϕ is denoted by
mµ(ϕ). Symmetrically, ν-chains and mν(ϕ) are defined.

The alternation depth of an Lµ formula ϕ is the maximum of mµ(ϕ) and mν(ϕ)
and is denoted by α(ϕ).

Example 2. Let ϕ0, ϕ1, ϕ′1, and ϕ2 be the Lµ formulas from Example 1. Then
α(ϕ0) = α(ϕ1) = α(ϕ′1) = 1. On the other hand, α(ϕ2) = 2.

A more interesting example is the formula ϕ3 = µq1(νq1(q0 ∧3q1) ∨2q1). This
formula defines the property that on all paths eventually a world is reached where
an infinite path starts on which q0 holds generally. The alternation depth of ϕ3 is 1.

Alternatively, the alternation depth of a formula can be defined using the notion
of the graph of an Lµ formula.

The graph of an Lµ formula ϕ, denotedG(ϕ), is the directed graph whose vertices
are the subformulas of ϕ and where the edges starting in a vertex ψ are determined
as follows.

• If ψ = ⊥, ψ = >, ψ = ¬q, or ψ = q and the occurrence of q is free in ϕ, then
ψ has no outgoing edge.

• If ψ = q and the occurrence of q is bound in ψ, say ηqχ binds q, then ψ has
an edge to ηqχ.

• If ψ = χ ∨ χ′ or ψ = χ ∧ χ′, then ψ has an edge to χ and to χ′.

• If ψ = 3χ, ψ = 2χ, ψ = µqχ, or ψ = µqχ, then ψ has an edge to χ.

Strictly speaking, one has to distinguish between a subformula and its occurrence.
In the definition of G(ϕ), we always mean the latter. This makes no difference when
we assume ϕ is in normal form as explained in Subsection 2.2.2.

The alternation depth of a formula ϕ can now be determined as follows. If no
variable is bound in ϕ, then α(ϕ) = 0. If ϕ = ηqψ with q free in ψ and ψ without
fixed point operators, then α(ϕ) = 1. In all other cases, suppose the alternation
depth of all proper subformulas of ϕ has already been determined. Let M be the
maximum of all these values. If ϕ is a fixed point formula of the form ηqψ and there
exists a fixed point formula η′q′ψ′ of alternation depth M in the strongly connected
component of ϕ in G(ϕ) and η 6= η′ holds, then α(ϕ) = M + 1. In all other cases,
α(ϕ) = M .

This also shows:
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Remark 1. Let ϕ be an Lµ formula and Ψ a strongly connected subset of G(ϕ).
Then the following is true.

1. There exists a fixed point formula ψ = ηqχ of alternation depth > 0 which is
maximal in Ψ (w. r. t. the subformula order).

2. Let ψ′ = η′q′χ′ be any other fixed point formula in Ψ. Then α(ψ) ≥ α(ψ′) and,
moreover, the inequality is strict if η 6= η′.

2.2 Alternating Tree Automata

Alternating tree automata are used to define Kripke queries, and we will later see
that they can define every Kripke query which is definable by a modal µ-calculus
formula. The converse is true as well, but will not be proved in this paper. For
details, see [19].

2.2.1 Informal Description

Alternating tree automata are finite-state devices designed to accept or reject poin-
ted Kripke structures. The computation of an alternating tree automaton on a
pointed Kripke structure proceeds in rounds. At the beginning of every round there
are several copies of the alternating tree automaton in different worlds of the Kripke
structure, each of them in its own state; some worlds might be occupied by many
copies, others might not accommodate a single one. During a round, each copy
splits up in several new copies, which are sent to neighbored worlds and change
their states, all this done according to the transition function. Initially, there is only
one copy of the alternating tree automaton; it resides in the distinguished world
of the pointed Kripke structure and starts in the initial state of the alternating
tree automaton. To determine acceptance or rejectance of a computation of an
alternating tree automaton on a pointed Kripke structure the entire computation
tree is inspected; acceptance is then defined via path conditions for the infinite
branches of the computation tree. Namely, every state will be assigned a priority
and an infinite branch of the computation will be accepting if the maximum priority
occurring infinitely often is even; a computation tree will be accepting if each of its
infinite branches is accepting.

Example 3. A perfect example is the following automaton, A0, which accepts a
pointed Kripke structure (K, wI) if all paths starting in wI are finite. The automaton
has only one state, s, which is assigned priority 1. So, according to what was said
above, it allows no infinite computation paths. The transition function is defined
by δ(s) = 2s, which determines that if a copy of the automaton reaches a world w
(in state s), then this copy splits up and every successor of w gets a copy in state
s. Clearly, the only situation where no infinite computation paths emerge is when
there is no infinite path starting in wI . In other words, this automaton is equivalent
to the formula ϕ0 from Example 1.

Next, we construct an alternating tree automaton A1 which accepts a pointed
Kripke structure (K, wI) if from wI a world is reachable where q0 holds. The only
difference with A0 is that the transition function is defined by δ(s) = q0 ∨3s. This
is read as follows. If a copy of the automaton is in some world w (in state s), the
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automaton may stop if q0 holds or a copy of the automaton is sent to a successor
and goes into state s. Since s is assigned priority 1 and we require that on every
infinite computation path the maximum priority occurring infinitely often be even,
no infinite computation path is allowed. In other words, A1 is equivalent to ϕ1 from
Example 1.

Finally, we construct an automaton A2, which is equivalent to formula ϕ2 from
Example 1. The automaton A2 has two states, s and s̄, where s has priority 2 and
s̄ has priority 1. Then an infinite branch of the computation is accepted if s occurs
infinitely often. The transition function ofA2 is designed in such a way that it simply
propagates whether q0 holds or not in the current world to one of the successors,
that is, the transition function is given by δ(s) = δ(s̄) = (q0 ∧ 3s) ∨ (¬q0 ∧ 3s̄).
Clearly, this automaton works.

2.2.2 Formal Definition

Formally, an alternating tree automaton is a tuple

A = (S, sI , δ, Ω) (26)

where

• S is a finite set of states,

• sI ∈ S is an initial state,

• δ is a transition function as specified below, and

• Ω: S → ω is a priority function, which assigns a priority to each state.

The transition function δ maps every state to a transition condition over S where
the set of all transition conditions over S is defined by:

• 0 and 1 are transition conditions over S,

• q and ¬q are transition conditions over S, for every q ∈ Q,

• s, 2s, and 3s are transition conditions over S, for every s ∈ S,

• s ∧ s′ and s ∨ s′ are transition conditions over S, for s, s′ ∈ S.

Example 4. Clearly, automaton A0 from Example 3 is an alternating tree auto-
maton in the above sense. Strictly speaking, this is not true for the two other
automata from Example 3, for their transition conditions are too complicated. By
introducing additional states, however, this can be taken care of.

For instance, to turnA1 into an equivalent alternating tree automaton according
to the above definition one would add new states sl and sr with priority 1 and define
the transition function by δ(s) = sl ∨ sr, δ(sl) = q0, and δ(sr) = 3s.
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2.2.3 Runs

The computational behavior of alternating tree automata is explained using the
notion of a run. Assume A is an alternating tree automaton and (K, wI) a pointed
Kripke structure. A run of A on (K, wI) is a (W × S)-vertex-labeled tree

R = (V R, ER, λR) (27)

such that ρR is labelled (wI , sI) and for every vertex v with label (w, s) the following
conditions are satisfied.

• δ(s) 6= 0.

• If δ(s) = q, then w ∈ κK(q), and if δ(s) = ¬q, then w /∈ κK(q).

• If δ(s) = s′, then there exists v′ ∈ ScsR(v) such that λ(v′) = (w, s′).

• If δ(s) = 3s′, then there exists v′ ∈ ScsR(v) such that sR(v′) = s′ and wR(v′) ∈
ScsK(w).

• If δ(s) = 2s′, then for every w′ ∈ ScsK(w) there exists v′ ∈ ScsR(v) such that
λ(v′) = (w′, s′).

• If δ(s) = s′ ∨ s′′, then there exists v′ ∈ ScsR(v) such that λ(v′) = (w, s′) or
λ(v′) = (w, s′′).

• If δ(s) = s′∧ s′′, then there exist v′, v′′ ∈ ScsR(v) such that λ(v′) = (w, s′) and
λ(v′′) = (w, s′′).

The run is accepting if the state labeling of every infinite branch through R
satisfies the parity acceptance condition determined by Ω. This is formalized as
follows.

An infinite branch π of R is accepting if sup(πλπ1Ω) is even. (Recall that λπ1

denotes the the state component of the labeling.) The run R is accepting if every
infinite branch through R is accepting.

In other words, for every infinite branch π we consider the sequence of natural
numbers that is obtained from π by extracting the state component of the labelings
of the vertices and applying the priority function Ω; we require that the maximum
natural number occurring infinitely often is even.

A pointed Kripke structure is accepted by A if there exists an accepting run
of A on the Kripke structure. The query recognized by A, denoted ||A||, contains
all pointed Kripke structures accepted by A. An Lµ formula is equivalent to an
alternating tree automaton if the formulas defines the query that the automaton
recognizes.

2.2.4 Index

Similar to the notion of alternation depth for Lµ formulas we now define the notion
of index of an alternating tree automaton.
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Let A be an alternating tree automaton. The transition graph of A, denoted
G(A), is the directed graph with vertex set S and with an edge from a state s to a
state s′ if s′ occurs in δ(s). Let CA be the set of all strongly connected components
of the transition graph of A. For every C ∈ CA, let

mA
C = |{ΩA(s) | s ∈ C}| (28)

denote the number of priorities used in C . The index of A, denoted ind(A), is the
maximum of all these values, that is,

ind(A) = max({mA
C | C ∈ CA} ∪ {0}) . (29)

2.2.5 Partial Priority Functions and Complex Transition Conditions

From now on we will also allow partial priority functions with alternating tree auto-
mata. The only thing we require of an alternating tree automaton A with a partial
priority function is that on every infinite path through G(A) there must be a state
with a priority assigned. This also implies that on every infinite path a state with
a priority assigned occurs infinitely often.

Equivalently, the restriction of G(A) to the states with no priority must not
have a strongly connected component. By convention, a partial priority function is
extended to a total priority function by assigning to each state with no priority the
minimum priority assigned in the strongly connected component of G(A) the state
belongs to. Further, all states that do not belong to a strongly connected component
get priority 0. Note that this does not change the index of the automaton.

Acceptance for automata with partial priority functions can equivalently be
defined as follows. A run is accepting if on every infinite branch infinitely many
states with a priority occur and the maximum priority occurring infinitely often is
even.

The transition conditions defined above are simpler than the ones used in Ex-
ample 1. The more restrictive definition of transition condition makes most of the
proofs easier and does not go along with a loss in expressiveness. In some situations
however, for instance, if one wants to show that a certain Kripke query is recogniz-
able by an alternating tree automaton, one would want to use a richer syntax.

The most general option is to allow any modal formula over Q and S as a
transition condition. (An adaption of the semantics is straightforward.) It is in
fact easy to see that even such a rich syntax does not lead to a more powerful
automaton model: every such automaton can be turned into an automaton according
to our definition by introducing additional states, namely a new state for every
subformula of a complex transition condition, and adapting the transition condition
appropriately, see Example 4.

So, henceforth, we will—without loss of generality—allow complex transition
conditions.

2.3 The Translation

As we will see, it is straightforward to construct for every Lµ formula an alternating
tree automaton that recognizes the exact query that the formula defines. It is,
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however, more complicated to prove the correctness of the construction.

2.3.1 Informal Description

Let ϕ be an arbitrary Lµ formula. An alternating tree automaton can check that
a given pointed Kripke structure (K, w) satisfies ϕ as follows. It simply unwinds
the formula, that is, the automaton will have a state 〈ψ〉 for each subformula ψ of
ϕ, and the transition condition for a state reflects the outermost connective of the
corresponding subformula. For instance, if ψ = χ0 ∧ χ1, then δ(〈ψ〉) = 〈χ0〉 ∧ 〈χ1〉.
The most interesting case is when ψ = q. If the occurrence of q in ϕ is free, then
δ(〈q〉) = q, that is, the automaton simply checks if q holds in the current world. But
if the occurrence is bound, then it is bound by a fixed point operator, say χ is the
corresponding subformula, and the automaton will expand the variable q in that it
replaces state 〈q〉 by 〈χ〉. The intuition behind this is that it starts a recursion on
χ — it expands the fixed point.

Clearly, least and greatest fixed points have to be dealt with differently. For a
greatest fixed point it is ok if it is expanded infinitely often, but for a least fixed point
only a finite number of expansions should be allowed. If fixed point subformulas are
nested and expanded over and over again, the outermost fixed point is the most
relevant one. To account for this, the priority function is chosen appropriately.

Example 5. Consider ϕ1 from Example 1 again. The automaton corresponding
to ϕ1 will have the following states: 〈µq1(q0 ∨ 3q1)〉, 〈q0 ∨ 3q1〉, 〈q0〉, 〈3q1〉, and
〈q1〉. The initial state is 〈µq1(q0 ∨ 3q1)〉 and all states get priority 0 except for
〈µq1(q0 ∨3q1)〉, which gets priority 1. The transition function is given by

δ(〈µq1(q0 ∨3q1)〉) = 〈q0 ∨3q1〉 , (30)

δ(〈q0 ∨3q1〉) = 〈q0〉 ∨ 〈3q1〉 , (31)

δ(〈q0〉) = q0 , (32)

δ(〈3q1〉) = 3〈q1〉 , (33)

δ(〈q1〉) = 〈µq1(q0 ∨3q1)〉 . (34)

From this transition table, we see that 〈q0 ∨ 3q1〉, 〈q0〉, and 〈q1〉 are not really
necessary in the sense that we can take shortcuts. In fact, we can shorten the
definition of the transition function:

δ(〈µq1(q0 ∨3q1)〉) = 〈q0〉 ∨ 〈3q1〉 , (35)

δ(〈q0〉) = q0 , (36)

δ(〈3q1〉) = 3〈µq1(q0 ∨3q1)〉 . (37)

This automaton is exactly the same automaton (modulo renaming of the states) as
the one in Example 4.

The details of the general construction follow.

2.3.2 Formal Definition

Given a formula ϕ, we define an alternating tree automaton A(ϕ) as follows. The
subformulas of ϕ build the states ofA(ϕ); the formula ϕ itself is the initial state, the
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transition function reflects the structure of the formula, and the priority function
reflects the alternation structure of the formula. This is explained in detail in what
follows.

We first define a normal form for Lµ formulas. An Lµ formula is in normal form
if every propositional variable q is only quantified at most once and if in this case
all occurrences of q are in the scope of this quantification. Clearly, every formula
is equivalent to a formula in normal form of the same size and alternation depth.
So, henceforth, we will—without loss of generality—assume that all formulas are in
normal form.

Given an Lµ formula ϕ in normal form and a propositional variable q occurring
in ϕ, exactly one of the following two conditions is true.

1. Every occurrence of q in ϕ is free.
2. Every occurrence of q in ϕ is quantified by the same fixed point operator, that

is, it is bound in the same subformula ηqψ.
In the second case, we denote the formula ηqψ by ϕq.

Let ϕ be an Lµ formula in normal form. The alternating tree automaton A(ϕ)
is defined by

A(ϕ) = (S, sI , δ, Ω) (38)

where

• S is the set which contains for each subformula ψ of ϕ (including ϕ itself) a
state denoted 〈ψ〉,

• the initial state is given by sI = 〈ϕ〉,

• the transition function is defined by

δ(〈⊥〉) = 0 , δ(〈>〉) = 1 , (39)

δ(〈q〉) =

{
q if q ∈ free(ϕ),
〈ϕq〉 if q /∈ free(ϕ),

δ(〈¬q〉) = ¬q , (40)

δ(〈ψ ∧ χ〉) = 〈ψ〉 ∧ 〈χ〉 , δ(〈ψ ∨ χ〉) = 〈ψ〉 ∨ 〈χ〉 , (41)

δ(〈3ψ〉) = 3〈ψ〉 , δ(〈2ψ〉) = 2〈ψ〉 , (42)

δ(〈µqψ〉) = 〈ψ〉 , δ(〈νqψ〉) = 〈ψ〉 , (43)

• for every ψ ∈ Fµ with α(ψ) > 0, Ω(〈ψ〉) = 2dα(ψ)/2e − 1, and

• for every ψ ∈ Fν with α(ψ) > 0, Ω(〈ψ〉) = 2bα(ψ)/2c.

This concludes the definition of A(ϕ).
From Remark 1 it follows:

Remark 2. Let ϕ be an Lµ formula and Ψ a set of subformulas of ϕ such that
{〈ψ〉 | ψ ∈ Ψ} is strongly connected in the transition graph of A(ϕ). Then the
following is true.

1. There exists a fixed point formula ψ of alternation depth > 0 which is maximal
in Ψ (w. r. t. the subformula order).

2. For every element χ ∈ Ψ, we have Ω(ψ) ≥ Ω(χ).
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Another important observation is the following.

Remark 3. Let ϕ be an Lµ formula. Then α(ϕ) = ind(A(ϕ)).

The main theorem of this section is:

Theorem 1. Let ϕ be an arbitrary Lµ formula. Then ϕ and A(ϕ) are equivalent,
that is,

||ϕ|| = ||A(ϕ)|| . (44)

2.3.3 Proof of Correctness

The proof of the above theorem goes by induction on the size of ϕ. As a preparation,
we prove a series of lemmas, which show how the operators and connectives of Lµ

can be modeled by automata. In fact, the constructions discussed are exactly as in
the translation described above.

Disjunction and Conjunction. We start with disjunction and conjunction. Let
A and A′ be alternating tree automata. Further, let sI be some new state and m
the maximum of ΩA(sAI ) and ΩA

′
(sA

′
I ). Then A+A′ and A ·A′ are defined by

A+A′ = (SA ∪ SA
′ ∪ {sI}, sI , δA ∪ δA

′ ∪ {(sI , sAI ∨ sA
′

I )}, ΩA ∪ ΩA
′
) , (45)

A ·A′ = (SA ∪ SA
′ ∪ {sI}, sI , δA ∪ δA

′ ∪ {(sI , sAI ∧ sA
′

I )}, ΩA ∪ ΩA
′
) , (46)

where SA and SA
′
are made disjoint beforehand.

The first thing we observe is the following. If ϕ and ψ are Lµ formulas, thenA(ϕ∨
ψ) = A(ϕ) +A(ψ), and, similarly, A(ϕ ∧ ψ) = A(ϕ) ·A(ψ) (up to isomorphism).

In addition, we have:

Lemma 2. Let A and A′ be alternating tree automata. Then

||A+A′|| = ||A|| ∪ ||A′|| , ||A ·A′|| = ||A|| ∩ ||A′|| . (47)

Proof. We only prove the claim for ∪; the proof for ∩ is similar. First, assume
(K, w) is accepted by A + A′. Let R be a minimal accepting run of A + A′ on
(K, w). Then, by definition of the transition function of A+A′, the root of R has
exactly one successor v, which is labeled with (w, sAI ) or (w, sA

′
I ). Clearly, R↓v (the

subtree of R rooted at v) is an accepting run of A or A′. So (K, w) ∈ ||A|| ∪ ||A′||.
For the converse containment, assume R is an accepting run of A or A′ on some

pointed Kripke structure (K, w). Consider the following tree. It has a root v labeled
(w, sI) with exactly on successor v′ and the subtree rooted at v′ is identical with R.
Then this tree is an accepting run of A+A′ on (K, w). Hence, (K, w) ∈ ||A+A′||.�

The requirement that the state sets of A and A′ are made disjoint is very strong.
Clearly, the following would be enough. The transition functions ofA andA′ as well
as their priority functions agree on every joint state. So, overlapping state spaces
can be tolerated to a certain extent.
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Modal operators. Next, we consider the modal operators. For an arbitrary al-
ternating tree automaton A, we set

3A = (SA ∪ {sI}, sI , δA ∪ {(sI , 3sAI )}, ΩA) , (48)

2A = (SA ∪ {sI}, sI , δA ∪ {(sI , 2sAI )}, ΩA) , (49)

where sI is some new state.
Similar to above, we first note that if ϕ is an Lµ formula, then 3A(ϕ) = A(3ϕ)

and 2A(ϕ) = A(2ϕ). In addition to this, we have:

Lemma 3. Let A be an alternating tree automaton. Then

||3A|| = 3||A|| , ||2A|| = 2||A|| . (50)

Proof. We only prove the claim for 3; the proof for 2 is analogous.
Let (K, w) be an arbitrary pointed Kripke structure. First, assume (K, w) is

accepted by 3A. Let R be a minimal accepting run of 3A on (K, w). Then, by
definition of the transition function of 3A, the root of R has exactly one successor
v with sR(v) = sAI and wR(v) ∈ ScsK(w). Clearly, the subtree of R rooted at this
vertex is an accepting run of A on (K, wR(v)). So (K, w) ∈ 3||A||.

For the converse containment, assume (K, w) ∈ 3||A||. Then there exists w′ ∈
ScsK(w) such that (K, w) ∈ ||A||. Let R be an accepting run of A on (K, w′).
Consider the following tree. It has a root v labeled (w, sI) with exactly one successor
v′ and the subtree rooted at v′ is identical with R. Then this tree is an accepting
run of 3A on (K, w). Thus, (K, w) ∈ ||3A||. �

Composition. An alternating tree automaton A is positive in the propositional
variable q if ¬q does not occur in any transition condition δA(s). Observe that
whenever A is such an alternating tree automaton, then

||A||(K[q 7→ W ]) ⊆ ||A||(K[q 7→W ′]), (51)

for every Kripke structure K and sets W , W ′ with W ⊆ W ′ ⊆ WK.
Let q be an arbitrary propositional variable, A an alternating tree automaton

positive in q, and A′ an arbitrary alternating tree automaton. We define an altern-
ating tree automaton A[A′/q] by

A[A′/q] = (SA ∪ SA
′
, sAI , δ, ΩA ∪ ΩA

′
) (52)

where the state sets are made disjoint beforehand and δ is obtained from δA ∪ δA
′

by replacing q in every transition condition δA(s) by sA
′

I . Just as above it is not
really necessary to make the state sets disjoint—it suffices to make them disjoint
where the transition functions or the priority functions do not agree.

Here, we have:

Lemma 4. Let q be a propositional variable, A an alternating tree automaton pos-
itive in q, and A′ an arbitrary alternating tree automaton. Then

||A[A′/q]|| = ||A|| [q 7→ ||A′||] . (53)
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Proof. Let (K, w) be a pointed Kripke structure and assume (K, w) is accepted by
A[A′/q]. Let R be a minimal accepting run of this alternating tree automaton on
(K, w). Let V ′ be the set of all vertices v of R with sR(v) = sA

′
I and W ′ = {wR(v) |

v ∈ V ′}.
Let T = R − V ′. By construction, this tree is an accepting run of A on the

pointed Kripke structure (K[q 7→ V ′], w). Since A is positive in q, it is enough to
show that W ′ ⊆ ||A′||(K). But this is trivial, as for every v ∈ V ′, the tree R↓v is
an accepting run of A′ on (K, wK(v)).

For the converse, assume (K, w) ∈ ||A|| [q 7→ ||A′||]. Then (K[q 7→ W ], w)
∈ ||A|| where W = {w′ ∈ WK | (K, w′) ∈ ||A′||}. For every w′ ∈ W , let Rw′ be a
minimal accepting run of A′ on (K, w′). Further, let R be a minimal accepting run
of A on (K[q 7→ W ], w).

Consider the tree R′ = R · {(v,RwK (v)) | wK(v) ∈ W}. Clearly, this tree is an
accepting run of A[A′/q] on (K, w). �

The observant reader might have noticed that I have not made the following
claim (in analogy to the other operations on automata that we have considered
before): if ϕ and ψ are Lµ formulas and q a variable occurring positive in ϕ, then
A(ϕ[ψ/q]) = A(ϕ)[A(ψ)/q] (up to isomorphism). The reason is this is not true;
the priority function would have to be defined in a more sophisticated way. But we
don’t have to make this effort, for the above lemma will not be used directly in the
proof of Theorem 1, only in the proof of the lemma below about the fixed point
operators.

Fixed point operators. Finally, we model least and greatest fixed point op-
erators. Let q be an arbitrary propositional variable and A an alternating tree
automaton positive in q. We want to construct alternating tree automata that re-
cognize µq||A|| and νq||A||, respectively. The only difficult part in the construction
is the definition of the priority function.

The alternating tree automata µqA and νqA are defined by

µqA = (SA ∪ {sI}, sI , δ, ΩA ∪ {(sI , mµ)}) , (54)

νqA = (SA ∪ {sI}, sI , δ, ΩA ∪ {(sI , mν)}) , (55)

where sI is a new state, δ is as δA ∪ {(sI , sAI )} except that every occurrence of q is
replaced by sI , and mµ and mν are yet to be defined.

Let M be the maximum priority in A. If sI does not belong to a strongly
connected component of G(A), then mµ = mν = 0. If it belongs to a strongly
connected component of G(A) and this component contains a state with priority
M , then mµ [mν] is the least odd [even] number ≥ M . In all other cases, mµ [mν]
is the greatest odd [even] number ≤ M . The last rule is not well-defined for mµ if
M = 0; by convention, in this case, we set mµ = 1.

We first note that A(µqϕ) = µqA(ϕ) and A(νqϕ) = νqA(ϕ) (up to isomorph-
ism).

Lemma 5. Let q be a propositional variable and A an alternating tree automaton
positive in q. Then

||µqA|| = µq||A|| , ||νqA|| = νq||A|| . (56)



Alternating Tree Automata, Parity Games, and Modal µ-Calculus 377

Proof. Let K be an arbitrary Kripke structure. Let f : 2W
K → 2W

K
be defined by

f : W 7→ ||A||(K[q 7→ W ]) . (57)

We want to show that ||µqA||(K) and ||νqA||(K) are, respectively, the least and
greatest fixed point of f . We denote these fixed points by Wµ and Wν , respectively.

We first show that Wµ and Wν are fixed points of f and consider only µ; the
argument is similar for ν. Clearly, (accepting) runs of µqA and A[µqA/q] are in a
natural one-to-one correspondence. Thus,

Wµ = ||µqA||(K) (58)

= ||A[µqA/q]||(K) (59)

= ||A||(K [q 7→ ||µqA||(K)]) (60)

= ||A||(K [q 7→Wµ]) (61)

= f(Wµ) , (62)

where (58) and (61) use the definition of Wµ, (59) is due to the above observation,
(60) is Lemma 4, and (62) is just the definition of f .

So for the rest it is enough to show:
1. Every element of Wµ belongs to some approximant for the least fixed point of

f .
2. Whenever ||A||(K[q 7→ W ]) = W for some W ⊆ WK, then W ⊆ Wν.
First, assume w ∈ Wµ. Let R be a minimal accepting run for µqA on (K, w)

and U the set of all vertices v with sR(v) = sI . For every ordinal λ, let Uλ be defined
as explained in Lemma 1. Since R is assumed to be accepting, only a finite number
of elements from U occur on every branch through R. Lemma 1 then implies that
for every v ∈ U there exists an ordinal λv such that v ∈ Uλ. Using transfinite
induction, it is easy to show that for every ordinal λ and every v ∈ Uλ, wR(v) is in
the λ-approximant of f from below. In particular, w is in the λv-approximant of f
from below where v is the root of R.

Second, suppose W is a fixed point of f . Just as above, we can argue that for
every w ∈ W there exists an accepting run of A on (K[q 7→ W ], w). Pick such an
accepting run for every w ∈W and denote it by Rw. Further, assume all the Rw’s
are minimal.

Fix an arbitrary w ∈ W . We define a sequence T 0,T 1, . . . of trees where each
tree T i is a subgraph of T i+1. The limit of this sequence, which we denote by T ,
will be an accepting run of νqA on (K, w).

The inductive definition of the T i’s is as follows. First, for every w′ ∈W letR′w′
be the tree that results from Rw′ by adding a new root labeled (w′, sI). Second,
let T 0 = R′w. Third, assume T i has already been defined and let Bi = {v ∈ V Ti |
wTi(v) ∈W}. Then T i+1 is defined by

T i+1 = T i · {(v,R′wTi (v)) | v ∈ Bi} . (63)

Clearly, T is a run of νqA on (K, w). We only need to show that it is accepting.
Assume π is an infinite branch of T . We distinguish two cases. First, suppose π

is a branch of some tree T i. Then, just as before, there is some w′ ∈W such that a
suffix of π is an infinite branch of Rw′ and is therefore accepting. Second, suppose
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π is not a branch of any Ti. Then sI occurs infinitely often on π, but ΩA(sI) is the
maximum priority occurring in a strongly connected component of the transition
graph of νqA and ΩA(sI) is even. So π is an accepting branch. �

Proof of Theorem 1. As stated above, the proof of Theorem 1 goes by induction.
Clearly, ||A(ϕ)|| = ||ϕ|| whenever ϕ is of the form ⊥, >, q, or ¬q. If ϕ is a com-
posite formula, we distinguish several cases according to the outermost connective
or operator. If the outermost connective is disjunction or conjunction, the claim
follows from Lemma 2. Similarly, if the outermost operator is a modal operator, the
claim follows from Lemma 3. Finally, if the outermost connective is a fixed point
operator, the claim follows from Lemma 5. �

3 Model-Checking

In this section, we look at a first application of the main theorem of the last section:
we investigate the complexity of the model checking problem for Lµ. This is the
following problem.

ModelChecking: given a finite pointed Kripke structure (K, w) and an Lµ

formula ϕ, determine whether or not (K, w) |= ϕ.
Now that we know that for every Lµ formula there exists an equivalent alternating

tree automaton, the model checking problem can be reduced to the acceptance
problem for alternating tree automata, which is the following problem.

Accepts: given a finite pointed Kripke structure (K, w) and an alternating tree
automaton A, determine whether A accepts (K, w).

The acceptance problem for alternating tree automata itself will be reduced to
the winner problem for parity games.

In the first subsection, the fundamentals about parity games are briefly recalled.
In the second subsection, the reduction from the model checking problem for the
modal µ-calculus to the winner problem for parity games is described. This also
yields the desired upper bound for the complexity of the model checking problem
for modal µ-calculus.

3.1 Parity Games

Parity games are a special form of two-player infinite games on graphs.

3.1.1 Informal Description

A parity game is played by two players, the male Player 0 and the female Player 1.
It is played on a game board which shows circles, Player 0’s locations, and boxes,
Player 1’s locations. The circles and boxes are connected by arrows. One of the
locations is a distinguished initial location, and every location is assigned a number
from a finite set of natural numbers, its priority.

A parity game is played using a pebble, which during a play of the game is moved
by the players from location to location along the arrows on the game board.
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A play of a game proceeds in rounds. At the beginning of each round, the pebble
is in some location, the current location. In the first round, the current location is
the initial location. The rules for playing a round are as follows. If the current
location is a dead end, then the play is over and the player who owns the locations
looses. If the current location is no dead end the player who owns the current
location moves the pebble from this location along an arrow to another location and
thereby completes the round. (Note that there is no restriction on the arrows. So
it can very well be that there are self arrows and the new current location will be
the old current location and the same player goes again in the next round.)

If a play does not stop after a finite number of rounds an infinite number of
locations is visited during the course of the play and the play can be viewed as an
infinite sequence of locations. In this case, the winner is determined as follows. One
considers (the bounded) sequence of natural numbers that is obtained by replacing
every location of the above sequence by its priority. Player 0 wins if the maximum
number occurring infinitely often in this sequence is even, else Player 1 wins.

3.1.2 Formal Definition

Formally, a parity game is a tuple

P = (L0, L1, lI, M, Ω) (64)

where

• L0 and L1 are disjoint sets, the sets of Player 0’s and Player 1’s locations,
respectively,

• lI ∈ L0 ∪ L1 is an initial location,

• M ⊆ (L0 ∪ L1)× (L0 ∪ L1) is a set of moves, and

• Ω: (L0 ∪ L1)→ ω is a priority function with a finite range.

The set of all locations, L0 ∪ L1, is denoted by L. Clearly, the ordered pair (L, M)
is a directed graph, which is denoted G(P ) and called the game graph of P .

A partial play of P is a path through G(P ) starting with lI. A play of P is a
maximum path through G(P ) starting with lI. A play p is winning for Player 0 if
it is infinite and sup(pΩ) is even or if it is finite and p(∗) ∈ L1. Symmetrically, a
play is winning for Player 1 if it is infinite and sup(pΩ) is odd or if it is finite and
p(∗) ∈ L0.

A Player 0 wins a game (as opposed to a play) if he has a way to move such that
regardless of how his opponent moves he wins each of the resulting plays. This is
formalized as follows.

A strategy tree for Player 0 in P is a tree T satisfying the following conditions.

• The root of T is labeled lI.

• Every v ∈ V T with λT (v) ∈ L0 has a successor in T labeled with a successor
of λT (v) in G(P ), that is, Player 0 must move when it is his turn.
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• Every v ∈ V T with λT (v) ∈ L1 has, for every successor l of λT (v) in G(P ) a
successors in T labeled l, that is, all options for Player 1 have to be taken into
account.

A branch v of a strategy tree T is winning if its labeling, which is a play, is winning.
A strategy tree T for Player 0 is winning if every branch through T is winning.
Player 0 wins a game P if there exists a winning strategy tree for him. Symmetric-
ally, it is defined what it means for Player 1 to win a play or a game.

Example 6. First, suppose P is a game where ΩP (l) = 0 for every l ∈ LP . Then,
clearly, Player 0 wins P if and only if he has a way to avoid to run into a dead end
where it is his move.

Second, suppose ΩP (l) = 1 for every l ∈ LP . Then Player 0 wins P if and only
if he has a way to force the game into a dead end where it is Player 1’s move.

Next, suppose ΩP (l) ≤ 1 and that there are no dead ends. Then Player 0 wins
if and only if he can play in such a way that only a finite number of locations with
priority 1 are visited.

Example 7. Let P be an arbitrary parity game with ΩP : LP → {0, 1, . . . , b− 1}.
Let (K, wI) be the pointed Kripke structure where WK = LP , AK = MP , wI = lI ,
κ(q) = LP0 and, for every i < b, κ(qi) = {l ∈ LP | ΩP (l) = i}. That is, we view P
as a pointed Kripke structure.

It is now easy to design an alternating tree automaton Ab which accepts (K, wI)
if and only if Player 0 wins P . The automaton Ab has a state si with priority i for
every i < b. The transition function is given by

δ(sj) =
∨
i<b

(q ∧ qi ∧3si) ∨
∨
i<b

(¬q ∧ qi ∧2si) , (65)

for every j < n. So Ab simply propagates the priorities of the locations in exactly
the right way: if it is Player 0’s move, the priority is propagated to one successor, if
it is Player 1’s move, the priority is propagated to all successors.

Example 8. [6] The previous example also helps us to come up with an Lµ formula
ϕb that holds in (K, wI) if and only if Player 0 wins P . We simply set

ϕb = µ/νsb−1ν/µsb−2µ/νsb−3 . . . νs0

∨
i<b

(q ∧ qi ∧3si) ∨
∨
i<b

(¬q ∧ qi ∧ 2si)

 (66)

where the sequence of fixed point operators starts with µ if b − 1 is odd and ν
otherwise. To see that this formula is correct one constructs the automaton Aϕb

and compares it with Ab as constructed in the previous example.

3.1.3 Complexity

There is a basic question about parity games that we need to answer before we can
try to solve the model-checking problem: How difficult is it to determine whether
or not Player 0 wins a finite parity game?

Formally, this problem is defined as follows.
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Wins: given a finite parity game P , determine whether or not Player 0 wins the
game P .

To describe the actual complexity of solving Wins, we need some more defini-
tions; we need to define a notion of index for a parity game. The index of a finite
parity game P is determined as follows, very similar to the index of an alternating
tree automaton. Let CP be the set of all strongly connected components of the game
graph of P reachable from lPI . For every C ∈ CP , let mP

C = max{ΩP (l) | l ∈ C}.
The index of P , denoted ind(P ), is the maximum of these numbers, that is,

ind(P ) = max({mP
C | C ∈ CP} ∪ {0}) . (67)

The best known upper bounds for the time complexity of Wins are listed in the
following theorem.

Theorem 2. [10, 11]
1. Wins, the winner problem for finite parity games, is solvable in time

O
(
m
(

2n

b

)bb/2c)
(68)

where m is the number of moves in a given game, n the number of locations,
and b its index, that is, n = |LP |, m = |MP |, and b = ind(P ).

2. Wins is in UP ∩ co-UP.

Wins is easily seen to be P-hard.

3.2 Reduction of the Acceptance Problem

The objective of this subsection is to solve Accepts as specified earlier. This is
done by a reduction from Accepts to Wins.

Given an alternating tree automaton A and a pointed Kripke structure (K, wI)
we want to construct a game P (A,K, wI) that Player 0 wins if and only ifA accepts
(K, wI). The basic idea is that the choices Player 0 makes correspond to the choices
A has to make when in a transition condition it has to satisfy a disjunction or a 3

requirement. Symmetrically, the moves for Player 1 correspond to conjunctions and
2 requirements. Recall that a winning strategy for Player 0 has to make sure that
whatever Player 1 does in a play, it will be a win for Player 0.

Formally, the game P (A,K, wI) associated with A and (K, wI) is defined by

P (A,K, wI) = (L0, L1, (w
K
I , sAI ), M, Ω) (69)

where the individual components are as follows. The set L0 is the set of all pairs
(w, s) where δ(s) is of the form 0, q with q /∈ κK(w), ¬q with q ∈ κK(w), s′ ∨ s′′, or
3s′. This also determines L1. The successors of a location (w, s) are determined by
the following rules.

• If δ(s) ∈ {0, 1} or δ(s) = q or δ(s) = ¬q for some q ∈ Q, then (w, s) has no
successors.

• If δ(s) = s′, then (w, s) has only one successor, namely (w, s′).
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• If δ(s) = s′∨s′′ or δ(s) = s′∧s′′, then (w, s) has two successors, namely (w, s′)
and (w, s′′).

• If δ(s) = 3s′ or δ(s) = 2s′, then (w, s) has a successor (w′, s′) for every
w′ ∈ ScsK(w).

Finally, the priority function Ω maps (w, s) to ΩA(s).
The desired theorem is the following.

Theorem 3. Let (K, w) be a pointed Kripke structure and A an alternating tree
automaton. The alternating tree automaton A accepts (K, w) if and only if Player 0
has a winning strategy in the game P (K,A, w).

Proof. Just observe that accepting runs of A on (K, w) and winning strategy trees
for Player 0 in P (K,A, w) are identical. �

In view of Theorem 2, this yields the following about the complexity of the word
problem for alternating tree automata. Observe that ind(P (K,A, w)) = ind(A).

Theorem 4. 1. Accepts, the word problem for alternating tree automata, is
solvable in time

O
ln

(
2kn

b

)bb/2c (70)

where k is the number of worlds of the Kripke structure, l is the size of the
accessibility relation, n is the number of states of the automaton, and b is the
index of the automaton.

2. Accepts is in UP ∩ co-UP.

As a consequence, we obtain the following complexity bounds on the model-
checking problem for modal µ-calculus.

Theorem 5. [10, 23, 14]
1. ModelChecking, the model-checking problem for modal µ-calculus, is solv-

able in time

O
ln

(
2kn

b

)bb/2c (71)

where k is the number of worlds of the Kripke structure, l is the size of the
accessibility relation, n is the number of subformulas of the formula, and b is
the alternation depth.

2. ModelChecking is in UP ∩ co-UP.

4 Satisfiability

In this section, we consider the second application of the main theorem of Section 2:
we investigate the complexity of the satisfiability problem, which is the following
problem.

Satisfiability: given an Lµ formula ϕ, determine whether or not there exists
a pointed Kripke structure (K, w) such that (K, w) |= ϕ.
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We will attack this problem just as the model-checking problem. Since we know
that every Lµ formula ϕ is equivalent to the alternating tree automaton A(ϕ), we
only need to check whether or notA(ϕ) accepts some pointed Kripke structure, that
is, we reduce Satisfiability to the following problem.

NonEmptiness: given an alternating tree automaton A, determine whether or
not A accepts some pointed Kripke structure.

We solve this problem using parity games. The superficial analogy is the fol-
lowing. Solving the nonemptiness problem for alternating tree automata amounts
to finding a tree that is accepted. Solving the winner problem for a parity game
amounts to finding a winning strategy tree. So in both cases we need to find a tree.
A direct reduction to the winner problem is, however, quite complicated. Therefore,
we will proceed in several steps.

4.1 Memoryless Strategies and Tree-Like Witnesses

In order to prove that an alternating tree automaton accepts some pointed Kripke
structure it is enough to exhibit a pointed Kripke structure together with an accept-
ing run for it. Eventually, we would like to combine the two into a single object,
more precisely, into a single tree. The first two steps in this direction are carried
out in this subsection.

First, we show that if there exists an accepting run of an alternating tree auto-
maton on some pointed Kripke structure there also exists an accepting run which is
structurally very similar to the pointed Kripke structure in question. In fact, we use
a deep theorem from the theory of parity games to show that there always exists an
accepting run that can be thought of as a directed graph put on top of the Kripke
structure. This leads to the notion of a tree-like prewitness for nonemptiness.

Second, we show that if there exists a tree-like prewitness at all, then there exists
one which is not too arbitrary in the following sense. When we consider a world of
the underlying Kripke structure together with its successors and the corresponding
subgraph of the accepting run put on top of it, then this structure can be chosen
from a small (exponential in the size of the automaton) set. This leads to the notion
of a tree-like witness for nonemptiness.

For the rest of this chapter, we fix an alternating tree automatonA = (S, sI , δ, Ω).
By Γ, we denote the set of all propositional variables occurring in the transition con-
ditions of A. Only these are relevant to the behavior of the automaton.

4.1.1 Memoryless Strategies

We start with the aforementioned result from the theory of parity games. A game
won by Player 0 is called memoryless if the moves Player 0 has to make in order to
win the game are independent of the history of the game, that is, if Player 0 does not
need to remember anything about the past of a play in order to be able to take the
right decision. This can be easily described formally by looking at strategy trees.
A memoryless strategy tree for Player 0 is a strategy tree T satisfying the following
additional condition. Whenever v, v′ ∈ V T are such that λT (v) = λT (v′) ∈ L0, then
there is a bijection between ScsT (v′) and ScsT (v′) which preserves the labeling. This
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obviously implies that if λT (v) = λT (v′) ∈ L0, then T ↓v and T ↓v′ are isomorphic.

Theorem 6. [6, 16] For the winner of any parity game, there exists a memoryless
winning strategy tree.

4.1.2 Kripke Trees and Tree-like Prewitnesses

Next, we define the notions of a Kripke tree and a tree-like prewitness. A Kripke
tree is a pointed Kripke structure (K, w) where (WK , AK) is a tree with root w.
For notational convenience, we will omit w and denote it by ρK .

A tree-like prewitness for (the nonemptiness of) A is a pair (K,W ) consisting
of a Kripke tree K and a graph W = (V, E) satisfying the following conditions.
(A) The vertex set V is a subset of WK × SA.
(B) For every edge ((w, s), (w′, s′)) ∈ E we have w′ ∈ ScsK(w) or w = w′.
(C) Every v ∈ V is reachable from (ρK , sAI ), which belongs to V .
(D) In every (w, s) ∈ V , the transition condition δ(s) is satisfied. (For instance,

if δ(s) = 3s′, then there must exist w′ ∈ ScsK(w) such that (w′, s′) ∈ V and
((w, s), (w′, s′)) ∈ E.) This will be denoted by (w, s) |= δ(s).

(E) For every infinite path π through W , the number sup(pπ1 ΩA) is even.
From Theorem 6 we can now conclude:

Proposition 1. The automaton A accepts some pointed Kripke structure if and
only if there is a tree-like prewitness for A.

Proof. First, note that if A accepts some pointed Kripke structure it also accepts a
Kripke tree—just unravel any pointed Kripke structure it accepts. Now, reconsider
the proof of Theorem 3. Assume a Kripke tree (K, w) is accepted by A. Then
there exists a winning strategy tree for Player 0 in P (A,K, w). By Theorem 6,
there exists a memoryless winning strategy tree for Player 0 in this game. Consider
the run that corresponds to this strategy tree. It can be viewed as an accepting
witness. One only needs to identify all vertices with the same labeling and replace
each vertex by its label. �

4.1.3 Tree-like Witnesses

Reconsider the definition of a tree-like prewitness; (D) says:

(w, s) |= δ(s) for every (w, s) ∈ V . (72)

In this subsection, we will rephrase this in graph-theoretic terms, and using this
new formulation, we will be able to simplify the notion of a tree-like prewitness as
indicated above.

Let Γ′ ⊆ Γ, S4 ⊆ S, S2 ⊆ S, and S3 ⊆ S. We define a (complex) transition
condition by

τ (Γ′, S4, S2, S3) =
∧
q∈Γ′

q ∧
∧

q∈Γ\Γ′
¬q ∧

∧
s∈S4

s ∧
∧
s∈S3

3s ∧
∧
s∈S2

2s . (73)
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It is now important to observe that every transition condition of A is equivalent
to a disjunction of transition conditions of this form. We will soon see what this
implies.

We need some more notation. Let (K,W ) be as above and w ∈ WK . Further,
assume w′ ∈ ScsK(w). We set

Γ(w) = {q ∈ Γ | w ∈ κK(q)} , (74)

S(w) = {s ∈ SA | (w, s) ∈ V W } , (75)

G(w) = {(s, s′) | ((w, s), (w, s′)) ∈ EW } , (76)

G(w, w′) = {(s, s′) | ((w, s), (w′, s′)) ∈ EW} . (77)

So Γ(w) is the set of propositions from Γ holding true in w, the set S(w) is the set of
states assumed in w, the relationG(w) describes the subgraph ofW restricted to the
vertices with first component w, and the relation G(w, w′) describes the subgraph
of W restricted to the edges from vertices with first component w to vertices with
first component w′. Observe that (K,W ) is implicit in the notation.

Assume (K,W ) is a tree-like prewitness for A. Fix w ∈ WK . Consider an
arbitrary state s ∈ S(w). Since W is a tree-like prewitness, we know there exist
sets S4, S2, S3 such that τ (Γ(w), S4, S2, S3) implies δ(s) and

(w, s) |= τ (Γ(w), S4, S2, S3) . (78)

Clearly, this must hold for every s ∈ S(w), with possibly different sets S4, S2,
and S3. This leads to the following definition. An admissible tile is a tuple

(Γ′, S ′, H, H2, H3) (79)

where Γ′ ⊆ Γ, S ′ ⊆ S, H ⊆ S ′×S ′, and H2, H3 ⊆ S ′×S such that for every s ∈ S ′

the transition condition τ (Γ′, sH, sH2, sH3) implies δ(s). Here, sH denotes the set
of all s′ such there exists an s with (s, s′) ∈ H and similar for sH2 and sH3.

So (D) from the definition of tree-like prewitness can now be rephrased as follows.
(D1) For every w ∈ WK , there exists an admissible tile (Γ(w), S(w), H, H2, H3)

such that H ⊆ G(w), and for every (s, s′) ∈ H3, there exists w′ ∈ ScsK(w)
with H2 ∪ {(s, s′)} ⊆ G(w, w′).

We want to keep witnesses as simple as possible. A tree-like prewitness (K,W ) is
called a tree-like witness if:
(D2) For every w ∈ W , there exists an admissible tile (Γ(w), S(w), H, H2, H3)

such that H = G(w) and for every (s, s′) ∈ H3, there exists exactly one
w′ ∈ ScsK(w) with H2 ∪ {(s, s′)} = G(w, w′).

The difference is that we require equality instead of containment and unique suc-
cessors.

By replicating subtrees in a given tree-like prewitness and removing unnecessary
vertices, we can obviously turn it into a tree-like witness. So, as a consequence of
Proposition 1, we note:

Corollary 1. The automaton A accepts some pointed Kripke structure if and only
if there exists a tree-like witness for A.
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4.2 Automata on Infinite Words and Tree Witn esses

Recall that we want to view a nonemptiness witness as a winning strategy tree in
an appropriate game. The problem with tree-like witnesses is that we require of
a tree-like witness (K,W ) that the parity conditions holds on every infinite path
through W rather than on every branch of K (cf. (E)). In this subsection, we show
there exists an exponential size ω-automaton that checks on every branch of K that
all paths of W put on top of this path satisfy the parity condition. This leads to
the notion of a tree witness.

4.2.1 Using Automata on Infinite Words

Let (K,W ) be a tree-like witness and π = w0w1 . . . a branch of W . With π, we
associate the graph G(π) = (V, E) where

V = {(i, s) | (wi, s) ∈ V W } , (80)

E = {((i, s), (i, s′)) | (s, s′) ∈ G(wi)}
∪ {((i, s), (i + 1, s′)) | (s, s′) ∈ G(wi, wi+1)} . (81)

So G(π) “is” the graph put on top of π. Condition (E) from the definition of a
tree-like prewitness can now be rephrased as follows.
(E1) For every branch π = w0w1 . . . and every infinite path π′ through G(π) the

parity condition of A holds, that is, sup(π′ π1 Ω) is even.
There are two types of infinite paths (s0, i0)(s1, i1)(s2, i2) . . . through a branch

π as above:
1. There exists j such that ij = ij+1 = ij+2 = . . .
2. For every i there exists j with ij ≥ i.

Paths of the first type get stuck in some world of π and are easy to deal with. In the
following, we will focus on paths of second type, which are called diverging paths.

Let π be as above. The graph G(π) is determined by the sequence

p(π) = (G(w0),G(w0, w1))(G(w1),G(w1, w2))(G(w2),G(w2, w3)) . . . (82)

Such a sequence can be viewed as an ω-word over the alphabet Θ = 2S×S × 2S×S .
We will construct an ω-automaton of exponential size that accepts exactly those
ω-words over Θ that correspond to graphs where every infinite sequence satisfies the
parity condition of A. We will then be able to rephrase (E1) more conveniently.

We start with some definitions. Let g = (B0, C0)(B1, C1)(B1, C1) . . . be any ω-
word over Θ. The graph of g, denoted G(g), is the graph whose edge set is given
by

{((i, s), (i, s′)) | ∃i((s, s′) ∈ Bi)} ∪ {((i, s), (i + 1, s′)) | ∃i((s, s′) ∈ Ci)} . (83)

A branch of g is a maximum path through G(g) starting with (0, sI) and diverging
in the above sense. The ω-word g is even if sup(π π1 Ω) is even for every infinite
branch π of g.

We next show that there exists an exponential size deterministic parity ω-
automaton that accepts all even ω-words over Θ.
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Proposition 2. There exists a deterministic parity ω-automaton C with 2O(|S|4 log |S|)

states and priorities bounded by O(|S|4) that recognizes the set of all even ω-words
over Θ.

Proof. Let n be the number of states of A. Without loss of generality, we assume
Ω: S → {0, . . . , n}.

We first construct a nondeterministic ω-automaton B recognizing the comple-
ment. This automaton will then be transformed into the deterministic ω-automaton
we are looking for.

Let (B, C) ∈ Θ. We write ∆(B, C) for the set of all triples (s, s′, i) where there
exists a state s′′ ∈ S and a path from s to s′′ in the graph (S, B) with maximum
priority j and where (s′′, s′) ∈ C and i = max(j, Ω(s′)).

Consider the nondeterministic parity ω-automaton

B = (S × {0, . . . , |S|}, (sI, Ω(sI)), ∆, ΩB) ,

where ∆ is given by

∆ = {((s, i), (B, C), (s′, i′)) | (s, s′, i′) ∈ ∆(B, C)} , (84)

and ΩB((s, i)) = i + 1 for every s ∈ S. Clearly, B recognizes the set of all even
ω-words over Θ.

The automaton C is constructed as follows.
1. B is converted into an equivalent nondeterministic Büchi automaton B1.
2. B1 is converted into an equivalent deterministic Rabin automaton B2.
3. B2 is transformed into the deterministic Streett automaton B3 dual to B2.

It recognizes the complement of what B2 recognizes.
4. B3 is converted into an equivalent deterministic parity automaton C.

Clearly, C recognizes the set of all even ω-words over Θ.
Let m = n(n+1) be the number of states ofB. The first step is simple and yields

an automaton with O(m2) states. The second step can be carried out using Safra’s
construction, [22], and thus yields an automaton with 2O(m2 logm) states and O(m2)
accepting pairs. The third step neither changes the number of states nor the number
of pairs. The fourth step can be implemented using Büchi’s index appearance record
with hit, [24], and yields an automaton with a larger number of states but still with
2O(m2 logm) many states and priorities bounded by O(m2). �

Using the automaton C from the previous theorem, we can replace (E1) by:
(E2) (a) For every infinite branch π of K, the ω-word p(π) is accepted by C from

above.
(b) There is no w ∈ WK such that G(w) contains a strongly connected set

where the maximum priority is odd.
The first part takes care of diverging paths, the second one of nondiverging paths.

4.2.2 Tree Witnesses

We put everything together what we have obtained thus far. Let R be the set
of all admissible tiles (Γ′, S ′, H, H2, H3) where there exists no strongly connected
component in H with a maximum priority which is odd. A tree witness is a tree
T = (V, E, λ) with labels in R ∪ 2S×S such that the following conditions hold.
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1. The root of T is labelled with some tile (Γ′, S ′, H, H2, H3) where sI ∈ S ′.
2. If v is a vertex labelled C ⊆ S × S, then it has a successor v′ labelled with an

element (Γ′, S ′, H, H2, H3) such that {s′ | ∃s((s, s′) ∈ C)} ⊆ S ′.
3. If v is a vertex labelled (Γ′, S ′, H, H2, H3), then v has a successor labelled

H2 ∪ {(s, s′)} for every (s, s′) ∈ H3.
4. For every infinite branch of T labelled T0C1T1 . . . with

Ti = (Γi, Si, Hi, H2,i, H3,i),

the ω-automaton C accepts (H0, C0)(H1, C1) . . .
From Corollary 1 and Proposition 2, we can conclude:

Corollary 2. The automaton A accepts some pointed Kripke structure if and only
if there exists a tree witness for A.

4.3 Reduction to Parity Games

Corollary 2 enables us to carry out the last step in our reduction from the nonempti-
ness problem for alternating tree automata, for a tree witness can easily be inter-
preted as a winning strategy tree in a suitable parity game.

Assume C from above is given as C = (U, uI , δ
C, ΩC). Consider the parity game

P = (2S×S × U, R× U, ({(sI, sI)}, uI), M, ΩP ) (85)

where M is defined as below and ΩP is defined by ΩP ((x, u)) = ΩC(u) for every
x ∈ 2S×S ∪R. The set M contains two types of moves.

1. Let t = (Γ′, S ′, H, H2, H3) be any element from R and u ∈ U . Further, let
(s, s′) ∈ H3 and C = H2 ∪ {(s, s′)}. Then there is a move from (t, u) to
(C, δC(u, (H, C))).

2. Let C ⊆ S × S, u ∈ U , and (Γ′, S ′, H, H2, H3) ∈ R with {s′ | ∃s((s, s′) ∈
C)} ⊆ S ′. Then there is a move from (C, u) to (t, u).

From Corollary 2, we can finally conclude:

Proposition 3. The automaton A accepts some pointed Kripke structure if and
only if Player 0 wins the game P .

Proof. We only need to show that there exists a tree witness for A if and only if
Player 0 wins the game P . This is straightforward, and we only show one direction.
Assume T = (V, E, λ) is a tree witness for A. To construct a winning strategy tree
T ′ = (V ′, E ′, λ′) for P , we let C run over T . We set V ′ = V ∪ {vI} for some new
vertex vI, and E ′ = E ∪ {(vI, ρT )}. The vertex vI is labelled ({(sI , sI)}, uI). The
rest of the labeling is determined as follows. Let (v, v′) ∈ E ′. If λ′(v) = (t, u) with
t = (Γ′, S ′, H, H2, H3) and if λ(v′) = C , then λ′(v′) = (C, δC(u, (H, C))). Similarly,
if λ′(v) = (C, u) and λ(v′) = t, then λ′(v′) = (t, u). Clearly, in view of the above
definition of P , the resulting tree is a winning strategy tree for P . �

This gives the desired upper bound for the complexity of the satisfiability prob-
lem for Lµ:
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Corollary 3. [5]
1. NonEmptiness, the nonemptiness problem for alternating tree automata, is

in EXP.
2. Satisfiability, the satisfiability problem for modal µ-calculus, is in EXP.

Proof. From the previous proposition we can conclude that for every alternating
tree automaton A one can construct a parity game P with the following properties.

• The number of locations of P is 2d × 2O(n4 logn) where d is the number of
propositional variables occurring in δA and n = |SA|.

• The priority function of P is bounded by cn4 for some constant c.

• Player 0 wins P if and only if A accepts some pointed Kripke structure.

Further, P can easily be constructed, that is, in time polynomial in its size. The first
claim now follows from Theorem 2. The second claim is an immediate consequence
of the first claim in view of Theorem 1. �

Conclusion

We have seen how the proposed model of alternating tree automata, together with
parity games, can be used to understand µ-calculus. It should be noted that many
other results concerning the µ-calculus can be obtained and phrased using the same
automaton model. For instance, Niwinski’s important result, [19], that every Kripke
query recognizable by an alternating tree automaton can be defined by a modal µ-
calculus formula.
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