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Abstract

Let G be a simple group of finite Morley rank with a definable irreducible
BN-pair of (Tits) rank 2 where B is solvable and let P be the associated
generalized n-gon. If n is odd and B connected, then n = 3 and G is definably
isomorphic to PSL3(K) for some algebraically closed field K. Furthermore,
n ≤ 14 if T = B ∩ N 6= 1. We also give sufficient conditions for G to be a
simple algebraic group.

1 Introduction

The classification of simple groups of finite Morley rank is unavoidable if one is con-
cerned with the classification of first-order theories having few models. The starting
point of what is called stability theory was Morley’s result that a theory having
only one model up to isomorphism in some uncountable cardinality has exactly one
model up to isomorphism in every uncountable cardinality. Such theories are there-
fore called uncountably categorical. According to Shelah’s classification program,
these theories should certainly be classifiable. One of the tools in this context is
the existence of a model theoretic notion of dimension on definable sets, the Morley
rank. Zilber proved that uncountably categorical theories are either almost strongly
minimal, i.e. in the algebraic closure of a set of Morley rank 1, or there must be
infinite definable groups describing the relation between different definable subsets
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(see [Po] 2.25). These groups are uncountably categorical if equipped with the full
induced structure, hence of finite Morley rank in the plain group language; if they
are simple, they will however remain uncountably categorical in the plain group
language. This shows that in order to get a good understanding of the models of
an uncountably categorical theory it is necessary to understand both the sets of
Morley rank 1 and the groups of finite Morley rank. While (plain) abelian groups
of finite Morley rank were classified by Macintyre in the early 70’es, much less is
known about other types of groups or strongly minimal sets. Zilber’s conjecture
that strongly minimal sets are all equality-like, vector space-like or field-like, turned
out to be wrong. In producing counterexamples Hrushovski showed that strongly
minimal sets can be more exotic than first assumed. However, these exotic examples
are not wild enough to influence the algebraic properties of the structure, so that
the following conjecture due to Cherlin and Zilber, which is in fact a special case of
Zilber’s original conjecture, remains open.

The Cherlin-Zilber Conjecture states that an infinite simple group of finite Mor-
ley rank is an algebraic group over an algebraically closed field. If the conjecture is
true, then any such group must contain a definable (and split) BN-pair. Therefore,
it is a natural problem to classify BN-pairs of finite Morley rank (see Section 2).

In several papers, we have obtained classification results for BN-pairs of finite
Morley rank satisfying certain additional conditions: If the Tits rank of the BN-pair
is at least 3 or the BN-pair has Tits rank 2 and is split, then the group satisfies the
conjecture, see [KTVM, Te2, Te4]. We here consider the case of Tits rank 2 where
B is solvable and prove the following results:

Theorem 3.3, 3.4 Let G be an infinite group of finite Morley rank with a definable
irreducible BN-pair of Tits rank 2 and let |W | = |N/(B ∩N)| = 2n. Assume that B
is solvable and connected. If n is odd, then n = 3 and G/M is definably isomorphic
to PSL3(K) for some algebraically closed field K and some normal subgroup M of
G. If n is even and T = B ∩N 6= 1, then 4 ≤ n ≤ 14.

This is a first step towards an analog of the result by Feit and Higman [FH]
showing that, in the finite case, n ∈ {3, 4, 6, 8}. This was crucial in the classification
of the finite simple groups.

Theorem 5.7, 5.4 Let G be an infinite group of finite Morley rank with a definable
irreducible BN-pair of Tits rank 2 where B is solvable. If either G acts transitively
on the set of ordered ordinary (n + 1)-gons in the corresponding generalized n-gon
P or fix(t) = fix(T 0) is finite for some t ∈ T 0, then G/M is definable isomorphic
to PSL3(K), PSp4(K) or G2(K) for some algebraically closed field K and some
normal subgroup M of G.

Furthermore, we show that for odd n, T = B ∩N always has finite index in its
normalizer.

Notice that these results contrast sharply with the examples in [Te1] where gen-
eralized n-gons of finite Morley rank were constructed for arbitrary n ≥ 3 whose
automorphism group acts transitively on the set of ordered ordinary (n + 1)-gons.
However, these generalized n-gons do not allow the definition of any infinite group,
and in fact it follows from [TVM1] that their automorphism group does not have
finite Morley rank. Thus, the assumption that the group acting on the generalized
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n-gon be of finite Morley rank yields a dividing line between the ‘wild’ examples
and the tame ones, even if we make no further assumptions on B (see also [TVM1]).

2 Background and definitions

Background on BN-pairs and generalized polygons with emphasis on their model
theory has been presented in [Te2, KTVM, TVM2]. We recall definitions and prop-
erties to make the paper self-contained.

In a graph, a sequence (x0, x1, . . . , xk) of vertices is called a simple path of length
k, or a (simple) k-path if xi−1 is adjacent to xi, for all i ∈ {1, 2, . . . , k}, and if
xi−1 6= xi+1, for all i ∈ {1, 2, . . . , k − 1}. For a connected graph, we can define a
natural distance function d(x, y) as the smallest k for which there is a k-path joining
x and y.

2.1 Polygons Let n ≥ 2 be an integer. A bipartite graph P(P ,L,F) is called a
generalized n-gon (or just n-gon) if it satisfies the following three axioms:

(i) For all elements x, y ∈ P ∪ L we have d(x, y) ≤ n.

(ii) If d(x, y) = k < n, then there is a unique k-path (x0 = x, x1, . . . , xk = y)
joining x and y.

(iii) P is thick, i.e. every element x ∈ P ∪ L is adjacent to at least three other
elements.

In other words, P is a bipartite graph of diameter n, girth 2n and valency ≥ 3. It
is easy to see that for n = 2, these axioms just define a complete bipartite graph
of valency ≥ 3, and for n = 3 these are precisely the axioms of a projective plane.
Obviously, the definition is completely symmetric in P and L and the generalized
n-gon obtained from P by exchanging P and L is called the dual of P. elements in
If we drop axiom (iii), we obtain the notion of a weak generalized n-gon.

The vertices P∪L are called the elements of P. A pair of elements (x, y) is called
a flag if x and y are adjacent. The set of neighbours of an element x is denoted by
D1(x), and, more generally, the set of elements at distance i from x, 0 ≤ i ≤ n, is
denoted by Di(x).

Two elements at distance n from each other are called opposite. Also, two flags
are called opposite if they consist of pairwise opposite elements. A simple path of
length 2n with x0 = x2n in P is called an ordered ordinary n-gon or simply ordinary
n-gon if we do not want to distinguish one specific flag. Note that any two opposite
flags determine an ordinary n-gon, and given any flag (x0, x1) of an ordinary n-gon
Γ, there is a unique flag of Γ opposite (x0, x1).

Let p and q be opposite elements of P. Axiom (ii) says that for any element
y ∈ D1(p) there is a unique shortest path from y to q; this path contains a unique
element y′ ∈ D1(q). In this way we obtain a definable bijection between D1(p) and
D1(q). Composing such bijections one obtains definable bijections between D1(x)
and D1(y) for any two elements x and y of the same type, either point or line. If n
is odd, this is true for all elements, see [KTVM] 2.3 for details.
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As in the case of projective planes, one can use these bijections to show that
any element of P is definable from an ordinary n-gon (x0, . . . , x2n−1, x2n = x0)
together with D1(x0) ∪D1(x1), see again [KTVM] 2.3. In other words, P is in the
definable closure of {x0, x1, . . . , xn}∪D1(x0)∪D1(x1). Using the definable bijections
between D1(x) and D1(y) for d(x, y) = n, it is easy to see that the same is true for
{x0, x1, . . . , xn} ∪D1(x0) ∪D1(xn−1).

2.2 Remark: This immediately implies that any automorphism of P (in the sense
of a first order structure, or equivalently, in the sense of incidence geometry) which
fixes {x0, x1, . . . , xn} ∪D1(x0) ∪D1(xj) for a simple path (x0, x1, . . . , xn) and j = 1
or n− 1 is the identity. This fact is crucial in most of the proofs.

2.3 Definition Let P be a generalized n-gon and let α = (x0, x1, . . . , xn−1, xn) be
a simple path. An automorphism of (P ,L,F) fixing all elements incident with the
elements of (x1, . . . , xn−1) is called root elation, (or simply elation). The group Uα

of all elations for α is called the root group corresponding to α.
For n ≥ 4 an elation is called central if it fixes Di(x), for some element x, and

for all positive i ≤ n/2.

2.1 BN-pairs

Recall that given a group G, the subgroups B and N form a BN-pair if they satisfy
the following conditions:

(i) BNB = G.

(ii) T := B ∩N � N .

(iii) The Weyl group W := N/T is generated by a distinguished set of involutions
S.

(iv) For all wi ∈ S and v, vi ∈ N with viT = wi, then vBvi ⊆ BvB ∪BvviB.

(v) Bv 6= B for all v ∈ N with vT ∈ S.

The standard example of a BN-pair is the one coming from the group of
K -rational points of a simple algebraic group, K an algebraically closed field.
Namely, let B be a Borel subgroup, viz. a maximal connected solvable subgroup
of G, let T be the maximal split torus contained in B and let N be its normalizer.
Then it is well known that B and N form a BN-pair where the Weyl group W is
finite. Furthermore, B is a semidirect product U oT of a nilpotent subgroup U , the
unipotent radical of B, and the torus T .

A (not necessarily algebraic) BN-pair is called split if there exists (like in the
algebraic case) a normal nilpotent subgroup U of B with B = UT . We do not
require U ∩ T = 1. The (Tits) rank of the BN-pair is by definition the number
of generators in S. If the Weyl group is finite, the BN-pair is called spherical.
The BN-pair is irreducible if there is no partition of S into subsets I, J such that
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W = WI × WJ , where WI , WJ denote the subgroups of W generated by I and J ,
respectively. Clearly, a BN-pair of Tits-rank 2 with |W | = 4 is necessarily reducible.

The only part of the definition of a BN-pair which might not be expressible by a
first order statement is condition (iii). Consequently, when W is finite, the fact that
we have a BN-pair is first-order expressible. It was shown in [TVM1] 2.8 that for
groups of finite Morley rank (and more generally, for stable groups) the Weyl group
is necessarily finite. This allows us to talk about definable BN-pairs in groups of
finite Morley rank.

In this paper we will be concerned with groups of finite Morley rank having
a definable irreducible BN-pair of (Tits) rank 2; so the associated Weyl group is a
finite group generated by two involutions and hence is the dihedral group of order 2n
for some n ≥ 3. Such groups have a nice geometric interpretation as automorphism
groups of generalized n-gons, which we now recall.

2.2 Geometric interpretation

The general reference for this section is [Ti]. From now on let G be a group with
an irreducible BN-pair of Tits-rank 2, and suppose that the associated Weyl group
W = N/(B ∩N) is finite of order 2n for n ≥ 3 and generated by w1, w2.

Let P1 = 〈B, w1〉 and P2 = 〈B, w2〉. These are the only proper subgroups of
G properly containing B and they are definable if B is since P1 = B ∪ Bw1B and
P2 = B ∪ Bw2B. (Any subgroup containing a conjugate of B is called parabolic.)
We define an incidence structure on the coset spaces P = G/P1 and L = G/P2 by
defining a point gP1 to be incident with a line g′P2 if and only if gP1 ∩ g′P2 6= ∅.
The axioms of a BN-pair yield that the incidence structure defined in this way is a
generalized n-gon P, where n = |W |/2. Let x0 denote the point 1GP1 ∈ P and x1

denote the line 1GP2 ∈ L. Since P1∩P2 = B, the elements x0 and x1 are incident in
this structure. In a natural way, G acts on P as a group of automorphisms and it can
be shown that it acts transitively on the set of ordered ordinary n-gons contained
in P (see [VM1] Section 4.7). Clearly, in this action P1 and P2 are the respective
stabilizers of x0 and x1 in G, and B is the subgroup fixing the flag (x0, x1).

The transitivity of G on ordered ordinary n-gons also implies that B acts tran-
sitively on the flags opposite (x0, x1), or, equivalently, on the ordinary n-gons con-
taining (x0, x1). In this action T = B ∩ N is the (pointwise) stabilizer of some
ordinary n-gon Γ containing (x0, x1) and N is the setwise stabilizer in G of Γ.
Clearly, N ≤ NG(T ) is acting transitively on the flags of Γ. Thus the Weyl group
W = N/T , which is just the dihedral group of order 2n, acts in this way as the group
of automorphisms of the incidence graph of Γ. (Note that G might have another
BN-pair yielding a different polygon.) If the BN-pair splits as B = UT , then since
T stabilizes Γ, the subgroup U acts transitively on flags opposite (x0, x1).

Conversely, let P = (P ,L,F) be a generalized n-gon and suppose that a group
G ≤ Aut(P) acts transitively on the set of ordered ordinary n-gons. The BN-pair
of G corresponding to this action can be seen as follows: Let (x0, x1) be a flag, and
Γ an ordinary n-gon containing (x0, x1). Let B be the stabilizer of (x0, x1), and N
the setwise stabilizer of Γ. Then B and N form a BN-pair of Tits-rank 2, and P is
isomorphic to the coset geometry (G/Gx0 , G/Gx1 , {(gGx0 , gGx1)| g ∈ G}), where Gx0

and Gx1 denote the stabilizer in G of the elements x0 and x1, respectively. As before
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Gx0 and Gx1 then form the parabolic subgroups of G containing B (= Gx0 ∩ Gx1),
and the Weyl group W = N/(B ∩N) acts as the dihedral group of order 2n on Γ.
Starting with a different flag, we obtain a BN-pair consisting of subgroups B′ and
N ′ which are conjugate in G to B and N , respectively.

We have thus seen that a BN-pair of Tits rank 2 with |W | = 2n is equivalent to a
generalized n-gon P with an automorphism group transitive on ordered ordinary n-
gons. Rather than working with the group theoretic definition we will in the sequel
always be working with this geometric interpretation of the BN-pair.

2.3 Prerequisites

We will use the following results:

2.4 Fact [Te2, Te4] Let G be an infinite group of finite Morley rank with a definable
irreducible split BN-pair of (Tits) rank 2. Then G/M is interpretably isomorphic to
either PSL3(K), PSp4(K) or G2(K) for some algebraically closed field K and some
normal subgroup M of G.

Except for the case |W | = 16 this is contained in [Te2]. The remaining case
was handled in [Te4] where it was shown that if G has a split BN-pair of Tits
rank 2 with |W | = 16, then the corresponding generalized octagon is a so-called
Moufang octagon. By [KTVM] Theorem A, there are no Moufang octagons of
finite Morley rank, establishing the fact above. Here, as in the following results the
normal subgroup M can be chosen as the kernel of the action of G on the associated
generalized polygon.

2.5 Fact [Te2] If G is a group of finite Morley rank with a definable BN-pair of Tits-
rank 2 with |W | = 6 such that in the natural action on the associated projective plane
G contains some nontrivial elation, then G/M is definably isomorphic to PSL3(K)
for some algebraically closed field K and some normal subgroup M of G.

2.6 Fact [GVM, VM2] Let G be a group acting regularly on the set of ordered
ordinary n-gons of some generalized n-gon P where n is odd. Then n = 3, and P

is the projective plane of order 2.

Translated into the language of BN-pairs this says that if a group G has a BN-
pair of Tits-rank 2 with |W | = 2n for odd n and T = B ∩N = 1, then n = 3, and
the associated projective plane is finite (and the smallest possible). Unfortunately,
for even n no result of this type is known.

2.7 Corollary Let G be an infinite group of finite Morley rank with a definable
BN-pair of Tits-rank 2 with |W | = 2n where n is odd. Then T = B ∩ N is not
contained in the kernel of the action of G on the associated generalized n-gon. In
particular, T 6= 1.
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2.8 Notation We use the following convention: [a, b] = a−1b−1ab, ab = b−1ab and
a−b = (a−1)b = b−1a−1b, and we let group elements act from the right. When there
is no confusion we also write g(x) for the image of x under g. Otherwise, especially
for products of group elements, we write xg. For g ∈ G, we let fix(g) denote the set
{x ∈ P ∪ L; xg = x} and for a subgroup H ≤ G we denote fix(H) =

⋂
g∈H fix(g).

We write H [i]
x = {g ∈ H| Di(x) ⊆ fix(g)} and H [i]

x1,...xk
=

⋂k
j=1 H [i]

xj
.

We also use the following standard notation: If H is a group acting on the set
X, and if x ∈ X, Y ⊆ X we denote by Hx the stabilizer of x in H, and write HY for
the pointwise stabilizer and H{Y } for the setwise stabilizer of Y in H.

The following well-known observations are at the heart of many arguments.

2.9 Lemma Let H be a group acting on a set X.
(i) Let g and h be commuting elements of H. Then g fixes some x ∈ X if and only

if it fixes h(x). In particular, if g ∈ G[k]
x and [g, h] = 1, then g ∈ G

[k]
x,h(x).

(ii) If g ∈ H{A} and h ∈ HA for A ⊆ X, then [g, h] ∈ HA. In particular, if g ∈ Gx

and h ∈ G[k]
x , then [g, h] ∈ G[k]

x since g leaves Dk(x) invariant for any k. �

3 When B is solvable and connected

If the Cherlin-Zilber Conjecture is true, the BN-pair of a simple group of finite Mor-
ley rank will arise from a Borel subgroup, i.e. a maximal solvable and connected
subgroup. In this section we therefore consider the situation where G has finite
Morley rank and a definable BN-pair of Tits rank 2 with B solvable and connected.
One should expect that the BN-pair is split, as any connected solvable group of finite
Morley rank can be written as a product of its commutator subgroup, which is nilpo-
tent, and a Carter subgroup, i.e. a nilpotent self-normalizing subgroup (see [Wa]).
However, it is not clear that the Carter subgroup is contained in T = B∩N a neces-
sary condition for the splitting of the BN-pair. In the situation of algebraic groups
over algebraically closed fields, this is exactly what happens: the Borel subgroup
B is solvable and connected, the torus T is abelian, connected and self-normalizing
and the unipotent radical U is the commutator subgroup of B. In Section 5 we will
give criteria that ensure the splitting of B, even if B is not necessarily connected.

However, if |W | = |N/(B ∩N)| = 2n with n odd, it is not necessary to establish
the splitting first since we can classify directly.

From now on, throughout the rest of the paper we keep the interpretation of G
as an automorphism group of the associated generalized n-gon P, so B = Gx0,x1 ,
N = G{Γ}, T = B ∩N = GΓ etc. as explained in 2.2.

We will need the following fact:

3.1 Fact For t ∈ T , fix(t) is a (possibly weak) generalized n-gon (see [VM1] The-
orem 4.4.2).

3.2 Lemma Let G be an infinite group of finite Morley rank with a definable BN-
pair of Tits rank 2 where B is solvable and connected, and let H denote the commu-
tator subgroup of B. Let k be minimal with the property that Z(H) 6≤ G[k]

xi
for either

i = 0 or 1. If k < n/2, then T ≤ G[1]
xn+i,xi

for some xn+i ∈ Dn(xi).
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Proof. We keep the set-up introduced in 2.2, so G acts on P, B = Gx0,x1 for the
flag (x0, x1) of P , T = GΓ for the ordinary n-gon Γ, which contains (x0, x1) etc.
Since B is solvable and connected, the commutator subgroup H of B is nilpotent
(see [Po] 3.19). Since the situation is symmetric in x0 and x1, we may assume
that Z(H) 6≤ G[k]

x1
for k < n/2 minimal. So there is some i ∈ Z(H) and a path

γ = (x0, x1, . . . xn) of length n with xk+1 6∈ fix(i). Since i ∈ Z(H), by 2.9(i)
Hγ ≤ Hi(γ). The path γ′ = (xn, . . . xk+1, xk, i(xk+1), . . . i(xn)) is a path of length
2n− 2k > n. The flags (xn, xn−1) and (i(x2k), i(x2k+1)) are opposite each other and
hence determine some ordinary n-gon Γ′ which is thus fixed under Hγ. But some
flag (x, y) of Γ′ is opposite (x0, x1) showing that Hγ fixes in fact the ordinary n-gon
Γ′′ determined by (x, y) and (x0, x1). By conjugating if necessary, we may assume
Hγ ≤ T ≤ Bγ. But clearly we then have Hγ ⊆ T g for all g ∈ Bγ. Since Bγ is
transitive on D1(xn) \ {xn−1} and D1(x0) \ {x1}, we conclude that Hγ ≤ H [1]

xn,x0
.

As Hγ contains the commutator subgroup of Bγ, this implies that Bγ acts as a
regular abelian group on D1(xn) \ {xn−1} and D1(x0) \ {x1}. So T ≤ Bγ ∩G[1]

xn,x0
. �

3.3 Theorem Let G be an infinite group of finite Morley rank with a definable
BN-pair of Tits rank 2 where B is solvable and connected. Assume that |W | =
|N/(B ∩ N)| = 2n with n odd. Then n = 3 and G/M is definably isomorphic to
PSL3(K) for some algebraically closed field K and some normal subgroup M of G.

Proof. Let H denote the commutator subgroup of B. We claim that Z(H) ≤
G[k]

x0,x1
for all k < n/2. Otherwise, we conclude by 3.2 that T ≤ G[1]

xn,x0
. The group

N acts transitively on the flags of Γ and T is invariant under N . Since n is odd, we
see that T ≤ G[1]

x0,...xn
= 1. By Fact 2.6, n = 3 and P is the projective plane of order

2. But B is connected and acts transitively on the set of flags opposite (x0, x1).
This is impossible if that set is finite. Thus we have reached a contradiction.

Thus Z(H) ≤ G[k]
x0,x1

for all k < n/2. Now Theorem 1 of [TVM1] shows that

n = 3. For n = 3, Z(H) ≤ G[1]
x0,x1

shows that G contains elations. Fact 2.5 finishes
the proof of this theorem. �

For the even case, we obtain the following restrictions:

3.4 Theorem Let G be an infinite group of finite Morley rank with a definable
BN-pair of Tits rank 2 where B is solvable and connected. Assume that |W | =
|N/(B ∩N)| = 2n with n even. If T 6= 1, then n ∈ {4, 6, 8, 10, 12, 14}.

Proof. Let again H denote the commutator subgroup of B. By 3.2, if for some
k < n/2 we have Z(H) 6≤ G[k]

x0
and Z(H) 6≤ G[k]

x1
then T ≤ T ∩G[1]

x0,x1
= 1.

So we may assume that Z(H) ≤ G[k]
x0

for k < n/2. We may also assume that Z(H)
does not contain central elations, as otherwise the proof of Theorem 1 in [TVM1]
shows that n ∈ {4, 6, 8, 12}. So for every g ∈ Z(H) there is some x ∈ Dn

2
(x0)\fix(g)

.

First assume that n = 4m + 2, so Z(H) ≤ G[2m]
x0

. Let g ∈ Z(H), let
x2m+1 ∈ D2m+1(x0) \ fix(g) and let x2m+2 ∈ D2m+2(x0) ∩ D1(x2m+1). Let γ =
(x0, x1, . . . , x2m+1, , x2m+2) be a path connecting x0 and x2m+2 and let h ∈ G[2m]

x2m+2
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not fixing x1. (By the homogeneity of the generalized n-gon P we may take a con-
jugate of g, so such an element exists.) As g ∈ Gx2m ∩ G[2m−2]

x2
, by Lemma 2.9(ii)

the commutator [g, h] ∈ G[2m−2]
x2,x2m

. By Remark 2.2, [g, h] = 1 if m ≥ 5 (and n ≥ 22)
and for n = 18, [g, h] is an elation fixing D6(x2) ∪ D6(x8). If [g, h] = 1, then by

Lemma 2.9(i) g ∈ G
[2m]
x0,h(x0). Since d(x0, h(x0)) = 4, this contradicts Remark 2.2 if

n ≥ 22. Thus, n ≤ 18 and if n = 18, then α = [g, h] is a nontrivial elation.
So suppose now that n = 18, so m = 4 and x2m+2 = x10. Choose an element

x′′0 ∈ D4(x10) ∩ D6(x8) and some h′ ∈ G
[8]
x′′0

not fixing x3. Then by Lemma 2.9(ii)

the commutator [α, h′] ∈ G
[8]
x′′0
∩ G[4]

x6
= 1 since α ∈ Gx′′0

∩ G[4]
x6

and h′ ∈ Gx6 ∩ G
[8]
x′′0

.

But this implies by Lemma 2.9(i) and Remark 2.2 that α ∈ G
[6]
x2,h′(x2) = 1 since

d(x2, h
′(x2)) = 8. Hence n 6= 18 and so in this case n ≤ 14.

Next assume that n = 4m. First suppose that G contains a nontrivial ele-
ment g ∈ G[2m−1]

x0,y for some y ∈ D2(x0). Let x2m ∈ D2m(x0) ∩ D2m+2(x2) and let

(x0, x1, x2, . . . x2m) be a path connecting x0 and x2m. Let h ∈ G
[2m−1]
x2m,y′ be a nontrivial

element for some y′ ∈ D2(x2m) ∩D2m+2(x0), so d(x0, h(x0)) = 2. By Lemma 2.9(ii)
the commutator [g, h] ∈ G[2m−2]

x1,x2m−1
. If m ≥ 4 (and n ≥ 16), by Remark 2.2 we have

[g, h] = 1. This implies by Lemma 2.9(i) that g ∈ G
[2m−1]
x0,y,h(x0),h(y) = 1, a contradiction.

Now let g ∈ Z(H) ≤ G[2m−1]
x0

, let x2m ∈ D2m(x0)\fix(g). Let γ = (x0, x1, . . . , x2m)
be a path connecting x0 and x2m and let h ∈ G[2m−1]

x2m
be an element not fixing x0. By

2.9(ii), we have [g, h] ∈ G[2m−2]
x1,x2m−1

. If m ≥ 4 (and n ≥ 16), by Remark 2.2 we have

[g, h] = 1. This implies by Lemma 2.9(i) that g ∈ G
[2m−1]
x0,h(x0). But d(x0, h(x0)) = 2,

contradicting our previous argument. So n ≤ 12 in this case and if n = 12, either g
or [g, h] is a nontrivial elation. �

While we should have n ∈ {3, 4, 6} the remaining cases are harder to deal with.
The case that G[6]

x is nontrivial may occur for n = 12 or 14. It was shown in [Te3]
that this leads to a contradiction if n = 12 and assuming that the group H = B′

acts transitively on the flags opposite (x0, x1). So the cases n = 12 and 14 have to
be handled here again with less information. Notice that the case n = 12 could not
be excluded by the weaker assumptions of [TVM2]. Similar statements hold for the
case that G[4]

x is nontrivial and n = 8 or 10.

4 Some preliminary results

Recall that we keep the interpretation of G as an automorphism group of P as
explained in 2.2.

4.1 Lemma Let G be a group with a spherical BN-pair of Tits-rank 2, and let P be
the associated generalized polygon, where B = Gx0,x1 in the natural action defined
above. Then the BN-pair is split if and only if there is a normal nilpotent subgroup
U of B acting transitively on the flags opposite (x0, x1).

Proof. As pointed out in 2.2, if B splits as B = UT , then U has to act transitively
on the flags opposite (x0, x1). Conversely, suppose that there is a normal nilpotent
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subgroup U of B acting transitively on the flags opposite (x0, x1). We have to show
that B = UT . Let g ∈ B and let (x, y) ⊂ Γ be the unique flag of Γ opposite (x0, x1).
By assumption there is some h ∈ U with h(x, y) = g(x, y). But then clearly, hg−1

fixes (x, y) and hence Γ. Thus hg−1 ∈ T as required. �

4.2 Lemma If G has finite Morley rank, fix(T ) =
⋃

g∈NG(T ) Γg and fix(T 0) =⋃
g∈NG(T 0) Γg. Hence, in particular fix(T ) = Γ if and only if N = NG(T ).

Proof. We prove the statement for T 0, the proof for T being completely similar.
By definition, Γ ⊆ fix(T 0), and hence Γg ⊆ fix((T 0)g) = fix(T 0) for any g ∈
NG(T 0). For the converse, suppose that x ∈ fix(T 0). Since fix(T 0) is a (possibly
weak) generalized n-gon, x is contained in some ordinary n-gon Γ′ ∈ fix(T 0). There
is some g ∈ G with Γ′ = Γg. Since Γ′ ∈ fix(T 0), T 0 ≤ GΓ′ = T g. So T 0 = (T g)0 =
(T 0)g and hence g ∈ NG(T 0), as claimed. The last part of the lemma follows easily
since N = G{Γ} ⊆ NG(T ). �

4.3 Corollary If G has finite Morley rank, we have fix(T ) = fix(T g) if and only
if g ∈ NG(T ) and fix(T 0) = fix((T 0)g) if and only if g ∈ NG(T 0).

Proof. For the nontrivial direction suppose g 6∈ NG(T ). Then Γg ∈ fix(T g) \
fix(T ) by 4.2. Similarly for T 0. �

4.4 Corollary Assume G has finite Morley rank. If fix(T 0) = fix(T ), then
NG(T ) = NG(T 0).

Proof. Suppose g ∈ NG(T 0). Then fix(T ) = fix(T 0) = fix(((T 0)g) = fix(T g),
so g ∈ NG(T ). The other direction is clear. �

4.5 Proposition Let G be a group of finite Morley rank with a definable BN-pair
of Tits-rank 2 with |W | = 2n for odd n. Then T = B ∩ N has finite index in its
normalizer. In fact, either n = 3 or N = NG(T ).

Proof. If fix(T ) = Γ, the claim follows from Lemma 4.2. Otherwise fix(T ) is
a thick generalized n-gon. We claim that NG(T ) induces a regular action on the
ordinary n-gons contained in fix(T ). Namely, let Γ′ ⊆ fix(T ) be an ordinary n-
gon. By Lemma 4.2, there is some g ∈ NG(T ) with Γg = Γ′. Suppose h ∈ NG(T )
also satisfies Γh = Γ′, then gh−1 ∈ T fixes fix(T ). By Fact 2.6, fix(T ) and hence
NG(T )/T is finite and n = 3. �
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5 Splitting B

Suppose now that G has finite Morley rank and a definable BN-pair of Tits rank 2
where B is solvable and not necessarily connected. We will now give some criteria
that ensure that the BN-pair splits. Recall the interpretation of G as an automor-
phism group of P, so B = Gx0,x1 , N = GΓ, T = B ∩ N = GΓ etc. as explained in
2.2.

Notice that while in algebraic groups over algebraically closed fields both B and
T = B ∩ N are always connected groups, this is not true anymore for Lie-groups
or more generally for simple semi-algebraic groups over real closed fields. However,
even in these classes of examples T 0 has finite index in its normalizer and in fact we
have fix(T ) = fix(T 0) = Γ.

The following well-known lemma does not make any model theoretic assump-
tions. We include a proof of it here since there does not seem to be a reference for
it.

5.1 Lemma Let G be a group with a BN-pair of Tits rank 2. If G acts transitively
on the set of ordered ordinary (n + 1)-gons of the corresponding generalized n-gon
P, then — with the notation of 2.2 — T fixes Γ = (x0, x1, x2, . . . , x2n−1, x2n = x0)
and acts transitively on the D1(p) \ {x1, x2n−1} ×D1(xn−1) \ {xn, xn−2}.

Proof. First we note that given the ordinary n-gon Γ = (x0, x1, x2, . . . , x2n−1,
x2n = x0), any two elements (x, y) with x ∈ D1(p) \ {x1, x2n−1} and y ∈ D1(xn−1) \
{xn, xn−2} determine an ordinary (n + 1)-gon: since d(x, y) = n − 1, there is a
unique path of length n − 1 joining them. This path together with the path
(x0 = x2n, x2n−1, . . . , xn−1) forms an ordinary n + 1-gon Θ. Given another pair
(x′, y′) ∈ D1(p) \ {x1, x2n−1}×D1(xn−1) \ {xn, xn−2} and corresponding (n + 1)-gon
Θ′ containing (x0 = x2n, x2n−1, . . . , xn−1) and the path determined by x′ and y′, by
the transitivity of G on the set of ordered ordinary n + 1-gons there is some g ∈ G
fixing (x0, x2n−1, . . . , xn−1) with Θg = Θ′. So g ∈ T , implying that the group T acts
transitively on the set D1(x0) \ {x1, x2n−1} ×D1(xn−1) \ {xn, xn−2}. �

5.2 Remark (i) Note that since D1(x) has Morley degree 1 for all x (see e.g.
[Te2] 2.6), also T 0 is transitive on this set.

(ii) Any ordinary n-gon Γ′ 6= Γ determines some element in D1(x0)\{x1, x2n−1} or
D1(xn−1) \ {xn, xn−2}. Thus, fix(T 0) = fix(T ) = Γ and hence N = NG(T ).
In particular, T and T 0 have finite index in their normalizers.

(iii) Since T is invariant under N and N acts transitively on the flags of Γ, T is
also transitive on D1(xi) \ {xi−1, xi+1} for all 1 ≤ i < 2n.

The following general lemma might be useful even outside the context of finite
Morley rank.
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5.3 Lemma Let G be a group with a BN-pair of Tits rank 2. Let (y0, y1) be a flag
opposite (x0, x1). For any t ∈ T = B ∩ N , there exists some g ∈ B′ = [B, B]
with (y0, y1)

g = (y0, y1)
t. If G has finite Morley rank and t ∈ T 0, we can choose

g ∈ U := [B0, B0].

Proof. If t fixes (y0, y1), there is nothing to prove. Otherwise, let (z0, z1) be the
flag of Γ opposite (x0, x1) and let h ∈ B be such that (z0, z1)

h = (y0, y1). Then
[h, t] ∈ B′ is the required element. The last sentence follows from the fact that
T 0 ≤ B0 ∩ N and we can choose h ∈ B0 since this group is still transitive on the
flags opposite (x0, x1). �

Clearly, Lemma 5.3 holds also for any conjugate T b of T for b ∈ B. Therefore,
it suffices to prove that the conjugates of T generate B in order to show that B′ is
transitive on the flags opposite (x0, x1).

5.4 Theorem Let G be an infinite group of finite Morley rank with a definable
BN-pair of Tits rank 2 where B is solvable. If G acts transitively on the set of
ordered ordinary (n+1)-gons in the corresponding generalized n-gon P, then G/M is
definably isomorphic to PSL3(K), PSp4(K) or G2(K) for some algebraically closed
field K and some normal subgroup M of G.

Proof. By Fact 2.4 it suffices to prove that the BN-pair splits. We use Lemma 5.3
to prove that U := [B0, B0] acts transitively on the ordinary n-gons containing
(x0, x1). Since U is nilpotent ([Po] 3.19), the splitting then follows from 4.1.

Let Γ = (x0, x1, x2, . . . , x2n−1, x2n = x0) and Γ′ = (y0 = x0, y1 = x1, y2, . . . ,
y2n−1, y2n = y0) be two distinct ordinary n-gons. Using Lemma 5.1, we will prove
by induction on the length of the path where Γ and Γ′ differ that there are elements
in respective conjugates of T 0 that transform Γ into Γ′ (The corresponding proof in
[Te3] is correct only for n ≤ 4.) Then U is as required by Lemma 5.3.

Let i, j be such that for k < i we have xk = yk and for k < j we have x2n−k =
y2n−k. Clearly, 2 ≤ i ≤ n and 1 ≤ j ≤ n − 1. So Γ and Γ′ differ on a path of
length 2n − 2 ≥ k = 2n − j − i ≥ n. First assume that they differ on a path of
length k = n. By relabeling if necessary, we may assume that Γ and Γ′ agree on
the path (x0, x1, . . . , xn). Let Θ = (x0, x1, . . . , xn, zn+1, . . . , z2n−1, x0) be an ordinary
n-gon with z2n−1 different from x2n−1, y2n−1. By Lemma 5.1, G0

Θ acts transitively
on D1(x0) \ {x1, z2n−1}, so there is some t ∈ G0

Θ with t(x2n−1) = y2n−1, and hence
Γt = Γ′ as they agree on a path of length strictly greater than n.

Now assume that k > n, so Γ and Γ′ agree on a path of length 2n − k < n.
Without loss of generality we may assume they agree on (x0, x1, . . . , x2n−k). Let Θ =
(x0, x1, . . . , x2n−k, z2n−k+1, . . . , z2n−1, x0) be an ordinary n-gon with z2n−1 different
from x2n−1, y2n−1. By Lemma 5.1, G0

Θ acts transitively on D1(x0) \ {x1, z2n−1}, so
t(x2n−1) = y2n−1 for some t ∈ GΘ. Then Γt and Γ′ differ on a path of length strictly
less than k. Now our induction hypothesis finishes the proof. �

In order to prove in a more general context that the BN-pair splits, by Lemma 5.3
it suffices to prove that the B-conjugates of T generate B. For this we use the
following criterion, which is always satisfied in simple algebraic groups of Tits rank
2:
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5.5 Lemma If G has finite Morley rank and fix(t) = fix(T 0) for some t ∈ T 0,
then fix(t) = fix(T 0) for any generic t of T 0.

Proof. The set X = {t ∈ T 0 : fix(t) = fix(T 0)} is nonempty and definable.
Clearly, Stab(X) = {t ∈ T : tt′ ∈ X for all t′ ∈ X} contains T 0, showing this set to
be generic (see [Po] 2.2). �

5.6 Lemma Let G be an infinite group of finite Morley rank with a definable BN-
pair of Tits rank 2 where B is solvable. If T 0 has finite index in its normalizer and
fix(T 0) = fix(t) for some t ∈ T 0, then 〈(T 0)b : b ∈ B〉 = B0.

Proof. By Lemma 5.5 we have fix(T 0) = fix(t) for t ∈ T 0 generic. Thus the
set X =

⋃
g∈B{tg : t ∈ T 0 : fix(t) = fix(T 0)} is definable and contains all generics

of (T 0)g for g ∈ B. We claim that the Morley rank of X equals the Morley rank of
B. Define the following map

ϕ : X −→ B/NB(T 0); t 7→ gNB(T 0)

where fix(t) = fix((T 0)g). Clearly, ϕ is interpretable and surjective. It is well-
defined because fix((T 0)g) = fix((T 0)h) implies gh−1 ∈ NB(T 0) by Cor. 4.3. For
gNB(T 0) ∈ B/NB(T 0), ϕ−1(gNB(T 0)) contains the generics of (T 0)g and hence

RM(ϕ−1(gNB(T ))) ≥ RM(T 0) = RM(NB(T 0)).

By the additivity of Morley rank (see [Po] 2.14), we hence see that

RM(B) ≥ RM(X) ≥ RM(B/NB(T 0)) + RM(NB(T 0)) = RM(B).

By Zilber’s Indecomposability theorem (see [Po] 2.9), the group 〈(T 0)b : b ∈ B〉 is
definable and connected. As it contains X, we must have 〈T b : b ∈ B〉 = B0. �

5.7 Theorem Let G be an infinite group of finite Morley rank with a definable BN-
pair of Tits rank 2 where B is solvable. If T 0 has finite index in its normalizer
and fix(T 0) = fix(t) for some t ∈ T 0, then the BN-pair is split. Thus, G/M is
definably isomorphic to PSL3(K), PSp4(K) or G2(K) for some algebraically closed
field K and some normal subgroup M of G.

Proof. Since B is transitive on the set of flags opposite (x0, x1) and this set
has Morley degree 1 (see eg. [KTVM] 2.11), B0 is still transitive on this set. By
Lemma 5.6, we know that B0 is generated by the B-conjugates of T 0. Lemma 5.3
now implies that U := [B0, B0] is also transitive on the set of flags opposite (x0, x1).
As U is nilpotent (see [Po] 3.19), Lemma 4.1 yields that the BN-pair is split.

The last sentence of the theorem now follows from Fact 2.4. �
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