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Abstract. Arthur Cohn’s irreducibility criterion for polynomials
with integer coefficients and its generalization connect primes to irre-
ducibles, and integral bases to the variable x. As we follow this link,
we find that these polynomials are ready to spill two of their secrets:
(i) There exists a unique “base-x” representation of such polynomials
that makes the ring Z[x] into an ordered domain; and (ii) There is
a 1-1 correspondence between positive rational primes p and certain
infinite sets of irreducible polynomials f(x) that attain the value p

at sufficiently large x, each generated in finitely many steps from
the pth cyclotomic polynomial. The base-x representation provides
practical conversion methods among numeric bases (not to mention a
polynomial factorization algorithm), while the prime-irreducible cor-
respondence puts a new angle on the Bouniakowsky Conjecture, a
generalization of Dirichlet’s Theorem on Primes in Arithmetic Pro-
gressions.

1. Introduction

The fact that X is the Roman numeral for 10, a common base, whereas
x is a routine variable for polynomial expressions, is hardly a symbolic con-
spiracy worthy of the time of Robert Langdon [3]. Neither would Dr. Lang-
don spare a smirk for the timeworn joke “let x be a number, and 10 be a
letter.” However, consider the following.

1.1. Two Analogies and a Conjecture. Let Z and N denote the sets
of integers and positive integers, respectively. Polynomials in one variable,
x, with integer coefficients, and representations of positive integers in a
given base, b, are reasonably analogous. Also, we not only think of prime
numbers and irreducible polynomials in Z[x] as playing similar roles in
their respective domains, but expect irreducible polynomials to attain some
prime values as well. A concrete connection between these analogies is given
by Arthur Cohn’s Irreducibility Criterion (CIC) [12], where the decimal
representation of a positive rational prime p is converted into an irreducible
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polynomial by replacing the base 10 with x, which, in turn, takes the value
p at x = 10.

Theorem 1.1 (CIC). If a prime p is expressed as p = [an · · · a1a0]10 in base
10, where the integers ai are digits between 0 and 9, then the polynomial
f(x) = anx

n + · · ·+ a1x+ a0 is irreducible in Z[x].

For example, since p = 1187 is prime, the polynomial f(x) = x3 + x2 +
8x + 7 ∈ Z[x] is irreducible. Note that the set of irreducibles in Z[x] is
the union of the rational primes and the non-constant polynomials that
cannot be written as a product of two polynomials of smaller degree. It is
a mystery why this amazingly simple result is not as well-known as, say,
the Eisenstein criterion for irreducibility.

Cohn’s Irreducibility Criterion was generalized to any base b ≥ 2 by
Brillhart, Filaseta, and Odlyzko [2] (also see Ram Murty’s exposition and
simpler proof [10]); we will call this result “Generalized Cohn’s Irreducibil-
ity Criterion,” or, GCIC.

Theorem 1.2 (GCIC). If a prime p is expressed as p = [an · · ·a1a0]b in
some base b ≥ 2, where the integers ai are between 0 and b − 1, then the
polynomial f(x) = anx

n + · · ·+ a1x+ a0 is irreducible in Z[x].

Does any polynomial that takes a prime value have to be irreducible?
Clearly, this is too much to ask. However, it is true that any polynomial
that takes distinct prime values infinitely many times has to be irreducible,
since one of its factors in any given factorization in Z[x] must in turn take
one of the values ±1 infinitely many times, and hence, be a constant. Some
irreducible polynomials in Z[x] cannot attain infinitely many prime values:
for instance, the prime 2 divides all values of the irreducible polynomial
f(x) = x2 − x+ 4 at x ∈ Z.

Let f(x) ∈ Z[x] be a non-constant polynomial. We will call f proper if
its values at integers are relatively prime, and improper, otherwise. Note
that constant polynomials are in neither class by definition. We will also
use the common expressions content and primitive polynomial to mean the
greatest common divisor of all coefficients of a polynomial in Z[x] and a
polynomial with content 1, respectively.

An improper polynomial f(x) with all values divisible by a prime p
must have a homomorphic image f̄(x) ∈ Zp[x] that is divisible by xp − x,
as all elements of the field Zp are roots of f̄ . It follows that p ≤ deg f̄ ≤
deg f ; hence, the number of such primes is limited by the degree of f .
Moreover, Dirichlet’s Theorem on Primes in Arithmetic Progressions asserts
that every primitive linear polynomial in Z[x] with positive coefficients takes
prime values infinitely many times. The Russian mathematician Viktor
Bouniakowsky [1] made the following conjecture for irreducible polynomials
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of all degrees in 1857, generalizing Dirichlet’s Theorem. We will refer to it
as the “Bouniakowsky Hypothesis,” or (BH), from now on. This conjecture,
widely believed to be true by those in the know, is also conspicuously absent
from standard algebra textbooks.

Conjecture 1.3 (BH: Bouniakowsky Hypothesis). Let f(x) ∈ Z[x] be a
proper irreducible polynomial with a positive leading coefficient. Then f(n)
takes prime values infinitely many times for n ∈ N.

As Ribenboim [13] points out, (BH) is equivalent to the following state-
ment: Let f(x) ∈ Z[x] be a proper irreducible polynomial with a positive
leading coefficient. Then f(n) takes a prime value for some n ∈ N. We shall
give yet another equivalent statement to (BH) in Theorem 4.4. To date,
the only family of polynomials for which the Bouniakowsky Hypothesis is
known to be true is the set of linear primitive polynomials in Dirichlet’s
Theorem. In fact, not even one proper irreducible polynomial of degree
at least two has been shown to have infinitely many prime values. The
case x2 + 1 is one of “Landau’s four problems,” which were mentioned by
Edmund Landau at the 1912 International Congress of Mathematicians as
“unattackable at the present state of science” [11].

The GCIC construction necessarily gives rise to proper irreducible poly-
nomials.

Proposition 1.4. Let f(x) ∈ Z[x] be a non-constant irreducible polyno-
mial obtained from some base-b expansion of a prime p as described in
Theorem 1.2. Then f(x) is proper.

Proof. If f(x) =
∑

aix
i with ai ≥ 0, then f ′(x) > 0 for all x ∈ N, and f is

strictly increasing for x ∈ [1,∞). Moreover, f has no zeros in N. Let b ≥ 2
be the base in which p is expressed. Then 0 < f(b− 1) < f(b) = p, and p,
the only candidate for a common prime divisor, cannot divide all values of
f(x) at integers. �

Definition 1.5. Let f(x) ∈ Z[x]. If f(x) has positive values for x ≥ k
for some k ∈ Z, that is, if it has a positive leading coefficient, then we
will call f positive, and write f > 0. A positive, proper, and irreducible
polynomial will be called a PPI-polynomial for short. These polynomials
are non-constant by definition of “proper.”

Hence, a nonzero polynomial with nonnegative integer coefficients, such
as a GCIC polynomial, is positive. Other examples of positive polynomials
include the cyclotomic polynomials Φk(x) for k ≥ 1. With this background,
and after defining base-x representations of polynomials, we will attach
an easily-computable infinite family Fp that is partly made up of PPI-
polynomials, including the ones arising from the GCIC construction, to
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each rational prime p. The defining property of the family will be that each
member takes the value p at a sufficiently large value of x. It will then be
a simple matter to show that this correspondence is 1-1.

1.2. A Case for a Base. The GCIC construction is an example of a
broader phenomenon: it is a well-known trick that a non-constant polyno-
mial with nonnegative integer coefficients can be reconstructed from only
two of its values, f(c) = b and f(f(c)) = f(b) (as long as b ≥ 2), for some
positive integer c. For example, suppose that we want to recover the poly-
nomial f(x) = 3x2+5x+7 from its values f(1) = 15 and f(15) = 757. We
write 757 in base 15, and use the digits as coefficients for the polynomial:

757 = [357]15 =⇒ f(x) = 3x2 + 5x+ 7.

The reason why we can do this is that the given polynomial provides amodel
for the representation of any positive integer in base b > max{3, 5, 7}. Since
we are not supposed to know the coefficients, the value b = f(1), which is
the sum of the positive coefficients, or else the values f(2), f(3), . . ., which
are even larger, will satisfy this condition. Let us go even further. What if
we have a positive polynomial with some negative coefficients?

Example. Consider the positive polynomial

f(x) = 2− x− x3 + 2x4 − x5 + x6 − x7 + x8 − x9 + x10 − x11 + x12.

We will soon show that any positive polynomial has a unique representation
in “base x” with constant and linear “digits” that will work for any suffi-
ciently large base b. Indeed, when we write our particular polynomial in the
form

f(x) = 2 + (x− 1)x+ (x− 1)x2 + (x− 2)x3 + x4 + (x− 1)x5 + (x− 1)x7

+ (x− 1)x9 + (x− 1)x11

= [(x− 1)(0)(x− 1)(0)(x− 1)(0)(x − 1)(1)(x− 2)(x− 1)(x− 1)(2)]x,

we find that

f(3) = [202020211222]3, f(4) = [303030312332]4, f(5) = [404040413442]5.

While some digits are repeated as is, others are always one less than or
two less than the base, exactly as indicated by the “coefficients” of the xi.
However, since 2 is a coefficient itself, it is too small to serve as a base,
and we do not expect f(2) = [101010111000]2 to conform to this shape.

These numerical experiments then suggest that a base-x representation
of a positive polynomial can be obtained simply by writing two values f(b1)
and f(b2) in bases b1, b2 ≥ 2, respectively, where the integers bi are suffi-
ciently greater than the largest absolute value of the coefficients of f (see
Theorem 2.5 for an application of this idea to factorization of polynomials,
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and the proof of Theorem 2.1, where we use it to establish uniqueness).
However, this is hardly necessary in practice. In the next section, we will
describe how to compute the base-x representation of any positive polyno-
mial algorithmically, using countably many digits that form a chain with
minimum and maximum elements, and show that Z[x] naturally becomes
an ordered domain. This representation arguably provides the most com-
pelling analogy between Z[x] and Z.

2. Representation in Base x

2.1. Existence and Uniqueness. The example above prompts us to give
the following definitions. Let f(x) be a positive polynomial. We will call
the nonnegative integer coefficients ai the constant digits, and the linear
coefficients of the form (x− ai) the linear digits in a base-x representation
of f(x). These infinitely many digits form our polynomial alphabet.

Theorem 2.1 (Base-x representation). Let f(x) ∈ Z[x] be a positive poly-
nomial. Then there exists a unique least positive integer a and a unique
base-x representation of f(x) as follows:

f(x) = b0(x) 1 + b1(x)x + b2(x)x
2 + · · ·+ bm(x)xm,

with

bi(x) ∈ {0, 1, . . . , a− 1} ∪ {x− 1, . . . , x− a}, bm(x) 6= 0.

In particular, the unique representation of f(b) ∈ N in base b for all b ≥ a
is given by

f(b) = [bm(b) · · · b1(b) b0(b)]b.

Proof. We start the construction with the constant term and work our way
towards higher powers of x. At any step, if ai is a negative coefficient
of xi, then we replace it by the linear digit (x − |ai|), and add the term
−xi+1 to balance it out. If the original coefficient of xi+1 in f is positive,
then it will be reduced by one and will not affect the coefficient of xi+2.
However, if ai+1 ≤ 0, then the new “coefficient” of xi+1 will be the linear
digit (x − |ai+1| − 1), and will cause a new term −xi+2 to appear, etc.
We can see that positive coefficients remain the same or are reduced by
one, whereas negative coefficients ai are eventually replaced by (x − |ai|)
or (x − |ai+1| − 1). This rule also applies to the last (positive) coefficient
of f(x), and the original highest power will now have a smaller positive
coefficient, or else vanish. The base-b representations of f(b) in Z follow for
b ≥ a. Now suppose that there are two distinct base-x representations of the
same polynomial. Pick any b > max{ai + bi} in N so that the nonnegative
integers ai and bi that appear in the ith constant or linear digits of the
two forms of the polynomial f always result in a pair of distinct values
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{ai, b − bi} and a pair of distinct values {bi, b − ai}. Then the positive
integer f(b) must have two distinct base-b representations, as we shall see:
let the ith digits be distinct in the two base-x expressions for some fixed i.
They cannot both be constant digits or both be linear digits, because these
would immediately give us different integers in base b upon substitution of
b. Due to the choice of b, the two values will be different even in the case
of a pair of opposite-type ith digits. �

Given any positive polynomial f(x) =
∑

aix
i ∈ Z[x], we will call the

unique least positive integer a described in Theorem 2.1, the minimum base
of f , and denote it by a = MB(f). We will also define H(f) = max |ai| as
the height of f . By construction, it is clear that H(f) ≤ MB(f) ≤ H(f)+1.

Example. We compute the base-x representation of

f(x) = −7 + 2x2 − x3 + x4 (2.1)

= (x− 7)1− x+ 2x2 − x3 + x4 (2.2)

= (x− 7)1 + (x− 1)x− x2 + 2x2 − x3 + x4 (2.3)

= (x− 7)1 + (x− 1)x+ x2 − x3 + x4 (2.4)

= (x− 7)1 + (x− 1)x+ x2 + (x− 1)x3 − x4 + x4 (2.5)

= (x− 7)1 + (x− 1)x+ x2 + (x− 1)x3 (2.6)

= [(x− 1)(1)(x− 1)(x− 7)]x. (2.7)

We find that the minimum base of f is MB(f) = 7 = H(f). By contrast,
the polynomial g(x) = 7 + 2x2 + x3 + x4 has minimum base MB(g) = 8 =
H(g) + 1.

2.2. A Natural Linear Ordering on Z[x]. The following statement is
indisputable, yet somewhat surreal.

Theorem 2.2 (Linear Ordering). The linear ordering

(0) < (1) < · · · < (n) < · · · < (x − n) < · · · < (x− 2) < (x− 1)

on the polynomial alphabet extends to a natural linear ordering on the pos-
itive polynomials and to one on Z[x] by symmetry. We have

[(0)]x (2.8)

< [(1)]x < · · · < [(x− 1)]x < [(1)(0)]x (2.9)

< [(1)(1)]x < · · · < [(1)(x− 1)]x < [(2)(0)]x (2.10)

... (2.11)

< [(x − 2)(1)]x < · · · < [(x− 2)(x− 1)]x < [(x − 1)(0)]x (2.12)
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< [(x− 1)(1)]x < · · · < [(x− 1)(x− 1)]x < [(1)(0)(0)]x (2.13)

< [(1)(0)(1)]x < · · · . (2.14)

Every polynomial in Z[x] has a successor and a predecessor obtained by
adding or subtracting [(1)]x, respectively.

Note that the largest digit plus 1 is equal to the base, x, written [(1)(0)]x,
and that the subset of positive elements of Z[x] is not well-ordered. If
m > n > 0, then a positive polynomial with m digits is strictly greater
than one with n digits. If two positive polynomials have the same number
of digits, then the lexicographic order determines which one is larger.

Corollary 2.3. The ordering on Z[x] makes it an ordered integral domain.
In particular, f > g if and only if f−g is positive in the sense that we have
defined. If f > g, then the following properties hold:

(i) f + h > g + h for all h, and (ii) fh > gh for all h > 0.

The field of fractions of Z[x], and its subring Q[x], are also ordered
according to the rule

f

g
> 0 ⇐⇒ f and g are both positive or both negative.

In fact, the set of rational functions in x over any ordered field F is an
ordered field itself, whose order relation is compatible with the one on F.
However, this fact is more commonly used in analysis as an example of a
non-Archimedean field: no natural number n satisfies n · 1 > x (e.g., see
Example 3.2.6 and Exercise 3.16 of Lay [8]). In algebra and number theory,
on the other hand, we can make use of this ordering to establish a more
natural version of the Division Algorithm, as we shall see below.

Theorem 2.4 (Division Algorithm for a Monic Divisor). Let f(x) be any
polynomial and g(x) be a monic polynomial in Z[x]. Then there exist unique
polynomials q(x), r(x) ∈ Z[x] such that

f(x) = q(x)g(x) + r(x), 0 ≤ r(x) < g(x).

Proof.
Existence. Long division gives us the correct form f = qg + r, but the

second condition is replaced by “r = 0 or deg r < deg g”. If r ≥ 0, then
we are done, as a larger degree means a larger polynomial when both are
positive. However, if r < 0, then q(x) − 1 as the quotient and g(x) + r(x)
as the remainder will yield the desired result by judicious applications of
Corollary 2.3. In the latter case, the degree of the remainder will be equal
to the degree of g.
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Uniqueness. Suppose that we have f(x) = q1(x)g(x)+ r1(x) and f(x) =

q2(x)g(x)+ r2(x), with 0 ≤ r1(x), r2(x) < g(x). Then [q1(x)− q2(x)]g(x) =
r2(x)− r1(x). If both sides are zero, then we are done. Suppose not. Thus,
deg(r2 − r1) ≥ deg g by the additivity of degrees in polynomial multiplica-
tion over an integral domain. However, we also know that deg(r2 − r1) ≤
deg g (neither remainder can have a degree larger than that of g), and hence,
we must have deg(r2−r1) = deg g. This leads us to deg(q1−q2) = 0. With-
out loss of generality, say q1(x) = q2(x) + a for some a ∈ N. Hence, we
conclude that

a g(x) = r2(x)− r1(x) =⇒ r2(x) = r1(x) + a g(x) ≥ 0 + 1 g(x) = g(x)

by Corollary 2.3, a contradiction. �

Arithmetic operations on positive polynomials written in base x, includ-
ing digital division by a monic divisor, are covered in Appendix A (see
the last example). Unfortunately, we cannot extend the statement and the
proof to any polynomial ring F[x], where F is a generic ordered domain or
field, because not every ordered domain is discrete: there may be positive
elements between 0 and 1.

2.3. Polynomial Factorization via Base Patterns. Factorization of
integers into prime factors and of polynomials in Z[x] into irreducible fac-
tors in finitely many steps is theoretically possible. The reader can consult
Knuth ([6], pp. 420–436) for a compendium of polynomial factorization
algorithms and their history. Our method of factorization of positive poly-
nomials is a variant of Kronecker’s Method ; according to Knuth (p. 431),
Isaac Newton had described a method to factorize polynomials in Z[x] in
Arithmetica Universalis (1707). Newton’s method was then generalized
into a general, finite algorithm by the astronomer Friedrich von Schubert in
1793 (see the account of the mathematics historian M. Cantor [4], pp. 136–
137), and Kronecker rediscovered the method independently about 90 years
later [7]. The complete description of Kronecker’s algorithm can be found
in van der Waerden [14], pp. 97–98. The algorithm relies on the facts that
(1) if g(x) divides f(x), then for all a ∈ Z, g(a) either is zero or divides f(a);
(2) knowing sufficiently many values of a polynomial of bounded degree, we
can reconstruct it using Lagrange’s or Newton’s interpolation formulas; (3)
hence, there are finitely many candidates for polynomial factors; and (4)
the division algorithm for rational numbers can be applied to see whether
a suspected factor is an actual factor. This algorithm is too costly for com-
puter applications and needs to be enhanced or replaced by other techniques
such as looking for a rational root first, or reduction modulo a few primes.
Similarly, the procedure that we are going to describe is computationally
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expensive, but fun to implement by hand. A slight improvement over Kro-
necker’s method is that only two values of the polynomial are required, so
that fewer cases need to be considered. Moreover, interpolation formulas
are replaced by base-x representations.

We recall that for f(x) =
∑

aix
i ∈ C[x], the ℓ2-norm of f is defined as

||f || =
(

∑

|ai|
2
)1/2

.

We will also use the traditional divisibility notation, g|f , for both poly-
nomials and integers. If f(x) ∈ Z[x] is positive, then it has finitely many
positive divisors g(x) ∈ Z[x], and we define the minimum factor base of f
to be

MFB(f) = max{MB(g) : g|f, g > 0}.

Note that MFB(f) = MB(f), when f is irreducible. Although the exact
value of MFB(f) is obviously unknown in a factorization problem, upper
bounds for the height of any divisor entirely in terms of f are known. For
example, a corollary of Theorem 4 in Mignotte [9] (namely, that ||g|| ≤
2deg g||f ||) implies the following bound for g dividing f :

H(g) ≤ ||g|| ≤ 2deg g||f || ≤ 2deg f ||f ||.

We will not be concerned with the best known upper bound for heights of
divisors, but make a note of the fact that they do exist, and depend entirely
on f itself. This, in turn, provides us with an upper bound on the minimal
bases of all positive divisors of f . In what follows, let MFB(f) denote such
an absolute upper bound for MFB(f), which is not unique.

Theorem 2.5. It is possible to factor a positive polynomial f(x) ∈ Z[x]
into irreducible polynomials in Z[x] in finitely many steps by factorizing
two values f(b1) and f(b2) of f into primes for distinct natural numbers
bi > MFB(f) + 1.

Proof. Given a positive polynomial f(x), we factor out its content first.
Assume that f is primitive. Let f(x) = g(x)h(x) be an unspecified fac-
torization into positive and necessarily primitive polynomials in Z[x]. Let
a = MFB(f), so that all integers of the form f(b), as well as their unknown
factors g(b) and h(b) for b ≥ a, have unique representations in base b that
match the base-x representations of the corresponding polynomials. We
first factor f(a + 2) and f(a + 3) into primes, and compute all positive
divisors of these two numbers. By comparing all possible divisor pairs of
f(a+ 2) and f(a + 3), we can uncover a common base pattern that is re-
peated as in the last example of the Introduction (Section 1). Any observed
base pattern can be converted into a positive polynomial and be verified or
ruled out as a divisor. We can then start testing the quotients for divisors
in turn.
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We remark that (1) two substitutions are necessary to decide whether a
digit in the given base (substituted value) corresponds to a fixed or variable
digit in base x, and (2) it is possible to choose even larger numbers b such
that f(b) has fewer factors. However, the latter course requires additional
computations, which may be undesirable.

Why can’t we just use MFB(f) as the least possible value for b, instead
of MFB(f)+2? The only thing that could potentially go wrong in the first
paragraph’s scenario is that there may be additional non-constant polyno-
mial factors of f(x) that attain the value +1 at b1 and b2; however, if a
divisor g(x) is not constant, then it has at least one term of the form uxj

(u, j ≥ 1) or (x − u)xj (u ≥ 1, j ≥ 0) in its base-x representation, making
MFB(f) ≥ MB(g) ≥ u+1 or u, respectively. Therefore, g(x) cannot attain
the value 1 when evaluated at an x = bi ≥ MFB(f) + 2 ≥ MFB(f) + 2 ≥
u+2, because in this case, at least one of its terms in the base-x represen-
tation (uxj or (x − u)xj) will achieve a value greater than or equal to 2,
and the possibility of an invisible non-constant factor is avoided. �

Example. Let us factor a polynomial given in an exercise of van der Waer-
den [14]: f(x) = x5 + x4 + x2 + x+ 2. We compute

||f || ≈ 2.828 and H(g) ≤ 25||f || ≈ 90.496 for any g|f .

Hence, we may take MFB(f) = 90 + 1 = 91, and evaluate

f(93) = 7 031 697 638 = 21 · 71 · 1 2491 · 402 1331

and
f(94) = 7 417 124 052 = 22 · 31 · 132 · 2291 · 15 9711.

By trial and error, we find that the factors of 8 743 = 7 · 1 249 and 8 931 =
3 · 13 · 229 of f(93) and f(94), respectively have the base representations

8 743 = 932 + 93 + 1 = [111]93 and 8 931 = 942 + 94 + 1 = [111]94.

That is, g(x) = x2 + x + 1 is a plausible factor, which is irreducible. We
divide f(x) by g(x) to find the exact quotient h(x) = x3 − x + 2. By the
rational root theorem, h(x) is irreducible as well, and f(x) = g(x)h(x) is
the full factorization of f(x) into irreducibles.

Now, if we had tried the factors

804 266 = 2 · 402 133 = 92 · 932 + 92 · 93 + 2 = [(93− 1)(93− 1)(2)]93

and

830 492 = 22 · 13 · 15 971 = 93 · 942 + 93 · 94 + 2 = [(94− 1)(94− 1)(2)]94

of f(93) and f(94), respectively, we would have decided that

[(x − 1)(x− 1)(2)]x = (x− 1)x2 + (x− 1)x+ 2 = x3 − x+ 2

might be a factor, and we would have been correct.
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Every polynomial factorization algorithm serves as an irreducibility test
as well. The following corollary is a generalization of GCIC, where all
coefficients are not necessarily positive.

Corollary 2.6. Let f(x) be a non-constant positive polynomial and a =
MFB(f). If f(b) = p, a prime, for some integer b > a + 1, then f(x) is
proper and irreducible in Z[x].

Proof. The polynomial f must be proper since it is increasing for x ≥ a,
and f(a) cannot be divisible by p. �

Remark. It has been pointed out to us that the bounds in Theorem 2.5
and Corollary 2.6 can be improved in several ways, for example, by us-
ing ideas from Murty’s paper [10]. Murty proves the following: if f(x) =
amxm + · · ·+ a0 and f(b) is prime for some b ≥ max0≤i≤m−1 |ai/am|+ 2,
then f(x) is irreducible (which falls just short of proving Cohn’s Irreducibil-
ity Criterion). The statement and proof of Theorem 2.5 can also be fine-
tuned. However, we feel that the pedagogical value of the last two statements
is in the novelty and simplicity of their proofs that make use of a polynomial
base, with no explicit need to consider complex roots, and where the only
additional ingredient is Mignotte’s inequality (or similar results bounding
the height). We do not see our factorization method, and indeed the base
conversion algorithms in the next section, as being competitive with estab-
lished computer algorithms. Small examples are just fun and instructive to
compute by hand.

3. Polynomial and Numeric Bases

3.1. Polynomial Representatives of Positive Integers in Base b.
Since base-x representations of polynomials are central to our paper, we in-
troduce special notation and terminology for the polynomials that represent
base-b expansions of natural numbers. Let c ∈ N.

(1) The polynomial

f (1)
c (x) =

xc − 1

x− 1
= xc−1 + · · ·+ x+ 1

will be called the polynomial representative of c in base 1.
(2) Let b ∈ N, with b ≥ 2. If c = [ak · · · a1a0]b is the unique expansion

of c in base b, with digits ai between 0 and b−1, then the polynomial

f (b)
c (x) = akx

k + · · ·+ a1x+ a0

will be called the polynomial representative of c in base b.

In both of these cases, we have f
(b)
c (b) = c.

Table 1 below exhibits all polynomial representatives f
(b)
17 (x) of the prime

17 in bases b ≥ 1. The first one is irreducible since it is the 17th cyclotomic
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polynomial, and the rest are irreducible as a result of GCIC. We will show
how to generate this table for any c ∈ N in a systematic way starting from

f
(1)
c (x) in the next Proposition.

Table 1. Polynomial representatives of p = 17

Base b f
(b)
17 (x) Base b f

(b)
17 (x)

1 x16 + · · ·+ x+ 1 = Φ17 11 x+ 6
2 x4 + 1 = Φ8(x) 12 x+ 5
3 x2 + 2x+ 2 = Φ4(x+ 1) 13 x+ 4
4 x2 + 1 = Φ4(x) 14 x+ 3
5 3x+ 2 15 x+ 2
6 2x+ 5 16 x+ 1 = Φ2(x)
7 2x+ 3 17 x
8 2x+ 1 18 17
9 x+ 8 19 17
10 x+ 7 20 17

3.2. Base Conversions.

Proposition 3.1 (Base conversions). Let a, b, c ∈ N, f(x) ∈ Z[x] be either
a nonzero polynomial with nonnegative coefficients ≤ b − 1, where b ≥ 2
and f(b) = c, or f(x) = (xc − 1)/(x − 1) (in which case we set b = 1).

Then f(x) = f
(b)
c (x), and the following hold.

(1) If c = p, a prime, then f
(b)
c is a PPI-polynomial for all b ≥ 1.

(2) (Descent) To convert f(x) = f
(b)
c (x) into f

(b−a)
c (x), where b−a ∈ N

as well, follow these steps:
(a) Substitute x+a for x and expand f(x+a) in powers of x. This

polynomial will have all positive coefficients. The indetermi-
nate x now represents the base b− a.

(b) If all coefficients of the new polynomial are strictly less than
b− a, stop. Otherwise, proceed to the next step. (If b− a = 1,
then the stopping point is reached when all coefficients are 1.)

(c) Replace all coefficients by their base-(b − a) expansions; sub-
stitute x for each b− a; simplify. Go to Step (b).

(3) (Ascent) To convert f(x) = f
(b)
c (x) into f

(b+a)
c (x), follow these

steps:
(a) Substitute x−a for x and simplify f(x−a). The indeterminate

x now represents the base b+ a.
(b) Convert the positive part of each coefficient to base b+ a; sub-

stitute x for b+ a; simplify.
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(c) If the absolute value of each coefficient in the new polynomial
is strictly less than b + a, go on to the next step. Otherwise,
return to Step (b).

(d) Write the polynomial in base x; replace any digit of the form
x− j by b+ a− j; simplify.

(4) The ascent and descent procedures are inverses of each other.

(5) If 1 ≤ b < b′ and b ≤ c, then f
(b)
c > f

(b′)
c . For b > c, both

polynomial representatives are equal to the constant c.

Proof. Part (1) follows from the properties of cyclotomic polynomials and
Proposition 1.4. In Parts (2) and (3), we are simply performing naive base
conversions by starting with an approximate expansion and making cor-
rections as necessary: the unique expression is independent of the method.
The only point that may not be immediately obvious is conversion from
base 2 to base 1, or, to the unary system. Why do we always obtain the
lowest c nonnegative powers of x and not just any c distinct powers? This
is proven in the following Lemma. Part (4) is clear by uniqueness of base
expansions. Finally, Part (5) can be seen in the details of the descent pro-
cedure, where x is replaced by x + a and b − a is replaced by x; all other
terms and factors are nonnegative, and we can apply properties of ordered
domains. �

In computing, the convention for the unary representation of a positive
integer c is c consecutive digits of 1, with no zeros in between or outside.
Here is a good reason why.

Lemma 3.2. Let c ∈ N, and

f(x) = xk + ak−1x
k−1 + · · ·+ a1x+ a0 ∈ Z[x],

with ai ∈ {0, 1}. Moreover, let f(2) = c. Then f(x) = f
(2)
c (x), and the

descent process in Proposition 3.1 Part (2) gives us

f (1)
c (x) = xc−1 + · · ·+ x+ 1.

Proof. By induction. After f(x) is replaced by the larger polynomial

g(x) = f(x+ 1) = (x+ 1)k + ak−1(x+ 1)k−1 + · · ·+ a1(x+ 1) + a0,

all coefficients of g(x) up to the leading one become strictly positive, and
the constant term becomes g(0) = f(1) = 1 + ak−1 + · · · + a1 + a0. As
instructed, we replace all coefficients a of g by xa−1 + · · · + x + 1, and
obtain a larger polynomial. If f(1) is not already equal to 1, then it will be
replaced by [xf(1)−1 + · · ·+ x] + 1, where the rest of the polynomial g(x) is
O(x). Therefore, the constant term permanently becomes 1, and no powers
of x in g up to the largest one will ever vanish. Let a ∈ N be the coefficient
of x in g. If a > 1, then the next step brings the term (xa−1 + · · ·+ x+1)x
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in addition to the constant term 1, and the rest of the polynomial is now
O(x2). In this manner, we guarantee that the smallest two terms of the
evolving polynomial will be x+ 1 for the rest of the procedure, and so on,
until we reach xc−1+ · · ·+x+1, which gives us the value c at x = b = 1. �

Example. Let us verify a few examples from Table 1. In ascending order,

we have 17 = [10001]2, giving us f
(2)
17 (x) = x4 + 1. The next base is b =

3 = 2 + 1. We compute f(x − 1) = x4 − 4x3 + 6x2 − 4x + 2, then replace
4 = b+ 1 by x+ 1 and 6 = 2b by 2x, and obtain the polynomial

x3 − x2 − x+ 2 = (x − 2)x2 + (x− 1)x+ 2.

A final substitution of b = 3 into the digits only gives us f
(3)
17 (x) = x2 +

2x + 2. In descending order, we know that f
(17)
17 (x) = x, and f

(16)
17 =

f
(17)
17 (x + 1) = x + 1 (no change needed). Let us pick up the sequence at

f
(9)
17 (x) = x+ 8. The next base is b = 8 = 9− 1. Hence,

f
(9)
17 (x + 1) = x+ 9 = x+ (8 + 1) 7→ x+ (x + 1) = 2x+ 1 = f

(8)
17 (x).

4. Families of Irreducibles with the Same Prime Value at

Large Integers

The GCIC construction as well as Corollary 2.6 make it clear that only
the prime values of polynomials for large n ∈ N are significant for char-
acterizing irreducibility. Given a positive rational prime p, let us define
a family Fp ⊂ Z[x] that consists of the constant polynomial p and the
PPI-polynomials with this property.

Definition 4.1. Given a positive rational prime p, consider the constant
polynomial p, the cyclotomic polynomial Φp(x), and any PPI-polynomial
g(x) ∈ Z[x] such that g(b) = p for some b ≥ MB(g). This collection, which

includes all f
(b)
p (x) for b ≥ 1, will be denoted by Fp and called the family

of irreducible polynomials associated with p.

Theorem 4.2. Given any positive rational prime p, the family Fp of irre-
ducible polynomials associated with p can be generated from the seed poly-
nomial Φp(x) by the following rules.

(1) The ascent procedure described in Proposition 3.1;

(2) Replacing selected coefficients ai of a polynomial f
(b)
p (x) by the lin-

ear digit x− (b− ai). Note that this can be done for finitely many
zero coefficients as well, including those that are associated with xn,

where n > deg f
(b)
p (x).

Proof. Proposition 3.1 and the last example show us how to obtain all

f
(b)
p (x) for b ≥ 2 from f

(1)
p (x) = Φp(x). Let g(x) be any PPI-polynomial
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such that g(b) = p for some b ≥ MB(g). If all coefficients of g are non-

negative, then g(x) = f
(b)
p (x), and we are done. If at least one coefficient

of g is negative, then we write g(x) =
∑

bi(x)x
i in base x, and replace all

bi(x) by bi(b). The resulting polynomial, f(x), also satisfies the property
f(b) = p, as well as b ≥ MB(f) (some (x− ai)’s in g(x) become (b− ai)’s,
where b > b− ai). Moreover, its coefficients are nonnegative, which makes

f = f
(b)
p . Therefore, any PPI-polynomial g ∈ Fp can be obtained from

some f
(b)
p (x) by the reverse procedure: (i) splitting the coefficients of f

(b)
p

into two finite subsets, indexed by I and J , and (ii) replacing all ai with
i ∈ I with the linear digits x − (b − ai). It is not guaranteed that each
such procedure will always give us an irreducible (hence, PPI) polynomial.
For example, we cannot change all coefficients of the base-1 polynomial

f
(1)
p (x) = Φp(x), which would give us a factor of x− (p− 1), nor can we re-

place the coefficient 1 in f
(p)
p (x) = x with the factor x−(p−1). However, we

can check whether g(x) is irreducible or not by applying Theorem 2.5. �

Corollary 4.3. For each positive rational prime p, the set Fp is infinite,
and always contains

{x+ 1, x, x− 1, x− 2, x− 3, . . . , p}.

Proof. For bases b > p, the polynomial representative of p is p itself, and we
may replace it with the linear polynomial g(x) = x − (b − p). In addition,
for b = p we have x, and for b = p− 1 we have x+ 1. �

Example. Let us compute some of the elements of F2 of degree ≤ 2. We
start with the set in Corollary 4.3:

{x+ 1, x, x− 1, x− 2, x− 3, . . . , 2}.

The distinct base polynomials for p = 2 are 2 (b ≥ 3), x (b = 2), and
x + 1 (b = 1). The constant polynomial 2 has already been replaced by
x − (3 − 2) = x − 1, (x − (4 − 2) = 2, etc. What if we also include the
zero coefficient in 0x+ 2? Here are some of the additional polynomials to
be considered:

b 0-replacement 2-replacement result PPI?
3 x− (3− 0) 2 x2 − 3x+ 2 no
3 x− (3− 0) x− (3− 2) x2 − 2x− 1 yes
4 x− (4− 0) 2 x2 − 4x+ 2 yes
4 x− (4− 0) x− (4− 2) x2 − 3x− 2 no
5 x− (5− 0) 2 x2 − 5x+ 2 no
5 x− (5− 0) x− (5− 2) x2 − 4x− 3 yes
...

...
...

...
...
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There are potentially infinitely many quadratics in F2 to be obtained in
this manner. Next, we consider the base polynomial x = x + 0. We have
observed that we cannot replace the coefficient 1 by x − (2 − 1) and still
obtain an irreducible polynomial. But if we put the constant term 0 into
the mix, then we obtain

(x− (2− 1))x+ (x − (2− 0)) = x2 − 2 and x+ (x− (2− 0)) = 2x− 2,

where the first polynomial is PPI and the second is not. For the last base
polynomial, x+ 1, we cannot change both coefficients, but can try to do so
one at a time. We have

(x− (1− 1))x+ 1 = x2 + 1 and x+ (x− (1− 1)) = 2x,

where once again x2+1 is PPI, but 2x is not. Technically, we cannot include
x2 + 1 in F2, since we need to substitute b = 1 < MB(x2 + 1) = 2. Hence,
we have the following polynomials of degree ≤ 2 in F2, where the unknown
quadratic polynomials are of the form (x− b)x+2 or (x− b)x+(x− (b−2))
for b ≥ 6.

{x2 − 2, x2 − 2x− 1, x2 − 4x+ 2, x2 − 4x− 3, . . . ,

x+ 1, x, x− 1, x− 2, x− 3, . . . , 2}.

The degree of polynomials in F2, or in any Fp, do not a priori have an upper
bound, as we are allowed to change the zero coefficients of large powers of
x in a base polynomial. For example, for b = 6, we have

(x− (6− 0))x2 + 2 = x3 − 6x2 + 2 ∈ F2.

Finally, we have the following summary. Part (2) especially shows how
restrictive Fp is, although it is infinite.

Theorem 4.4. Let p and q be positive rational primes. Then

(1) Fp = Fq if and only if p = q.
(2) Given any prime p, there exist infinitely many PPI-polynomials f

that attain the value p at some integer, but no translation of f(x−b),
b ∈ Z, is in Fp.

(3) (BH) holds if and only if every PPI-polynomial f belongs to Fp for
some prime p.

Theorem 4.2 gives us finitely many rules of membership in Fp, which
may be helpful in studying (BH).

Proof. As the only constant polynomial in Fp is p itself, the first part is
straightforward. For Part (2), consider the irreducible polynomial f(x) =
xm + p for any m ≥ 2, which is PPI, but not in Fp. The value p is
attained only at x = 0, and any translate g(x) = f(x − b) would attain
the same value only at x = b, which needs to be positive for eligibility.
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Let us fix b ≥ 1 and m ≥ 2. Since g(x) = xm −mbxm−1 + O(xm−2), we
have b < mb ≤ H(g) ≤ MB(g). As for Part (3), any PPI-polynomial f
would have infinitely many prime values past x = MB(f) under (BH). The
converse is also clear by the equivalent statement to Conjecture 1.3. �

5. Conclusion

Rational primes and irreducible polynomials with integer coefficients
serve the same purpose of being multiplicative building blocks in their re-
spective structures. Moreover, both integers and polynomials have unique
representations in various bases that mirror each other; the base-x repre-
sentation of polynomials not only highlights the analogy, but also allows
us to uniquely associate to each prime a finitely generated family of irre-
ducible polynomials that attain the prime value. We hope that the results
and techniques in the article will make a new generation of mathematicians
take a closer look at the Bouniakowsky Hypothesis with fresh eyes. Consid-
ering that it is a generalization of Dirichlet’s Theorem, though, we suggest
that the proof not be assigned as homework; not every student can be a
George Dantzig [5]!

Appendix A. Arithmetic in Base x.

Table 2. Addition of digits in base x

The rule for addition of digits in base x is given by Table 2, where each
carried digit is at most 1 (indicated by (c)).

i, j ≥ 0 i > j ≥ 0 j ≥ i > 0 (c) i, j > 0 (c)
[(i)]x [(x − i)]x [(x− i)]x [(x − i)]x
[(j)]x [(j)]x [(j)]x [(x− j)]x

[(i + j)]x [(x− (i− j))]x [(1)(j − i)]x [(1)(x− (i + j))]x

Consider the positive polynomials

f(x) = 2x3 − x2 + 5x− 6 = [(1)(x− 1)(4)(x− 6)]x

and

g(x) = x3 − x− 1 = [(0)(x− 1)(x− 2)(x− 1)]x.

Direct polynomial addition and conversion into base x gives us

f(x) + g(x) = 3x3 − x2 + 4x− 7 = [(2)(x − 1)(3)(x− 7)]x.

Digital addition is equally easy.

carry 1 1 1
(1) (x − 1) (4) (x− 6)

+ (0) (x − 1) (x− 2) (x− 1)
(2) (x − 1) (3) (x− 7)
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The rules for subtraction of digits, given in Table 3 below, similarly require
at most a borrowed digit of 1 from the left (indicated by (b)), which amounts
to adding x to the top digit. The analogy is borrowing 1 from the left and
adding 10, the base, to the digit that comes up short in ordinary decimal
subtraction. If a nonzero digit is to be subtracted from (0), which may
itself be preceded by a string of (0)’s, then we borrow (1) from the first
nonzero digit to the left of the string of zeros, send it down the line, and
never have to borrow from that lender again, as x is larger than any digit.
In short, any digit lends 1 to the right at most once.

Table 3. Subtraction of digits in base x

i ≥ j ≥ 0 j > i ≥ 0 (b) i > 0, j ≥ 0
[(i)]x [(1)(i)]x [(x− i)]x
[(j)]x [(j)]x [(j)]x

[(i− j)]x [(x− (j − i))]x [(x− (i+ j))]x

i ≥ 0, j > 0 (b) j ≥ i > 0 i > j > 0 (b)
[(1)(i)]x [(x− i)]x [(1)(x− i)]x
[(x − j)]x [(x− j)]x [(x− j)]x
[(i+ j)]x [(j − i)]x [(x− (i− j))]x

Let us subtract the same two polynomials directly, noting that f > g:

f(x)− g(x) = x3 − x2 + 6x− 5 = [(x− 1)(5)(x− 5)]x.

Contrast with digital subtraction:

borrow −1 −1 −1
(1) (x− 1) (4) (x− 6)

− (0) (x− 1) (x− 2) (x− 1)
(0) (x− 1) (5) (x− 5)

Multiplication in base x is done one digit at a time, followed by staggered
addition. Table 4 shows the rules for digit multiplication.

Table 4. Multiplication of digits in base x

i, j ≥ 0 i, j > 0 i, j > 0
[(i)]x [(x − i)]x [(x− i)]x
[(j)]x [(j)]x [(x − j)]x
[(ij)]x [(j − 1)(x− ij)]x [(x− (i + j))(ij)]x

For the same polynomials f and g as in the last two examples, we find

f(x)g(x) = 6 + x− 4x2 − 7x3 + 3x4 − x5 + 2x6 (A.1)

= [(1)(x− 1)(2)(x− 8)(x− 4)(1)(6)]x. (A.2)

214 MISSOURI J. OF MATH. SCI., VOL. 30, NO. 2



POLYNOMIALS IN BASE x

The first one-digit multiplication is done as follows (the carry digits on top
are to be added to the product, as is usual).

(x− 2) (4) (x − 7)
(1) (x− 1) (4) (x− 6)

× (x− 1)
(1) (x− 3) (5) (x− 11) (6)

The second one-digit multiplication is

(x− 3) (4) (x − 8)
(1) (x− 1) (4) (x− 6)

× (x− 2)
(1) (x− 5) (6) (x− 16) (12)

Multiplication by the last digit of g is the same as the first. Finally, we
stagger the results and add them.

(1) (x − 1) (4) (x− 6)
× (x − 1) (x− 2) (x− 1)

(1) (x− 3) (5) (x− 11) (6)
(1) (x− 5) (6) (x− 16) (12) (0)

+ (1) (x− 3) (5) (x− 11) (6) (0) (0)
(1) (x− 1) (2) (x− 8) (x − 4) (1) (6)

Division by a monic polynomial is always possible in Z[x]. (See the
Division Algorithm, Theorem 2.4.) For example, for

f(x) = 2x4 − 5x3 + 7x− 1 = [(1)(x− 5)(0)(6)(x− 1)]x

and

g(x) = x2 + x− 3 = [(1)(0)(x− 3)]x,

we have the long-division quotient and remainder

q(x) = 2x2 − 7x+ 13 and r(x) = −27x+ 38,

where r(x) is not positive, but its degree (resp., its “absolute value”) is
still strictly less than the degree of g(x) (resp., g(x) itself). Hence, we
may subtract 1 from the quotient and add g(x) to the remainder, which
will immediately give us a positive expression. The adjusted quotient and
remainder are then

q(x) = 2x2 − 7x+ 13− 1 = 2x2 − 7x+ 12 = [(1)(x− 7)(12)]x

and

0 ≤ r(x) = (−27x+38)+(x2+x−3) = x2−26x+35 = [(x−26)(35)]x < g(x).
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Digital division yields the result directly, as shown below:

(1) (x− 7) (12)
(1) (0) (x− 3) ) (1) (x− 5) (0) (6) (x− 1)

(1) (0) (x− 3) (0) (0)
(0) (x− 6) (3) (6) (x− 1)

(x− 7) (x− 10) (21) (0)
(0) (12) (x− 15) (x− 1)

(12) (11) (x− 36)
(0) (x− 26) (35)
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