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ABSTRACT. In this note, we extend the notion of standard backgam-
mon to a more general setting and call it hyper dice backgammon
(or HD-gammon for short) of size n > 6 (a positive even integer) by
extending the regular die to a hyper die (i.e., hyper cube) with n
faces and the board from 24 pips to 4n pips, where n = 2k > 6 and
there are 4k + 3 checkers for each player. The rules of the game are
similar to the rules of standard backgammon when n = 2k = 6 and
the number of the n-sided dice depends on n. Finally, we include
a list of references related to some theoretical studies on standard
backgammon.

1. A GENERALIZATION OF STANDARD BACKGAMMON

This note is intended to introduce mathematicians, computer scientists,
artificial intelligence (AI) professionals, and game theorists to hyper dice
backgammon. Also, we will introduce a new concept in this field. In this
section we start with the definition (notion) of the hyper dice backgam-
mon and conclude the section with a question and a motivational comment
together with an open problem related to the (infinite) hyper dice backgam-
mon. In the second section, we recall the rules of standard backgammon
with a brief motivational history on complex board games and conclude the
paper with a selected list of references related to some theoretical studies
on the standard backgammon.

Definition 1.1. A hyper die of size n = 2k > 6 is a hyper cube with n
faces, where each face (or side) is marked (denoted) by exactly one distinct
number from 1 to n. For the sake of convenience, by an n-die (or n-dice for
the plural case), we mean a hyper die of size n or an n-sided cube.

We now extend the notion of standard (classic) backgammon to a more
general setting and call it hyper dice backgammon.
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Definition 1.2. The hyper dice backgammon (or HD-gammon for short)
of size n = 2k > 6 (a positive integer) is defined to be as follows:

(a) Extending the regular die to a hyper die (i.e., hyper cube) with n
faces (see the above definition).

(b) Extending the board from 24 pips to 4n pips, where n = 2k > 6.

(c) Extending the number of checkers from 15 to 4k+ 3 for each player.

(d) HD-gammon is played on a board with 2n + 3 checkers per player,
and 4n pips (organized into four tables of n pips each) that checkers
may rest on.

(e) The rules of the game are similar to the rules of the classic backgam-
mon when n = 2k = 6 as defined in the next section for the sake of
completeness and comparison.

(f) For playing the game, we divide the set of white [resp. black] check-
ers into four parts of sizes k — 1, k, k + 2, and k + 2 and put them
in the corresponding pips as in the classic backgammon game when
k = 3. That is, k+ 2, k, £+ 2, and k — 1 checkers in positions n,
n+ 2, 2n + 1, and 4n, respectively.

(g) The number of n-dice is m = n/3, where n is a multiple of 3 and
if the remainder of n/3 is not zero, we use (m + 1) dice, where m
of them are n-sided dice and one is an n/2-sided die. For example,
if n = 14, we use 4 dice of size 14 and one die of size 7. Of course,
we can study the game when the number of n-dice are between 2
and m or m + 1 for mathematical, probabilistic, and complexity
classification purposes.

We now end this section with a question and a motivational comment
regarding the HD-gammon together with an open problem related to the
infinite HD-gammon.

Question. What is the minimum number of n-dice in an HD-gammon
of size n to have the same complexity class with the standard backgam-
mon?

Comment. The author believes that using a Quantum Programming Lan-
guage or some quantum computational aspects such as super position or en-
tanglement could be a powerful machinery to study the HD-gammon (espe-
cially, when its size is very large or even infinite, i.e., a board of (countable)
infinite, infinitely many checkers, and infinitely many finite-sided dice).
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Open Problem. What is a reasonable arrangement or an initial posi-
tion for infinitely many checkers in the infinite HD-gammon as noted in the
above comment?

2. A BRIEF BACKGROUND ON THE STANDARD BACKGAMMON

In this section, we recall the rules of standard backgammon (e.g., dou-
bling cube, see (x) below) with a brief motivational history on complex board
games and conclude the paper with a selected list of references related to
some (theoretical) studies on the standard backgammon.

e Note that the material in this section is taken from different sources
and edited by the author for the sake of completeness and comparison. For
the rules of the game see, for example, http://www.bkgm.com and other
backgammon-related articles and information are available at Backgammon
Galore.

We now provide a brief motivational history on complex board games.

Ever since the days of Shannon’s proposal [19] for a chess-playing algo-
rithm and Samuel’s checkers-learning program [18], the domain of complex
board games such as Go, chess, checkers, Othello, and backgammon has
been widely regarded as an ideal testing ground for exploring a variety
of concepts and approaches in artificial intelligence and machine learning.
Such board games offer the challenge of tremendous complexity and sophis-
tication required to play at expert level. At the same time, the problem
inputs and performance measures are clear-cut and well-defined, and the
game environment is readily automated in that it is easy to simulate the
board, the rules of legal play, and the rules regarding when the game is over
and determining the outcome.

Academic research on backgammon has been largely confined to two
areas: strategies for using the doubling cube (offering or accepting), see
(*) below, and computerized backgammon players. Examples of the former
include Thorp [29] and [30, this volume, pp. 237-265], Keeler and Spencer
[10], Orth [13], Zadeh and Kobliska [33], Zadeh [32, 34], and Buro [6].
Computerized players, often based on neural networks, are now better than
the best human players [22].

Complex board games such as Go, chess, checkers, Othello and backgam-
mon have long been regarded as great test domains for studying and de-
veloping various types of machine learning procedures. One of the most
interesting learning procedures that can be studied in such games is rein-
forcement learning from self-play. In this approach, which originated long
ago with Samuel’s (1959) checkers program, the program plays many games
against itself, and uses the “reward” signal at the end of each game to grad-
ually improve the quality of its move decisions.
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e The rest of the section is devoted to the rules of the backgammon.

3. THE GAME OF BACKGAMMON

Backgammon is said to be one of the oldest board games in the world.
Its roots may well reach back 5,000 years, into the former Mesopotamia.
From there, it spread out in variants to Greece and Rome as well as to
India and China.

Backgammon is a game of chance and skill. It was played in England
in 1743 when Edmond Hoyle fixed the rules for backgammon in Europe.
After a revision in 1931 in the US, these rules are still in use today. What
turned it into the subtle and skillful game we know today was a brilliant
innovation in the rules early in the 20th century: the doubling cube (see (*)
below). Who invented it is unknown, but it emerged in American gambling
clubs some time in the 1920s.

Backgammon is a two-player perfect information game in which a player’s
move is governed by a throw of the dice. Backgammon is played on a
board with 15 checkers per player, and 24 points (organized into four ta-
bles of six points each) that checkers may rest on. The objective of the
game is to be first to bear off, i.e., move all fifteen checkers off the board.
Backgammon is a member of the tables family, one of the oldest classes
of board games. Backgammon involves a combination of strategy and luck
(from rolling dice). While the dice may determine the outcome of a single
game, the better player will accumulate the better record over a series of
many games, somewhat like poker. With each roll of the dice, players must
choose from numerous options for moving their checkers and anticipate pos-
sible counter-moves by the opponent. The optional use of a doubling cube
allows players to raise the stakes during the game. Like chess, backgam-
mon has been studied with great interest by computer scientists. Owing to
this research, backgammon software has been developed that is capable of
beating world-class human players (see TD-Gammon for an example).

Players take turns rolling the two dice to move checkers toward their
respective home boards, and ultimately off the board. The first player to
move all of his checkers off the board wins. When the dice are rolled, they
are applied sequentially to the board by moving one checker by the amount
on one die, and then another checker by the amount on the other die. The
checker moved with the second die may be the same one that was moved
with the first die. Thus, if a player has only one checker on the 3 point
and another on the 6, and rolls a 2 and a 1, then the checker on the 6
point may be moved to the 4 point, and the checker on the 3 point may be
moved to the 2 point (written 6-4 3-2). Alternatively, the player may play
6-5 3-1 or 6-5 5-3. If doubles are rolled, the player may move four checkers.
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Thus, if double-ones were rolled in the above situation, the player could
move 6-5 5-4 3-2 2-1. No moving checker may land on a point that has two
or more opponent checkers. If a point has exactly one opponent checker (a
blot), it may be landed on and “hit.” This complicates the game. After the
two players can no longer hit each other, they enter a “race” to get their
checkers off the board. First, they “bear in” checkers onto their 6 home
board points. Once all 15 of a player’s checkers are in, that player begins the
“bearoff,” moving checkers off the board. This is done by moving checkers
off the points that correspond to the dice rolls. If no checker appears on
that point, one from a higher point must be moved down. If there are no
checkers on higher points, the highest checker may be borne off.

In addition, the player wins double the normal stake if the opponent has
not taken any checkers off; this is called winning a gammon. It is also
possible to win a triple-stake “backgammon” if the opponent has not taken
any checkers off and has checkers in the far most quadrant; however, this
rarely occurs in practice.

The one-dimensional racing nature of the game is made considerably
more complex by two additional factors. First, it is possible to land on, or
“hit”, a single opponent checker (called a “blot”) and send it all the way
back to the far end of the board. The blot must then re-enter the board
before other checkers can be moved. Second, it is possible to form block-
ing structures that impede the forward progress of the opponent checkers.
These two additional ingredients lead to a number of subtle and complex
expert strategies [11, 16].

4. (x) THE DOUBLING CUBE

Like poker, Backgammon is a gambling game. It has an element of
chance (introduced by the dice), and there is a notion of the stake for which
the players are playing. (Of course, this does not have to be actual money;
in a tournament it could be points, for example.) The actual amount that
changes hands can be more than the stake, however. For instance, in certain
winning positions called gammon and backgammon, the stake is doubled
or tripled, respectively. The other way the stake can change is by means of
the doubling cube.

Backgammon differs from other common games (checkers, chess, etc.)
because there is a formal way to increase the stakes as the game progresses.
It is important to know one’s current chances of winning in order to decide
whether or not to increase the stakes. The doubling cube, which was in-
vented in the 1920s, is how the stakes may be increased during the game.
The cube starts in the middle of the board with a value of 1. When one
player (call him A) decides that his chances of winning are just right, he
gives the cube to his opponent (B) before A’s turn to roll. The opponent
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can either accept or reject the cube. If B rejects, the game is over and he
must pay up. If he accepts, the two players play for twice as much money as
before. Then, B possesses the cube, and A cannot use it until A is doubled
and accepts.

If one of the players thinks that she is in the position to win the game,
she can turn the doubling cube and announce a double, which means that
the total stake will be doubled. If her opponent refuses the double, he
immediately loses his (undoubled) stake and the game is finished. If he
accepts the double, the stakes are doubled and, as a compensation, the
doubling cube is handed over to him and he gets the exclusive right to
announce the next double. (He is now said to own the cube.) If the luck
of the game changes so that he later judges that he is now winning, he will
be in a position to announce a so-called redouble, which means that the
stake is doubled again. If the first player refuses the double, she now loses
the doubled stake; if she accepts, the game goes on with a redoubled stake,
four times the original value.

There is no limit to how many times the stake can be doubled, but the
right to announce a double switches from one player to the other every time
it is exercised. (Initially either player can double - no-one owns the cube.)
This nice subtlety leads to a variety of tactical possibilities and problems.
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