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Abstract. It is well-known that Hausdorff dimension is not a topo-

logical invariant; that is, that two homeomorphic continua can have
different Hausdorff dimension, although their topological dimension

will be equal. We show that it is possible to take any continuum

embeddable in Rn and embed it in such a way that its Hausdorff
dimension is n. In doing so, we can obtain an arbitrarily high Haus-

dorff dimension for any nondegenerate continuum. As an example,

we will give different embeddings of an arc whose Hausdorff dimen-
sion is any real number between 1 and ∞, including an arc of infinite

Hausdorff dimension.

1. Background

A continuum is a compact, connected, nonempty metric space. The topo-
logical dimension of a continuum is a nonnegative integer and is preserved
under homeomorphisms. An arc is a topological space that is homeomor-
phic to the unit interval [0, 1]. The topological dimension of an arc is 1.

Often, the topological dimension of a space is not very useful when con-
sidering measure. For example, the Sierpinski carpet has topological dimen-
sion 1, but its standard embedding has infinite perimeter and zero area. As
such, it can be useful to consider the Hausdorff dimension dimH(F ) of a
space F when attempting to measure it.

Definition 1.1. For any F ⊂ Rn, s ≥ 0, and δ > 0, define Hsδ(F ) to

be the infimum of all possible

∞∑
i=1

|Ui|s, where each {Ui} is a cover of F ,

whose elements each have diameter less than δ. Define the s-dimensional
Hausdorff measure of F , Hs(F ), to be the limit of Hsδ(F ) as δ approaches
0. Define dimH(F ) to be the infimum of all s ≥ 0 such that Hs(F ) = 0.

We now list a few preliminary results about Hausdorff measure and di-
mension for continua in Rn under the usual metric, the proofs of which can
be found in [1].

72 MISSOURI J. OF MATH. SCI., VOL. 30, NO. 1



ARBITRARILY HIGH HAUSDORFF DIMENSIONS OF CONTINUA

(1) If A ⊂ B, then dimH(A) ≤ dimH(B).
(2) The Hausdorff dimension is preserved under affine transformations,

such as scaling, rotating, and shearing.
(3) The Hausdorff dimension of a space will always be at least the

topological dimension.
(4) The Hausdorff dimension of the product of two spaces is at least

the sum of the Hausdorff dimensions of the individual spaces.

2. Results

Banakh and Tuncali [2] constructed a Menger curve M whose Hausdorff
dimension is 1, so the Hausdorff dimension of Mn is n. As a result, any
metric continuum with topological dimension n can be embedded so that its
Hausdorff dimension is also n. In this section, we will take any continuum
embeddable in Rn and embed it in a way that gives it Hausdorff dimension
n, regardless of the topological dimension. In this way we will show that
there is no upper bound for the Hausdorff dimension of a continuum, since
a continuum embeddable in Rn is also embeddable in Rm for any m > n.

Lemma 2.1. There exists a Cantor set in Rn whose Hausdorff dimension
is n.

Proof. Let {bi}∞i=1 be a strictly increasing sequence of positive numbers

whose limit is 1/2. For each i, let ai =

i∏
j=1

bj . Let C0 be the unit interval

[0, 1] in R, and for each i, let Ci be the subset of Ci−1 consisting of 2i disjoint
intervals, each of length ai, and each sharing an endpoint with an endpoint
of Ci−1. Let C =

⋂
Ci. Then C is a Cantor set in R whose Hausdorff

dimension is 1, as a result of equation 2.4 in [3]. Let D =
∏n
j=1 C. Then

D is a Cantor set in Rn whose Hausdorff dimension is n. �

A specific example of a set constructed as above is the Smith-Volterra
Cantor set.

Theorem 2.2. Any nondegenerate continuum X embeddable in Rn can be
embedded in Rn such that its Hausdorff dimension is n.

Proof. Take a collection {Xi} of open covers of X of decreasing mesh ap-
proaching 0, with each element of each cover being homeomorphic to a ball,
such that for each element E of Xi, there exist two elements of Xi+1 whose
closures are disjoint subsets of E. Without loss of generality, assume the
first cover has at least two elements whose closures are disjoint. Take any
two such elements in the first cover. For each of these elements, take two
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elements in the next cover that are contained in that element whose clo-
sures are disjoint. Continue this process indefinitely to obtain a Cantor set
contained in X.

For each i, let Ri be the complement in Rn of the closures of the 2ni

disjoint elements of Xni obtained above, and let Si be the complement in
Rn of

∏n
j=1 Ci, where Ci is as defined in the construction of a Cantor set

earlier. Since Ri and Si are each a copy of Rn with 2ni disjoint closures
of balls removed, it follows that Ri and Si are homeomorphic. For each i,
define a homeomorphism fi : Ri → Si such that fi+1 = fi wherever both
are defined. Let f be the closure of the union of the set of all such fi. Then
f is a homeomorphism on Rn taking a Cantor set in X to our n-dimensional
Cantor set, so the dimension of f(X) is at least n. But f(X) ⊂ Rn, so its
dimension is at most n. Thus, f(X) is an embedding of X in Rn whose
dimension is exactly n. �

3. Examples

3.1. An arc of dimension 2. There are many well-known examples of
arcs whose Hausdorff dimension are any number s such that 1 ≤ s < 2. For
example, consider a variation of the Koch curve, where each straight line
segment in an iteration is replaced by four line segments of equal length
less than half the length of the original segment. However, this technique
can only be used to produce arcs whose Hausdorff dimension is strictly less
than 2. We will now construct an arc in R2 whose dimension is 2.

Let C be the Cantor set defined in Lemma 2.1, using bi = i/(2i+1). Let
D = C×C. Define an order on D as follows. Let Di = Ci×Ci. Let a, b ∈ D,
and let k be the first index such that a and b are in different components
of Dk. Using the lexicographic order for reference on R2, we will define
a < b if, under the lexicographic order, the least element of the component
of Ci containing a is less than the least element of the component of Ci
containing b. Using this new order relation on D, note that the straight
line segment connecting any two consecutive elements of D intersects D at
only these two endpoints. Let X be the space consisting of D, along with
all straight line segments that connect consecutive elements of D. Then X
is an arc of dimension 2, as shown in Figure 1.

3.2. An arc of hereditary dimension 2. The previous example is an
arc in the plane whose Hausdorff dimension is 2, but it contains proper
subcontinua whose Hausdorff dimension is 1. We will now construct an arc
in the plane such that any arc that is a subset of this arc will have Hausdorff
dimension 2. Begin with the arc X in the previous example. Replace each
straight arc in X with a copy of X, sheared, rotated, and scaled so that it
only intersects D at its endpoints, which are the same as the endpoints of
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Figure 1. An arc in the plane whose Hausdorff dimension
is 2.

the removed straight arc. Call this continuum X1. Repeat this process for
each straight arc in X1 to obtain X2, and so on. Note that the Hausdorff
distance between Xn and Xn+1 is approaching 0 as n approaches ∞, and
that the Hausdorff limit of the Xn is again an arc. We will call this space
X ′, and note that every arc in X ′ contains a scaled, sheared, rotated copy
of D and thus, has Hausdorff dimension 2.

3.3. An arc for any dimension. Note also that we could use this method
to construct an arc in Rn whose Hausdorff dimension is n by letting D =
Cn. Additionally, we could use a different starting Cantor set C of a partic-
ular number less than 1 to make the dimension of D any number between
1 and n, and since the remaining part of X consists of a countable union
of straight arcs which each have Hausdorff dimension 1, the dimension of
X would equal the dimension of D, and thus, X could have any dimension
between 1 and n. Lastly, if we take an n-dimensional arc for each positive
integer n, scale each so its diameter is less than 1/2n, and chain them to
each other by their endpoints, we can construct an arc in the Hilbert cube
whose Hausdorff dimension is infinity.
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