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Abstract. In this paper, we introduce a new concept of simultane-

ous remotal sets and farthest points in Banach spaces and we present
various characterizations of such points in certain Banach spaces.

1. Introduction

Let X be a Banach space and S be a closed bounded subset of X. For
x ∈ X, set

ρ (x, S) = sup
s∈S
‖x− s‖

(
d (x, S) = inf

s∈S
‖x− s‖

)
.

A point s0 ∈ S satisfying ρ (x, S) = ‖x− s0‖ (d (x, S) = ‖x− s0‖) is called
a farthest (nearest) point to x from S. The set

FS (x) = {s ∈ S : ‖s− x‖ = ρ (x, S)}
PS (x) = {s ∈ S : ‖s− x‖ = d (x, S)}

is called the set of all farthest (nearest) points to x from S. A bounded
closed set S is called remotal if for each x ∈ X, the set FS (x) is not empty
[1, 2]. If a bounded set W is given in X, one might like to approximate
all elements of W simultaneously by a single element of S. This type of
problem rises when the function to be approximated is not known pre-
cisely, but it is known to belong to a set. Several mathematicians have
studied this problem of simultaneous approximation in linear spaces, see
[3, 4]. The problem of characterizing remotal sets in Banach spaces is an
interesting problem. However, it is much more difficult than the problem of
approximation. Furthermore, it has applications in approximation theory
and geometry of Banach spaces. Some results regarding farthest points in
Banach spaces are available in literature see for example, [5, 6, 7, 9].

There are many ways to approximate a set of points simultaneously by
a point in a set S, see [3, 4]. In this paper we use the following definition.
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Definition 1.1. Let X be a real Banach space and X∗ be the dual space
of X. For non-empty bounded subsets W and S of X, define ρ (S,W ) =
sup
s∈S

sup
w∈W

‖s− w‖. A point s0 ∈ S is called a simultaneous farthest point to

W from S if sup
w∈W

‖s0 − w‖ = ρ (S,W ). The set

FS (W ) =

{
s ∈ S : sup

w∈W
‖s− w‖ = ρ (S,W )

}
is called the set of all simultaneous farthest points to W from S.

We remark that if W is a singleton, then a simultaneous farthest point
is precisely a farthest point.

It is easy to see that a compact set and remotality compact set S
with respect to a bounded set W (i.e. any sequence sn in S that satisfies
sup
w∈W

‖sn − w‖ → ρ (S,W ) is compact in S) admit a simultaneous farthest

point.
For a non-empty subset W of a Banach space X, the polar set W 0 of

the set W is defined to be W 0 = {f ∈ X∗ : f (w) ≤ 0 for every w ∈W},
where X∗ is the dual space of X.

In this paper, we present various characterizations of simultaneous far-
thest points in certain Banach spaces in terms of the extremal points of the
closed unit ball BX∗ of X∗, where X∗ is the dual space of X.

Throughout this paper, X∗ is the dual of a Banach space X, BX∗ is the
unit ball of X∗ and B(x0, r) = {x ∈ X : ‖x− x0‖ ≤ r}. For any subset W
of X, we shall denote by int (W ), cl (W ), clco (W ), and bd (W ), the interior,
the closure, the closed convex hull, and the boundary of W , respectively.

2. Main Results

In this section, we present various characterizations of simultaneous far-
thest points to a remotal set W from a bounded set S in certain Banach
spaces in terms of the extremal points of the closed unit ball of X∗, where
X∗ is the dual space of X. First we begin with the following proposition.

Proposition 2.1 (Sphere reflection of sets). ([7]) Let X be a Banach space
and G be a closed bounded set in X. For x ∈ (X − G), let ρ(x,G) = r
and S(x, r) = {y : ‖x− y‖ = r}. Then the map ψx : G → X, ψx(g) =
2x+ 2r g−x

‖g−x‖ − g has the following properties.

(1) ψx is continuous.
(2) ψx(G) is closed and bounded.
(3) d(S,G) = inf{‖s− g‖ : s ∈ S and g ∈ G} = 0.
(4) d(G,ψx(G)) = 0.
(5) d(x, ψx(G)) = r.

46 MISSOURI J. OF MATH. SCI., VOL. 30, NO. 1



SIMULTANEOUS REMOTAL SETS

(6) x has a farthest point in G if and only if x has a closest element in
ψx(G).

Definition 2.2 (The mirror reflection property). ([7]) Let X be a Banach
space. We say that X has the mirror reflection property if for any closed
and bounded set G ⊂ X, and any x ∈ (X −G), there exists a closed convex
set E ⊂ G, such that ρ(x,G) = ρ(x,E) and ψx (E) is convex.

It is known [7] that every finite dimensional normed space has the mirror
reflection property.

Now we are able to prove one of the main results in this paper.

Theorem 2.3. Let X be a real Banach space which has the mirror reflection
property and W be a non-empty convex remotal subset of X. If S is a non-
empty bounded subset of X such that S ∩ W = φ and s0 ∈ S, then the
following are equivalent.

(1) s0 ∈ FS (W ).
(2) There exist g ∈ X∗, w0 ∈ FW (s0), and a subset E ⊂ W with

ψs0 (E)∩W ⊂ bd(B (s0, r)), where r = sup
w∈W

‖s0 − w‖ = ‖s0 − w0‖

such that ‖g‖ = 1 and

g ∈ (ψs0(E) − w0)
0
, g ∈ (S − s0)

0
. (2.1)

g (s0 − w0) = sup
s∈S

sup
w∈W

‖s− w‖ . (2.2)

Proof.
(1) ⇒ (2).
Let s0 ∈ FS (W ). Then ρ (S,W ) = sup

w∈W
‖s0 − w‖. Since W is remotal,

there exists w0 ∈W such that

ρ (s0,W ) = sup
w∈W

‖s0 − w‖ = ‖s0 − w0‖ .

Consequently, w0 ∈ FW (s0). Let

r = sup
w∈W

‖s0 − w‖ = ‖s0 − w0‖ .

Since S ∩ W = φ and W is closed, it follows that r > 0. Since X has
the mirror reflection property, there exists a closed convex set E ⊆ W
such that ρ (s0,W ) = ρ (s0, E) and ψs0 (E) is convex. Furthermore, using
Proposition 2.1, we obtain

d (s0, ψs0 (E)) = inf
e∈E
‖s0 − ψs0 (e)‖ = sup

e∈E
‖s0 − e‖

= sup
w∈W

‖s0 − w‖ = ρ (s0,W ) = ‖s0 − w0‖ .
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Now, we claim that ψs0 (E) ∩W ⊆ bd (B (s0, r)). Suppose that there is
z ∈ ψs0 (E) ∩W . Then

‖z − s0‖ ≤ ‖w0 − s0‖ .
But since ‖w0 − s0‖ = inf

e∈E
‖s0 − ψs0 (e)‖, we have

‖z − s0‖ > ‖w0 − s0‖ .
Hence, ‖z − s0‖ = ‖w0 − s0‖ = r. Thus, z ∈ bd (B (s0, r)). Note that
B (s0, r) is a closed convex subset of X. Consequently, by the well-known
Corollary of the Hahn-Banach Theorem, there exist 0 6= f ∈ X∗ and a real
number λ such that

(s0 − ψs0 (e)) > λ for every e ∈ E
and

f (s0 − y) ≤ λ for every y ∈ B(s0, r).

This implies that λ = f (s0 − w0) 6= 0. Let g = λ−1rf . Then g ∈ X∗ and

g (s0 − ψs0 (e)) > r for every e ∈ E,
and

g (s0 − y) ≤ r for every y ∈ B(s0, r).

Also, we have
g (s0 − w0) = r = ‖s0 − w0‖ .

This implies that ‖g‖ > 1. We claim that ‖g‖ = 1. If not, then there exists
x ∈ X with ‖x‖ = 1 and g (x) > 1. Let y0 = s0 − rx ∈ X. It follows
that ‖y0 − s0‖ = r. Hence, y0 ∈ B(s0, r). But g (s0 − y0) = rg (x) >
r. This contradicts the fact that g (s0 − y) ≤ r, for every y ∈ B(s0, r).
Consequently, ‖g‖ = 1. Also, since g (s0 − ψs0 (e)) > r for every e ∈ E, we
conclude that

g (ψs0 (e)− w0) = g (ψs0 (e)− s0) + g (s0 − w0) ≤ −r + r = 0,

for every e ∈ E. Thus, g ∈ (ψs0 (e)− w0)
0
. Now for s ∈ S, the inequality

g (s− s0) = g (s− w0)− g (s0 − w0)

≤ ‖g‖ ‖s− w0‖ − r
≤ sup

s∈S
sup
w∈W

‖s− w‖ − r ≤ r − r = 0

implies that g ∈ (S − s0)
0
.

(2) ⇒ (1).
Assume that (2) holds. Then there exists w0 ∈W such that

‖s0 − w0‖ = sup
w∈W

‖s0 − w‖ = g (s0 − w0) = sup
s∈S

sup
w∈W

‖s− w‖ .

This implies that s0 ∈ FS (W ). �
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Now, we prove a new generalization of Theorem 1.13 in [8] in certain
Banach spaces in the concept of simultaneous farthest points.

Theorem 2.4. Let X be a Banach space that has the mirror reflection
property and W be a non-empty convex remotal subset of X. If S is a
bounded subset of X with S ∩W = φ and s0 ∈ S, then the following are
equivalent.

(1) s0 ∈ FS (W ).
(2) There exist f ∈ X∗, w0 ∈ FW (s0), and a subset E ⊆ W with

ψs0 (E) ∩W ⊂ bd(B (s0; r), where r = sup
w∈W

‖s0 − w‖ = ‖s0 − w0‖

such that f ∈ ext (BX∗) and

f ∈ (ψs0 (E)− w0)
0
, f ∈ (S − s0)

0
, (2.3)

f (s0 − w0) = sup
s∈S

sup
w∈W

‖s− w‖ . (2.4)

Proof.
(1) ⇒ (2).
Let s0 ∈ FS (W ). By Theorem 2.3, there exists an f ∈ X∗ with ‖f‖ = 1
and w0 ∈ FW (s0) such that (2.1) and (2.2) are satisfied. Consider

M =

{
f ∈ X∗ : ‖f‖ = 1, f (s0 − w0) = sup

s∈S
sup
w∈W

‖s− w‖
}
.

Then by Theorem 2.3, M 6= φ. Let g ∈M be such that g = λf1+(1− λ) f2,
0 < λ < 1 and f1, f2 ∈ BX∗ . Then

sup
s∈S

sup
w∈W

‖s− w‖ = g(s0 − w0) = λf1 (s0 − w0) + (1− λ) f2 (s0 − w0) .

Hence, since 0 < λ < 1, and

|f1 (s0 − w0)| ≤ ‖s0 − w0‖ = sup
s∈S

sup
w∈W

‖s− w‖ ,

|f2 (s0 − w0)| ≤ ‖s0 − w0‖ = sup
s∈S

sup
w∈W

‖s− w‖ ,

we obtain

f1 (s0 − w0) = sup
s∈S

sup
w∈W

‖s− w‖ = f2((s0 − w0) = ‖s0 − w0‖ .

Consequently, ‖f1‖ = ‖f2‖ = 1 and f1, f2 ∈ M . Hence, M is an extremal
subset of BX∗ . Now let

N = M ∩ (ψs0(E)− w0)
0 ∩ (S − s0)

0
.

Then, by Theorem 2.3, N 6= φ. Since M is an extremal subset of BX∗ , it
follows that N is an extremal subset of BX∗ ∩ (ψs0(E)− w0)

0 ∩ (S − s0)
0
.
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But BX∗ ∩ (ψs0(E)− w0)
0 ∩ (S − s0)

0
is w∗-compact. Therefore, N is w∗-

compact. Hence, by the Krein-Milman Theorem, we conclude that N ⊂
clco (ext (N)). This implies

φ 6= ext (N) = ext (BX∗)∩ (ψs0(E)−w0)0 ∩ (S − s)0 ∩N ⊂ ext (BX∗)∩N.
Let f ∈ ext (N). Then f ∈ ext (BX∗) and (2.3) and (2.4) are satisfied.

The implication (2) ⇒ (1) is obvious. �

Theorem 2.5. Let X be a Banach space that has the mirror reflection
property and W be a non-empty convex remotal subset of X. If S is a
bounded subset of X with S ∩W = φ and s0 ∈ S, then the following are
equivalent.

(1) s0 ∈ FS (W ).
(2) There exist f ∈ X∗, w0 ∈ FW (s0), and a subset E ⊆ W with

ψs0 (E)∩W ⊆ bd (B (s0; r)), where r = sup
w∈W

‖s0 − w‖ = ‖s0 − w0‖

satisfying f ∈ ext (BX∗) and

|f (s0 − w0)| = sup
s∈S

sup
w∈W

‖s− w‖ , (2.5)

| f (s0 − w0)| ≤ |f (s0 − ψs0 (e))| (2.6)

for every e ∈ E.
(3) There exist f ∈ X∗, w0 ∈ FW (s0) and a subset E ⊆ W with

ψs0 (E)∩W ⊆ bd (B (s0; r)), where r = sup
w∈W

‖s0 − w‖ = ‖s0 − w0‖

satisfying f ∈ ext (BX∗), and

f (s0 − w0) = sup
s∈S

sup
w∈W

‖s− w‖ (2.7)

f (s− s0) f (s0 − w0) ≤ 0, for every s ∈ S. (2.8)

f (ψs0 (e)− s0) f (s0 − w0) ≤ 0, for every e ∈ E. (2.9)

Proof.
(1) ⇒ (2).
Assume that (1) holds. Then, by Theorem 2.4, there exist f ∈ X∗,
w0 ∈ FW (s0), and a subset E ⊆ W with ψs0 (E) ∩ W ⊆ bd (B (s0; r)),
where r = sup

w∈W
‖s0 − w‖ = ‖s0 − w0‖ such that f ∈ ext (BX∗), and

(2.3) and (2.4) are satisfied. Consequently, we obtain |f (s0 − w0)| =
sups∈S supw∈W ‖s− w‖. On the other hand, by (2.3) and (2.4) and since
f (ψs0 (e)− w0) ≤ 0, we have:

|f (s0 − w0)| = f (s0 − w0)

= f (s0 − ψs0 (e)) + f (ψs0 (e)− w0)

≤ f (s0 − ψs0 (e)) ≤ |f (s0 − ψs0 (e))|
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for every e ∈ E.
(2) ⇒ (1).
If we have (2), then we get

sup
s∈S

sup
w∈W

‖s− w‖ = |f (s0 − w0)| ≤ |f(s0 − ψs0 (e))|

≤ ‖f‖ ‖s0 − ψs0 (e)‖ = ‖s0 − ψs0 (e)‖ ,
for every e ∈ E. Using Proposition 2.1, we get

sup
s∈S

sup
w∈W

‖s− w‖ ≤ inf
e∈E

‖s0 − ψs0 (e)‖ ,= sup
e∈E
‖s0 − e‖ ,

= sup
w∈W

‖s0 − w‖ ≤ sup
s∈S

sup
w∈W

‖s− w‖ .

Consequently,
sup
w∈W

‖s0 − w‖ = sup
s∈S

sup
w∈W

‖s− w‖ ,

and s0 ∈ FS(W ).
(1) ⇒ (3).
Assume now that (1) holds. Then, by Theorem 2.4, there exist f ∈ X∗,
w0 ∈ FW (s0), and a subset E ⊆ W with ψs0 (E) ∩ W ⊂ bd (B (s0; r)),
where r = sup

w∈W
‖s0 − w‖ = ‖s0 − w0‖ such that f ∈ ext (BX∗), and (2.3)

and (2.4) are satisfied. Then by (2.4), we have

f (s0 − w0) = sup
s∈S

sup
w∈W

‖s− w‖ > 0.

Using (2.3), we have f (s− s0) ≤ 0 for every s ∈ S, and f (ψs0 (e)− w0) ≤ 0
for every e ∈ E. Consequently,

f (s− s0) f (s0 − w0) ≤ 0,

for every s ∈ S and

f (s− s0) f (ψs0 (e)− w0) ≤ 0

for every e ∈ E.
(3) ⇒ (1).
If (3) holds, then there exists f ∈ X∗ such that f ∈ ext (BX∗) satisfying
(2.7), (2.8), and (2.9). Let ω = sign (f (s0 − w0)) f . Then by hypothesis,
we have ω ∈ ext (BX∗). Using (2.8) and (2.9), we have

ω (s− s0) = sign (f (s0 − w0)) f(s− s0) =
f (s0 − w0)

|f (s0 − w0)|
f(s− s0) ≤ 0

for every s ∈ S, and

ω (ψs0 (e)− w0) = sign (f (s0 − w0)) f (ψs0 (e)− w0)

=
f (s0 − w0)

|f (s0 − w0)|
f(ψs0 (e)− w0) ≤ 0
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for every e ∈ E. Furthermore,

ω (s0 − w0) = sign (f (s0 − w0)) f (s0 − w0)

= |f (s0 − w0)| = sup
s∈S

sup
w∈W

‖s− w‖ .

Hence, the functional ω satisfies (2) of Theorem 2.4 and s0 ∈ FS (W ). �

Theorem 2.6. Let W be a convex remotal subset of a Banach space X
which has the mirror reflection property, and S be a bounded set in X with
S ∩W = φ. If s0 ∈ FS(W ) and w0 ∈ FW (s0), then there exists a subset
E ⊆W such that ψs0 (E) is convex and

‖s0 − w0‖ = max
f∈ext(M)

f (s0 − w0) = inf
e∈E

max
f∈ext(M)

|f (s0 − ψs0 (e))| ,

where M = {f ∈ X∗ : ‖f‖ = 1 and f (s0 − w0) = sups∈S supw∈W ‖s− w‖}.

Proof. For every y ∈M , let us denote by ỹ, the continuous bounded func-
tion on ext(M) defined by ỹ (f) = f (y).

Let X̃ be the space of all functions ỹ (y ∈ X), endowed with the usual
vector operations and with the norm

‖ỹ‖X̃ = max
f∈ext(M)

|ỹ (f)| ,

(that is, X̃ is the image of X in the space of all continuous and bounded
functions on ext (M) under the mapping y −→ ỹ). By Theorem 2.4, the

maximum is attained for f0 ∈ ext(M). Two functions ỹ1, ỹ2 ∈ X̃ with

ỹ1 |ext(M)
= ỹ2 |ext(M)

are considered identical. Let W̃ = {w̃ : w ∈W}, and

S̃ = {s̃ : s ∈ S}. It is clear that W̃ is a convex subset of X̃ and S̃ is a

bounded subset of X̃ such that W̃ ∩ S̃ = φ. Since s0 ∈ FS (W ), let E
be as in Theorem 2.4 and g ∈ ext (BX∗) be a fixed linear functional with
properties (2.3) and (2.4). Then,

g (s0 − ψs0 (e)) = g (s0 − w0) + g (w0 − ψs0 (e)) > g (s0 − w0) = ρ (W,S) ,

for every e ∈ E. Consequently, using (2.4), we have

‖s̃0 − w̃0‖X̃ ≤ g (s0 − w0) = |g (s0 − w0)| = |(s̃0 − w̃0) (g)| ≤ ‖s̃0 − w̃0‖X̃ .

Thus, we have

‖s̃0 − w̃0‖X̃ = g (s0 − w0) = ‖s0 − w0‖ = ρ (W,S) .

Therefore, using (2.4), we obtain

inf
e∈E

∥∥∥s̃0 − ψ̃s0 (e)
∥∥∥
X̃

= inf
e∈E

max
f∈ext(M)

|f (s0 − ψs0 (e))|

> inf
e∈E

g (s0 − ψs0 (e)) = g (s0 − w0) = ‖s̃0 − w̃0‖X̃ .

52 MISSOURI J. OF MATH. SCI., VOL. 30, NO. 1



SIMULTANEOUS REMOTAL SETS

This means that

inf
e∈E

∥∥∥s̃0 − ψ̃s0 (e)
∥∥∥
X̃

= ‖s̃0 − w̃0‖X̃ .

Consequently,

‖s0 − w0‖ = ‖s̃0 − w̃0‖X̃ = max
f∈ext(M)

|f (s0 − w0)|

= inf
e∈E

∥∥∥s̃0 − ψ̃s0 (e)
∥∥∥
X̃

= inf
e∈E

max
f∈ext(M)

|f (s0 − ψs0 (e))| .

�

References

[1] M. Baronti, A note on remotal sets in Banach spaces, Publications De L’Institut

Mathematique, Nouvelle serie tom 53.67 (1993), 95–98.
[2] S. Elumalai and R. Vijayaragavan, Farthest points in normed linear spaces,

J. Gen. Math., 14.3 (2006), 9–22.
[3] T. D. Narang, On best and best simultaneous approximation, Indian J. Pure

Appl. Math., 13.6 (1982), 643–646.

[4] T. D. Narang, Simultaneous approximation and Chebyshev centers in metric spaces,
Mat. Vesnik, 51 (1999), 61–68.

[5] A. Niknam, On uniquely remotal sets, Indian J. Pure Appl. Math., 15.10 (1984),

1079–1083.
[6] M. Sababheh and R. Khalil, Remotality of closed convex sets in reflexive spaces,

Num. Funct. Anal. and Optim., 29.09–10 (2008), 1166–1170.

[7] M. Sababheh and R. Khalil, Remarks on remotal sets in vector valued function
spaces, J. Non linear Sci. Appl., 2.1 (2009), 1–10.

[8] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Sub-

spaces, Springer-Verlag, Berlin, 1970.
[9] E. Naraghirad, Characterization of simultaneous farthest points in normed linear

spaces with applications, Optim Lett., 3 (2009), 89–100.

MSC2010: Primary 46B20, Secondary 41A65

Key words and phrases: Best approximation, remotal set, extremal point.

Department of Mathematics, Yarmouk University, Irbed, Jordan
Email address: sharifa@yu.edu.jo

Department of Mathematics, Yarmouk University, Irbed, Jordan
Email address: aw alaa ad@yahoo.com

MISSOURI J. OF MATH. SCI., SPRING 2018 53


