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Abstract. An interactive approach to constructing small LR(1) gram-
mars is presented. An example involving parsing permutations is

used to illustrate the approach.

1. Introduction

Many texts ([1, 2, 3, 4]) present LR(1) grammars as an established fact.
When teaching context-free grammars, students often struggle with how to
create their own in applications. This paper will provide some suggestions
as to how to interactively create a relatively small LR(1) grammar (for a
language with a small number of tokens) that accepts all strings, separating
out successful completion from a comprehensive set of error conditions. The
construction of new productions will be prompted by proper unaccepted

strings : strings not accepted by a partially completed grammar that can
lead to the construction of new productions in an orderly fashion.

At the heart of this approach is the notion that in recognizing and de-
scribing errors we can better articulate the productions corresponding to
successful parsing.

2. Proper Unaccepted Strings

Our goal is to construct a grammar that describes a complete language—
every input string (of terminals) is accepted. We will sort errors according
to type as well as providing the location of the error.

We will construct the grammar interactively; at each stage of the con-
struction, we will look for a string that is not yet accepted and append
productions to the grammar in such a way as to allow the string to be de-
rived deterministically. If we can no longer find such a string we are done.
(There is no guarantee beforehand that this process will terminate.)

Such strings can be huge; we will look for strings that are short in the
following sense: if w is a string not yet accepted by our grammar such that
every proper prefix of w is accepted, then we will call w a proper unaccepted

string. Note that w may contain non-terminal symbols.
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Once we find an unaccepted string, the challenge is to add enough pro-
ductions to cover the appropriate category containing the string. Too few,
and we may never complete; too many and we can make the grammar in-
determinate, introducing reduce-shift or shift-shift conflicts in the parser.
When in doubt, we will err on the side of too few, as we can always add
more productions later. (Otherwise, if we add too many productions, we
can end up with reduce-shift or shift-shift conflicts that can be difficult to
resolve.)

In order to avoid having to backtrack and revise our grammar, we will
wherever possible use general productions, introducing intermediate con-
cepts that can be expanded. A goal is to minimize the semantic distance
between the left and right sides of any production.

It is possible using the work of S. Heilbrunner [2] to construct an LR(1)
grammar for the complement of a language given by an LR(1) grammar.
This work is significant in and of itself, but we only need to use a small
portion: we seek to find a short string contained in the complement. We
only need to check that at each state in the LR(1) parser generated by our
grammar that there is a shift operation defined for every symbol in our
language as well as for the end-of-string symbol. When that is not true, we
have found a proper unaccepted string.

3. Case Study: Permutations

For a non-trivial example, we will use permutations written in cycle
notation.

3.1. Definition of a permutation. Permutations are bijections (one-to-
one and onto functions) mapping a set to itself leaving all but a finite
number of elements fixed. This is consistent with the common usage of the
word “permute”.

To be more specific, our permutations will permute a finite set. Here is
an example σ in table form:

x a b c d e f

σ(x) b c a d f e

This particular permutation sends a to b, b to c, and c to a, forming a cycle
of length three. By itself d forms a trivial cycle of length 1, and e and
f together form a cycle of length two. We can write σ in cycle notation:
(a, b, c)(d)(e, f). (Cycles of length one are often omitted from the notation.)

3.2. General description of permutation strings. We will build a
parser that will either translate a character string into a permutation (in
some data representation) or return an error message detailing where the
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parser realized that the string was not a valid permutation. We will artic-
ulate a formal description of what constitutes a valid permutation as we
proceed.

In practice we would be storing the permutation into some data structure
in the course of the parsing; the specifics depend on the programming
language used and will be omitted.

3.3. Terminal and non-terminal symbols. We can see from our exam-
ple that parentheses and commas will play a special role in our parser. We
will represent them by LEFT, RIGHT, and COMMA tokens. Spaces will
be ignored (except as they function to delimit tokens). Every other token
POINT will be viewed as the name of a point in the set being permuted.
We will define non-terminal symbols as we need them.

4. Constructing the Parser

4.1. Empty string. The first proper unaccepted string is the empty string.
We need to make a decision at this point. There is a default permutation,
the identity function. Should we accept an empty string and interpret it as
the identity permutation?

This would be error-prone in practice; it is too easy to submit an empty
string by accident. We will require the presence of at least one cycle in our
input strings in order to construct a permutation.

We will be very blunt with our error categories: they should describe
where the error was found and what should have occurred. In this case,
we cannot refer to an index where the error was found since the string has
length 0. Rather, this is an error that occurs at the end of the string. We
will begin each of our error categories with ErrorEnd.

The error is that there are not cycles present in the input string. We
needed to open a cycle to get anywhere with our parsing. We will describe
this error as occurring because we expected a left parenthesis at the end
of the string, abbreviated as ErrorEndLeft. As usual, we will use S as the
start symbol for our grammar.

S := ErrorEndLeft

We will not try to anticipate all such possible ways that ErrorEndLeft
could occur at this point; rather we will append this one instance of our
error.

ErrorEndLeft :=

4.2. Comma. The second proper unaccepted string is “COMMA”. One way
of describing it as invalid is to say that a comma shouldn’t start a permuta-
tion. A more useful description is that a permutation shouldn’t start with
anything but a left parenthesis. (This is more inclusive of other symbols
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that are not acceptable at the beginning.) We will prefix errors occurring
inside the string with ErrorIndex, and label this error as ErrorIndexLeft,
with the return value being the index of the error in the input string.

S := ErrorIndexLeft

ErrorIndexLeft := NotLeft

NotLeft := COMMA | POINT | RIGHT

4.3. Only left parenthesis. The third proper unaccepted string is “LEFT”.
It is the beginning of a cycle, which would be accepted if it were followed
by the rest of the cycle. What should follow a left parenthesis in a cycle?

We are defining POINT to be strings and not necessarily numeric, so there
is no default non-empty string to use as a POINT. When we want to indicate
an identity permutation, we will want to be able to do so without having
to identify a POINT that is fixed, so we will allow empty cycles if only to
eventually be able to describe the identity permutation.

The string should therefore continue to a point moved by that cycle,
which will begin with a POINT, or to a right parenthesis RIGHT. We will
label this error ErrorEndPointRight.

We append the following productions accordingly.

S := ErrorEndPointRight

ErrorEndPointRight := LEFT

4.4. Bad cycle start with suffix. “POINT COMMA” is the next unaccepted
string. This is the same error that we have seen before ErrorIndexLeft but
now there is a suffix. We will want to include productions in the grammar
to account for any possible non-empty suffix. (This will be used in many
other productions as well.) The suffix will be an accumulator AnyChars;
note that for an LR grammar the recursive production should start with
AnyChars on the right side.

ErrorIndexLeft := NotLeft AnyChars

AnyChars := AnyChar | AnyChars AnyChar

AnyChar := COMMA | LEFT | POINT | RIGHT

From now on when we have an error detected at a given index we will
also include a production with the AnyChars suffix.

4.5. Bad cycle contents. The next unaccepted string is “LEFT COMMA”.
This is an error at the comma; it implies that there should have been a
point before the comma as well as after, since the comma will serve as a
separator.

Thus there should be either a POINTwhere the COMMA occurs (as a starting
point for the cycle) or a RIGHT (for an empty cycle). This error will be
labeled ErrorIndexPointRight.
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S := ErrorIndexPointRight

ErrorIndexPointRight := LEFT CommaOrLeft

ErrorIndexPointRight := LEFT CommaOrLeft AnyChars

CommaOrLeft := COMMA | LEFT

4.6. Empty cycle. The next unaccepted string is “LEFT RIGHT”. As stated
in the previous section, we do want to accept empty cycles. We will consider
this a Cycle, but we will also leave ourselves the possibility of generalizing
to more than one cycle. (The convention in this paper is that plural non-
terminals will refer to one or more.) For now we just include a production
for a single cycle.

S := Cycles

Cycles := Cycle

Cycle := LEFT RIGHT

4.7. Open cycle. The next unaccepted string is “LEFT POINT”. This is a
cycle that hasn’t closed; at the end of the string we would have expected
either a comma (to continue with more points in the cycle) or a right
parenthesis to close the cycle.

Instead of building this new error, ErrorEndCommaRight, around POINT,
we will again generalize the error to include the possibility of a range of
points (separated by commas).

S := ErrorEndCommaRight

ErrorEndCommaRight := LEFT Range

Range := POINT

4.8. Waiting for next point. The next unaccepted string is “LEFT POINT

COMMA”. This error is detected at the end of the string, where we expect a
POINT, which we will label ErrorEndPoint.

ErrorEndPoint := LEFT Range COMMA

4.9. Double comma. The next unaccepted string is “LEFT RANGE COMMA”.
We’re still looking for a point, but now at the index of the second comma.

S := ErrorIndexPoint

ErrorIndexPoint := LEFT Range COMMA NotPoint

ErrorIndexPoint := LEFT Range COMMA NotPoint AnyChars

NotPoint := COMMA | LEFT | RIGHT

4.10. Unfinished cycle. The next unaccepted string is
“LEFT RANGE COMMA POINT”. The cycle is not yet closed and could include
more points, and is another example of ErrorEndCommaRight. This seems
redundant, since Range COMMA POINT forms another Range. Now is the
time to include the recursive definition of Range.

Range := Range COMMA POINT
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4.11. Bad end to cycle. The next unaccepted string is “LEFT Range

COMMA POINT LEFT”. The error here occurs at the last left parenthesis
where either a comma or a right parenthesis is expected. We shall call
it ErrorIndexCommaRight. Note that Range COMMA POINT can be reduced
to Range in our productions.

S := ErrorIndexCommaRight

ErrorIndexCommaRight := LEFT Range LeftOrPoint

ErrorIndexCommaRight := LEFT Range LeftOrPoint AnyChars

LeftOrPoint := LEFT | POINT

4.12. Non-empty cycle. Our next unaccepted string is “LEFT Range

COMMA POINT RIGHT”. We now have a non-empty cycle.

Cycle := LEFT Range RIGHT

4.13. Prefixing by cycles. Our next unaccepted string is “LEFT Range

RIGHT COMMA”. We now start seeing things we’ve seen before, preceded by
one or more cycles. We’ll pre-emptively take all of our productions for
errors and permutations and add versions that are preceded by Cycles.

ErrorIndexLeft := Cycles NotLeft

ErrorEndPointRight := Cycles LEFT

ErrorIndexLeft := Cycles NotLeft AnyChars

ErrorIndexPointRight := Cycles LEFT CommaOrLeft

ErrorIndexPointRight := Cycles LEFT CommaOrLeft AnyChars

Cycles := Cycles Cycle

ErrorEndCommaRight := Cycles LEFT Range

ErrorEndPoint := cycles LEFT Range COMMA

ErrorIndexPoint := Cycles LEFT Range COMMA NotPoint

ErrorIndexPoint

:= Cycles LEFT Range COMMA NotPoint AnyChars

ErrorIndexCommaRight := Cycles LEFT Range LeftOrPoint

ErrorIndexCommaRight

:= Cycles LEFT Range LeftOrPoint AnyChars

With these productions, the grammar generates the entire language.

5. Summary

By examining proper unaccepted strings for a grammar, constructed
interactively, it is possible to extend the grammar to include all strings in
the language. This method is only practical for simple grammars with a
relatively small number of tokens; in these cases by viewing strings that
should be successfully parsed as well as those that should signal an error,
we can better articulate the productions in our grammar leading to success.
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Error states, categorized by type of error, often are similar enough to be
easy to fill out using copy, paste, and revision.
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