ON $(1,2)^*$ -SEMI- $T_{1/3}$ BITOPOLOGICAL SPACES

M. LELLIS THIVAGAR AND NIRMALA MARIAPPAN

ABSTRACT. The aim of this paper is to introduce a separation axiom using $(1, 2)^*$ - ψ -closed sets.

1. INTRODUCTION

Levine [5], Mashhour et al. [7] and Njastad [8] have introduced the concepts of semi-open sets, preopen sets, and α -open sets, respectively. Levine [6] introduced generalized closed sets and studied their properties. Bhattacharya and Lahiri [2] introduced semi-generalized closed sets. Thivagar et al. [9] have introduced the concepts of $(1, 2)^*$ -semi-open sets, $(1, 2)^*$ -generalized closed sets, $(1, 2)^*$ -semi-generalized closed sets in bitopological spaces. In this paper we introduce the concept of $(1, 2)^*$ - ψ -closed sets in $(1, 2)^*$ -bitopological spaces and use them to define $(1, 2)^*$ -semi- $T_{1/3}$ bitopological spaces. We also study their basic properties and relative preservation properties of these spaces.

2. Preliminaries

Throughout this paper (X, τ_1, τ_2) , (Y, σ_1, σ_2) , and (Z, ν_1, ν_2) represent bitopological spaces on which no separation axioms are assumed unless otherwise mentioned.

Definition 2.1. [9] A subset S of a bitopological space (X, τ_1, τ_2) is said to be $\tau_{1,2}$ -open if $S = A \cup B$ where $A \in \tau_1$, and $B \in \tau_2$. A subset S of X is said to be $\tau_{1,2}$ -closed if the complement of S is $\tau_{1,2}$ -open.

Definition 2.2. [9] Let S be a subset of X. Then

- (i) The $\tau_{1,2}$ -interior of S, denoted by $\tau_{1,2}$ -int(S), is defined by $\cup \{G/G \subset S \text{ and } G \text{ is } \tau_{1,2}\text{-open}\}.$
- (ii) The $\tau_{1,2}$ -closure of S denoted by $\tau_{1,2}$ -cl(S), is defined by $\cap \{F/S \subset F \text{ and } F \text{ is } \tau_{1,2}\text{-closed}\}.$

MISSOURI J. OF MATH. SCI., VOL. 24, NO. 1

Remark 2.3.

- (i) $\tau_{1,2}$ -int(S) is $\tau_{1,2}$ -open for each $S \subseteq X$ and $\tau_{1,2}$ -cl(S) is $\tau_{1,2}$ -closed for each $S \subseteq X$.
- (ii) A set $S \subseteq X$ is $\tau_{1,2}$ -open if and only if $S = \tau_{1,2}$ -int(S) and is $\tau_{1,2}$ -closed if and only if $S = \tau_{1,2}$ -cl(S).
- (iii) $\tau_{1,2}$ -open sets need not form a topology.

We recall the following definitions which are useful in the sequel.

Definition 2.4. [9] A subset A of a bitopological space (X, τ_1, τ_2) is called

- (i) $(1,2)^*$ -semi-open if $A \subseteq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A))
- (ii) $(1,2)^*$ -preopen if $A \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A))
- (iii) $(1,2)^*$ - α -open if $A \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A)))
- (iv) $(1,2)^*$ -semi-preopen if $A \subseteq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)))
- (v) $(1,2)^*$ -regular open if $A = \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)).
- (vi) $(1,2)^*$ semi-regular if A is both $(1,2)^*$ -semi-open and $(1,2)^*$ -semi-closed.

The complements of the sets mentioned above from (i) to (v) are called their respective closed sets.

Definition 2.5. [4]

- (i) The (1,2)*-semi-closure (resp. (1,2)*-α-closure, (1,2)*-semi-preclosure) of a subset A of X, denoted by (1,2)*-scl(A) (resp.(1,2)*-αcl(A), (1,2)*-spcl(A)), is defined to be the intersection of all (1,2)*-semi-closed (resp. (1,2)*-α-closed, (1,2)*-semi-preclosed) sets containing A.
- (ii) The (1,2)*-semi-interior (resp. (1,2)*-α-interior, (1,2)*-semi-preinterior) of a subset A of X, denoted by (1,2)*-sint(A) (resp. (1,2)*-αint(A), (1,2)*-spint(A)), is defined to be the union of all (1,2)*-semi-open (resp. (1,2)*-α-open, (1,2)*-semi-preopen) sets contained in A.

Remark 2.6. [4]

- (i) Since arbitrary union (resp. intersection) of (1,2)*-semi-open (resp.(1,2)*-semi-closed) sets is (1,2)*-semi-open (resp.(1,2)*-semi-closed), (1,2)*-semi-closed), (1,2)*-semi-closed), (1,2)*-semi-closed).
- (ii) For a bitopological space (X, τ_1, τ_2) , a subset A of X is $(1, 2)^*$ -semiopen (resp. $(1, 2)^*$ -semi-closed) if and only if $(1, 2)^*$ -sint(A) (resp. $(1, 2)^*$ -scl(A)) = A.

Definition 2.7. [9] A subset A of a bitopological space (X, τ_1, τ_2) is called

(i) $(1,2)^*$ -semi-generalized closed (briefly $(1,2)^*$ -sg-closed) if $(1,2)^*$ scl $(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ -semi-open in X.

MISSOURI J. OF MATH. SCI., SPRING 2012

- (ii) $(1,2)^*$ -g-closed (resp. $(1,2)^*$ -gs-closed, $(1,2)^*$ -gsp-closed, $(1,2)^*$ - αg closed) if $\tau_{1,2}$ -cl(A) (resp. $(1,2)^*$ -scl(A), $(1,2)^*$ -spcl(A), $(1,2)^*$ - $\alpha cl(A)) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open in X.
- (iii) $(1,2)^*$ -generalized α -closed (briefly $(1,2)^*$ -g α -closed) if $(1,2)^*$ - α cl $(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ - α -open in X.
- (iv) $(1,2)^*$ -Q-set if $\tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(A)) = \tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A)).

The complements of the sets mentioned above from (i) to (iii) are called their respective open sets.

Definition 2.8. [10] A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called

- (i) (1,2)*-continuous (resp.(1,2)*-semi-continuous, (1,2)*-precontinuous, (1,2)*-α-continuous, (1,2)*-g-continuous) if f⁻¹(V) is τ_{1,2}-open (resp.(1,2)*-semi-open, (1,2)*-preopen, (1,2)*-α-open, (1,2)*-g-open) in (X, τ₁, τ₂) for every σ_{1,2}-open set V in (Y, σ₁, σ₂).
- (ii) (1,2)*-sg-continuous (resp.(1,2)*-gs-continuous, (1,2)*-gαcontinuous, (1,2)*-αg-continuous, (1,2)*-gsp-continuous) if f⁻¹(V) is (1,2)*-sg-closed (resp.(1,2)*-gs-closed, (1,2)*-gα-closed, (1,2)*αg-closed, (1,2)*-gsp-closed) in (X, τ₁, τ₂) for every σ_{1,2}-closed set V in (Y, σ₁, σ₂).
- (iii) $(1,2)^*$ -irresolute if $f^{-1}(V)$ is $(1,2)^*$ -semi-open in (X,τ_1,τ_2) for every $(1,2)^*$ -semi-open set V in (Y,σ_1,σ_2) .
- (iv) $(1,2)^*$ -sg-irresolute if $f^{-1}(V)$ is $(1,2)^*$ -sg-closed in (X,τ_1,τ_2) for every $(1,2)^*$ -sg-closed set V in (Y,σ_1,σ_2) .
- (v) $(1,2)^*$ -pre-semi-closed (resp. $(1,2)^*$ -pre-sg-closed) if f(U) is $(1,2)^*$ -semi-closed (resp. $(1,2)^*$ -sg-closed) in (Y,σ_1,σ_2) for every $(1,2)^*$ -semi-closed (resp. $(1,2)^*$ -sg-closed) subset U of (X,τ_1,τ_2)

Definition 2.9. [4] A bitopological space (X, τ_1, τ_2) is called a

- (i) $(1,2)^*$ - $T_{1/2}$ -space if every $(1,2)^*$ -g-closed set is $\tau_{1,2}$ -closed.
- (ii) $(1,2)^*$ -semi- $T_{1/2}$ -space if every $(1,2)^*$ -sg-closed set is $(1,2)^*$ -semi-closed.
- (iii) (1,2)*-semi-T₁ space if to each pair of distinct points x,y of X, there exists a pair of (1,2)*-semi-open sets, one containing x but not y and the other containing y but not x.

Definition 2.10. [11] A bitopological space (X, τ_1, τ_2) is called a

- (i) $(1,2)^*$ - T_b -space if every $(1,2)^*$ -gs-closed set is $\tau_{1,2}$ -closed.
- (ii) $(1,2)^* \alpha T_b$ -space if every $(1,2)^* \alpha g$ -closed set is $\tau_{1,2}$ -closed.

3. $(1,2)^*$ - ψ -CLOSED SETS

In this section, we define and study a new separation axiom by defining $(1,2)^*$ - ψ -closed sets.

MISSOURI J. OF MATH. SCI., VOL. 24, NO. 1

Definition 3.1. A subset A of a bitopological space (X, τ_1, τ_2) is called $(1,2)^*$ - ψ -closed if $(1,2)^*$ -scl $(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ -sgopen.

A set A is called $(1,2)^* - \psi$ -open if A^c is $(1,2)^* - \psi$ -closed.

Remark 3.2. If A is $(1,2)^*$ - ψ -closed and U is $(1,2)^*$ -sg-open with $A \subseteq U$, then $(1,2)^*$ -scl $(A) \subseteq (1,2)^*$ -sint(U).

This follows from the definitions of $(1,2)^*-\psi$ -closed set and $(1,2)^*$ -sg-open set.

Lemma 3.3. Let (X, τ_1, τ_2) be a bitopological space. If a subset A of X is $(1,2)^*$ -sg-closed then it is $(1,2)^*$ -semi-preclosed.

Proof. Let $x \in (1,2)^*$ -spcl(A). By Lemma 3.13 [4], $\{x\}$ is $(1,2)^*$ -nowhere dense or $(1,2)^*$ -preopen.

Case (i). $\{x\}$ is $(1,2)^*$ -nowhere dense. Then $\{x\}$ is $(1,2)^*$ -semi-closed. If $x \notin A$ then $A \subseteq (\{x\})^c$. Since A is $(1,2)^*$ -sg-closed and $(\{x\})^c$ is $(1,2)^*$ -semi-open, $(1,2)^*$ -spcl $(A) \subseteq (1,2)^*$ -scl $(A) \subseteq (\{x\})^c$, a contradiction.

Case (ii). $\{x\}$ is $(1,2)^*$ -preopen. Then $\{x\}$ is $(1,2)^*$ -semi-preopen. Also $x \in (1,2)^*$ -spcl(A). Therefore $\{x\} \cap A \neq \phi$. This implies $x \in A$. Thus in both cases $x \in A$ and therefore $(1,2)^*$ -spcl $(A) \subseteq A$. $(1,2)^*$ -spcl $(A) \supseteq A$, always.

Theorem 3.4.

- (i) Every (1,2)*-semi-closed set, and thus every τ_{1,2}-closed set and every (1,2)*-α-closed set is (1,2)*-ψ-closed.
- (ii) Every (1,2)*-\$\varphi\$-closed set is (1,2)*-sg-closed, and thus (1,2)*-semipreclosed and also (1,2)*-gs-closed.

Proof. (i) If A is a $(1,2)^*$ -semi-closed set then $(1,2)^*$ -scl(A) = A. Hence any $(1,2)^*$ -sg-open set U containing A will also contain $(1,2)^*$ -scl(A) and A is $(1,2)^*$ - ψ -closed. If A is $\tau_{1,2}$ -closed or $(1,2)^*$ - α -closed then A is $(1,2)^*$ semi-closed and therefore $(1,2)^*$ - ψ -closed.

(ii) Let A be $(1,2)^* \cdot \psi$ -closed and U, a $(1,2)^*$ -semi-open set containing A. Then U is $(1,2)^*$ -sg-open. Since A is $(1,2)^* \cdot \psi$ -closed, $(1,2)^* \cdot \operatorname{scl}(A) \subseteq U$. Thus, A is $(1,2)^*$ -sg-closed and by Lemma 3.3, $(1,2)^*$ -semi-preclosed. Since any $\tau_{1,2}$ -open set is a $(1,2)^*$ -semi-open set and A is $(1,2)^*$ -sg-closed, from the definitions of $(1,2)^*$ -sg-closed set and $(1,2)^*$ -gs-closed set it follows that A is $(1,2)^*$ -gs-closed.

The following examples show that these implications are not reversible.

Example 3.5. Let $X = \{a, b, c, d\}$; $\tau_1 = \{\phi, \{a, b\}, X\}$; $\tau_2 = \{\phi, \{a, c\}, X\}$; $\tau_{1,2}$ -open sets $= \{\phi, \{a, b\}, \{a, c\}, \{a, b, c\}, X\}$; $A = \{b, c, d\}$ is $(1, 2)^*$ - ψ -closed but not $(1, 2)^*$ -semi-closed.

MISSOURI J. OF MATH. SCI., SPRING 2012

Example 3.6. Let $X = \{a, b, c, d, e\}$; $\tau_1 = \{\phi, \{a, d, e\}, \{b, c\}, X\}$; $\tau_2 = \{\phi, \{b, c, d\}, X\}$; $\tau_{1,2}$ -open sets $= \{\phi, \{a, d, e\}, \{b, c\}, \{b, c, d\}, X\}$; $A = \{b\}$ is $(1, 2)^*$ -sg-open and $(1, 2)^*$ -sg-closed. Since $(1, 2)^*$ -scl $(A) = \{b, c\}, A$ is not $(1, 2)^*$ - ψ -closed.

Thus, the class of $(1,2)^*-\psi$ -closed sets properly contains the class of $(1,2)^*$ -semi-closed sets, and thus properly contains the class of $(1,2)^*-\alpha$ -closed sets and also properly contains the class of $\tau_{1,2}$ -closed sets. Also the class of $(1,2)^*-\psi$ -closed sets is properly contained in the class of $(1,2)^*$ -semi-closed sets and hence it is properly contained in the class of $(1,2)^*$ -semi-preclosed sets and contained in the class of $(1,2)^*$ -semi-preclosed sets.

Remark 3.7.

- (i) $(1,2)^*$ - ψ -closedness and $(1,2)^*$ -g-closedness are independent notions.
- (ii) (1,2)*-ψ-closedness is independent from (1,2)*-gα-closedness, (1,2)*-αq-closedness and (1,2)*-preclosedness.

This can be seen from the following examples.

Example 3.8. Let $X = \{a, b, c, d\}$; $\tau_1 = \{\phi, \{a\}, \{a, b\}, \{a, b, d\}, X\}$; $\tau_2 = \{\phi, \{b\}, \{a, c, d\}, X\}$; $\tau_{1,2}$ -open sets $= \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, d\}, \{a, c, d\}, X\}$; $A = \{b, d\}$ is $(1, 2)^*$ - ψ -closed but not $(1, 2)^*$ -g-closed. $B = \{a, c\}$ is $(1, 2)^*$ -g-closed but not $(1, 2)^*$ -g-closed but not $(1, 2)^*$ -g-closed.

Example 3.9. Let $X = \{a, b, c, d\}$; $\tau_1 = \{\phi, \{a\}, \{a, b\}, X\}$; $\tau_2 = \{\phi, \{b, c\}, X\}$; $\tau_{1,2}$ -open sets $= \{\phi, \{a\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}$; $A = \{b, c\}$ is $(1, 2)^*$ - ψ -closed but it is not $(1, 2)^*$ -g α -closed, not $(1, 2)^*$ - α g-closed and not $(1, 2)^*$ -preclosed.

Example 3.10. Let $X = \{a, b, c, d\}$; $\tau_1 = \{\phi, \{a, b\}, \{a, b, c\}, X\}$; $\tau_2 = \{\phi, \{a, c\}, X\}$; $\tau_{1,2}$ -open sets $= \{\phi, \{a, b\}, \{a, b, c\}, \{a, c\}, X\}$; $A = \{a\}$ is $(1, 2)^*$ -preclosed but not $(1, 2)^*$ - ψ -closed. $B = \{a, b, d\}$ is $(1, 2)^*$ - αg -closed but not $(1, 2)^*$ - ψ -closed.

In Example 3.5, $B = \{b\}$ is $(1,2)^*$ -g α -closed but not $(1,2)^*$ - ψ -closed. The following theorem characterizes $(1,2)^*$ - ψ -closed sets.

Theorem 3.11. Let A be a subset of a bitopological space (X, τ_1, τ_2) . Then

- (i) A is (1,2)*-ψ-closed if and only if (1,2)*-scl(A)-A does not contain any nonempty (1,2)*-sg-closed set.
- (ii) If A is $(1,2)^*$ - ψ -closed and $A \subseteq B \subseteq (1,2)^*$ -scl(A), then B is $(1,2)^*$ - ψ -closed.

Proof. (i) Necessity: Let A be $(1,2)^*$ - ψ -closed. Suppose F is a nonempty $(1,2)^*$ -sg-closed set contained in $(1,2)^*$ -scl(A) - A. Then $A \subseteq X - F$ and so $(1,2)^*$ -scl $(A) \subseteq X - F$. Hence, $F \subseteq X - (1,2)^*$ -scl(A), a contradiction.

MISSOURI J. OF MATH. SCI., VOL. 24, NO. 1

Sufficiency: Suppose that $(1,2)^*$ -scl(A) - A does not contain any nonempty $(1,2)^*$ -sg-closed set. Let U be a $(1,2)^*$ -sg-open set such that $A \subseteq U$. If $(1,2)^*$ -scl $(A) \notin U$ then $(1,2)^*$ -scl $(A) \cap U^c \neq \phi$. This is a contradiction, since $(1,2)^*$ -scl $(A) \cap U^c$, intersection of two $(1,2)^*$ -sg-closed sets is also a $(1,2)^*$ -sg-closed set [by Theorem 3.14, 4] contained in $(1,2)^*$ -scl(A) - A.

(ii) $A \subseteq B \subseteq (1,2)^*$ -scl(A) imply that $(1,2)^*$ -scl $(A) = (1,2)^*$ -scl(B). Since A is $(1,2)^*$ - ψ -closed B is also $(1,2)^*$ - ψ -closed.

Theorem 3.12. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The following are equivalent:

- (i) A is $(1,2)^*$ -sg-open and $(1,2)^*$ - ψ -closed.
- (ii) A is $(1,2)^*$ -semi-regular.

Proof. (i) \Rightarrow (ii) By Remark 3.2, $(1,2)^*$ -scl $(A) \subseteq (1,2)^*$ -sint $(A) \subseteq A$. Therefore, $(1,2)^*$ -scl $(A) = (1,2)^*$ -sint(A) = A. That is A is $(1,2)^*$ -semi-regular.

(ii) \Rightarrow (i) A is $(1,2)^*$ -semi-open implies A is $(1,2)^*$ -sg-open and by Theorem 3.4, A is $(1,2)^*$ -semi-closed implies A is $(1,2)^*$ - ψ -closed.

Corollary 3.13. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The following are equivalent:

- (i) A is $(1,2)^*$ -preopen, $(1,2)^*$ -sg-open and $(1,2)^*$ - ψ -closed.
- (ii) A is $(1,2)^*$ -regular open.
- (iii) A is $(1,2)^*$ -preopen, $(1,2)^*$ -sg-open and $(1,2)^*$ -semi-closed.

Proof. (i) \Rightarrow (ii) By Theorem 3.12, A is $(1,2)^*$ -semi-closed. Also since A is $(1,2)^*$ -preopen, $A \supseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(A)) \supseteq A$. Hence, $A = \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)) and so A is $(1,2)^*$ -regular open.

(ii) \Rightarrow (iii) Since A is $(1,2)^*$ -regular open, $A = \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)). Therefore A is $\tau_{1,2}$ -open and also $(1,2)^*$ -semi-closed. Hence (iii) follows.

(iii) \Rightarrow (i) A is $(1,2)^*$ -semi-closed implies A is $(1,2)^*$ - ψ -closed by Theorem 3.4. Hence (i) holds.

Theorem 3.14. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The following are equivalent:

- (i) A is $\tau_{1,2}$ -clopen.
- (ii) A is $(1,2)^*$ -preopen, $(1,2)^*$ -sg-open, $(1,2)^*$ -Q-set and $(1,2)^*$ - ψ -closed.

Proof. (i) \Rightarrow (ii) Since A is $\tau_{1,2}$ -clopen, $\tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)) = $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A)) = A. Hence, A is $(1,2)^*$ -preopen, $(1,2)^*$ -sg-open, $(1,2)^*$ -Q-set and $(1,2)^*$ -semi-closed. Hence by Corollary 3.13, A is also $(1,2)^*$ - ψ -closed. (ii) \Rightarrow (i) By Theorem 3.12, A is $(1,2)^*$ -semi-regular. Since A is $(1,2)^*$ -

preopen, $A \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)) and since A is $(1,2)^*$ -semi-closed, $A \supseteq$

MISSOURI J. OF MATH. SCI., SPRING 2012

 $\tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)). Hence, $A = \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)) = $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A)) since A is a $(1,2)^*$ -Q-set. It follows that A is $\tau_{1,2}$ -clopen.

Remark 3.15. Union of two $(1,2)^*$ - ψ -closed sets need not be $(1,2)^*$ - ψ -closed as seen in the following example.

Example 3.16. Let $X = \{a, b, c, d\}$; $\tau_1 = \{\phi, \{b, c\}, X\}$; $\tau_2 = \{\phi, \{b, d\}, X\}$; $\tau_{1,2}$ -open sets $= \{\phi, \{b, c\}, \{b, d\}, \{b, c, d\}, X\}$; $\{c\}$ and $\{d\}$ are $(1, 2)^*$ - ψ -closed but $\{c, d\}$ is not $(1, 2)^*$ - ψ -closed.

4. $(1,2)^*$ -Semi- $T_{1/3}$ Bitopological Space

Definition 4.1. A bitopological space (X, τ_1, τ_2) is said to be a $(1, 2)^*$ -semi- $T_{1/3}$ space if every $(1, 2)^*$ - ψ -closed set is $(1, 2)^*$ -semi-closed.

Theorem 4.2. Every $(1,2)^*$ -semi- $T_{1/2}$ space is a $(1,2)^*$ -semi- $T_{1/3}$ space.

Proof. Since every $(1,2)^*$ - ψ -closed set is $(1,2)^*$ -sg-closed, the theorem is valid.

The converse of the above theorem is not true as it can be seen from the following example.

Example 4.3. Let $X = \{a, b, c, d, e\}; \tau_1 = \{\phi, \{a, d, e\}, X\}; \tau_2 = \{\phi, \{b, c\}, \{b, c, d\}, \{a, b, c, e\}, X\}; \tau_{1,2}$ -open sets $= \{\phi, \{a, d, e\}, \{b, c\}, \{b, c, d\}, \{a, b, c, e\}, X\}$. (X, τ_1, τ_2) is not a $(1, 2)^*$ -semi- $T_{1/2}$ space, since $A = \{a, c, d, e\}$ is $(1, 2)^*$ -seg-closed but not $(1, 2)^*$ -semi-closed. However (X, τ_1, τ_2) is a $(1, 2)^*$ -semi- $T_{1/3}$ space.

We characterize $(1, 2)^*$ -semi- $T_{1/3}$ space in the following theorem.

Theorem 4.4. For a bitopological space (X, τ_1, τ_2) , the following conditions are equivalent:

- (i) (X, τ_1, τ_2) is a $(1, 2)^*$ -semi- $T_{1/3}$ space.
- (ii) Every singleton of X is either $(1, 2)^*$ -sg-closed or $(1, 2)^*$ -semi-open.
- (iii) Every singleton of X is either $(1, 2)^*$ -sg-closed or $\tau_{1,2}$ -open.

Proof. (i) \Rightarrow (ii) Let $x \in X$ and suppose that $\{x\}$ is not $(1,2)^*$ -sg-closed. Then $X - \{x\}$ is not $(1,2)^*$ -sg-open and so X is the only $(1,2)^*$ -sg-open set containing $X - \{x\}$. Hence, $X - \{x\}$ is $(1,2)^*$ - ψ -closed. Since (X, τ_1, τ_2) is a $(1,2)^*$ -semi- $T_{1/3}$ space, $X - \{x\}$ is $(1,2)^*$ -semi-closed or equivalently $\{x\}$ is $(1,2)^*$ -semi-open.

(ii) \Rightarrow (i) Let A be a $(1,2)^*$ - ψ -closed set in (X,τ_1,τ_2) . Let $x \in (1,2)^*$ -scl(A).

Case 1. $\{x\}$ is $(1,2)^*$ -sg-closed. Since $x \in (1,2)^*$ -scl(A), by Theorem 3.11, $x \in A$.

Case 2. $\{x\}$ is $(1,2)^*$ -semi-open. Since $x \in (1,2)^*$ -scl(A), $\{x\} \cap A \neq \phi$. So

MISSOURI J. OF MATH. SCI., VOL. 24, NO. 1

 $x \in A$. Thus in any case, $(1,2)^*$ -scl $(A) \subseteq A$. Therefore, $A = (1,2)^*$ -scl(A) or equivalently A is a $(1,2)^*$ -semi-closed set in (X,τ_1,τ_2) . Hence, (X,τ_1,τ_2) is a $(1,2)^*$ -semi- $T_{1/3}$ space.

(ii) \Leftrightarrow (iii) follows from the fact that a singleton is $(1, 2)^*$ -semi-open if and only if it is $\tau_{1,2}$ -open.

Theorem 4.5. Every $(1,2)^*$ -semi- T_1 bitopological space is a $(1,2)^*$ -semi- $T_{1/3}$ space but not conversely.

Proof. Since every $(1,2)^*$ -semi- T_1 bitopological space is a $(1,2)^*$ -semi- $T_{1/2}$ space, the proof follows from Theorem 4.2.

The bitopological space (X, τ_1, τ_2) in Example 4.3 is a $(1, 2)^*$ -semi- $T_{1/3}$ space but not even a $(1, 2)^*$ -semi- $T_{1/2}$ space.

Theorem 4.6. Every $(1,2)^*$ - T_b space is a $(1,2)^*$ -semi- $T_{1/3}$ space but not conversely.

Proof. Let (X, τ_1, τ_2) be a $(1, 2)^*$ - T_b bitopological space. First let us prove that (X, τ_1, τ_2) is a $(1, 2)^*$ -semi- $T_{1/2}$ space. Let A be a $(1, 2)^*$ -sg-closed set in (X, τ_1, τ_2) . Then A is $(1, 2)^*$ -gs-closed. Since (X, τ_1, τ_2) is a $(1, 2)^*$ - T_b space, A is $\tau_{1,2}$ -closed and therefore $(1, 2)^*$ -semi-closed. Hence, (X, τ_1, τ_2) is a $(1, 2)^*$ -semi- $T_{1/2}$ space and by Theorem 4.2, (X, τ_1, τ_2) is a $(1, 2)^*$ -semi- $T_{1/3}$ space. \Box

The bitopological space in Example 4.3 is a $(1,2)^*$ -semi- $T_{1/3}$ space but not a $(1,2)^*$ - T_b space since $\{e\}$ is $(1,2)^*$ -gs-closed but not $\tau_{1,2}$ -closed.

Theorem 4.7. Every $(1,2)^*$ - αT_b bitopological space is a $(1,2)^*$ -semi- $T_{1/3}$ space but not conversely.

Proof. Let (X, τ_1, τ_2) be a $(1, 2)^*$ - αT_b bitopological space. Let A be $(1, 2)^*$ -g-closed in (X, τ_1, τ_2) . Then A is $(1, 2)^*$ - αg -closed in (X, τ_1, τ_2) . Since (X, τ_1, τ_2) is $(1, 2)^*$ - αT_b , A is $\tau_{1,2}$ -closed. Hence (X, τ_1, τ_2) is $(1, 2)^*$ - $T_{1/2}$ and therefore $(1, 2)^*$ -semi- $T_{1/2}$. By Theorem 4.2, (X, τ_1, τ_2) is a $(1, 2)^*$ -semi- $T_{1/3}$ space.

The bitopological space in Example 4.3 is a $(1,2)^*$ -semi- $T_{1/3}$ space but not a $(1,2)^*$ - αT_b space since $\{e\}$ is $(1,2)^*$ - αg -closed but not $\tau_{1,2}$ -closed.

Theorem 4.8. If the domain of a bijective, $(1, 2)^*$ -pre-sg-closed and $(1, 2)^*$ -pre-semi-open map is a $(1, 2)^*$ -semi- $T_{1/3}$ space, then so is the codomain.

Proof. Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a bijective, $(1, 2)^*$ -pre-sg-closed and $(1, 2)^*$ -pre-semi-open map. Suppose (X, τ_1, τ_2) is a $(1, 2)^*$ -semi- $T_{1/3}$ space. Let $y \in Y$. Since f is a bijection, y = f(x) for some $x \in X$. Since (X, τ_1, τ_2) is a $(1, 2)^*$ -semi- $T_{1/3}$ space, by Theorem 4.4, $\{x\}$ is $(1, 2)^*$ -sgclosed or $(1, 2)^*$ -semi-open. If $\{x\}$ is $(1, 2)^*$ -sg-closed, then $\{y\} = \{f(x)\}$ is

MISSOURI J. OF MATH. SCI., SPRING 2012

 $(1,2)^*$ -sg-closed since f is a $(1,2)^*$ -pre-sg-closed map. If $\{x\}$ is $(1,2)^*$ -semiopen, then $\{y\} = \{f(x)\}$ is $(1,2)^*$ -semiopen since f is $(1,2)^*$ -pre-semiopen map. Thus every singleton of Y is either $(1,2)^*$ -sg-closed or $(1,2)^*$ -semiopen in (Y,σ_1,σ_2) . By Theorem 4.4, (Y,σ_1,σ_2) is also a $(1,2)^*$ -semi- $T_{1/3}$ space.

From the above results we have the following diagram, where $1 = (1, 2)^*$ -semi- $T_{1/3}$ space, $2 = (1, 2)^*$ -semi- $T_{1/2}$ space, $3 = (1, 2)^*$ -semi- T_1 space, $4 = (1, 2)^*$ - T_b space, $5 = (1, 2)^*$ - αT_b space.

5. $(1, 2)^* - \psi$ -MAPPINGS

Definition 5.1. A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called $(1, 2)^* - \psi$ continuous if $f^{-1}(V)$ is $(1, 2)^* - \psi$ -closed in (X, τ_1, τ_2) for every $\sigma_{1,2}$ -closed set V in (Y, σ_1, σ_2) .

Theorem 5.2.

32

- (i) Every $(1,2)^*$ -semi-continuous map and thus every $(1,2)^*$ -continuous map and every $(1,2)^*$ - α -continuous map is $(1,2)^*$ - ψ -continuous.
- (ii) Every (1,2)*-ψ-continuous map is (1,2)*-sg-continuous and thus (1,2)*-sp-continuous, (1,2)*-gs-continuous and (1,2)*-gsp-continuous.

Proof. (i) Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a $(1, 2)^*$ -semi-continuous map. Let V be a $\sigma_{1,2}$ -closed set in (Y, σ_1, σ_2) . Since f is $(1, 2)^*$ -semi-continuous, $f^{-1}(V)$ is $(1, 2)^*$ -semi-closed and so $(1, 2)^*$ - ψ -closed in (X, τ_1, τ_2) . Therefore, f is a $(1, 2)^*$ - ψ -continuous map.

(ii) Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a $(1, 2)^*$ - ψ -continuous map. Let V be a $\sigma_{1,2}$ -closed set in (Y, σ_1, σ_2) . Since f is $(1, 2)^*$ - ψ -continuous, $f^{-1}(V)$ is $(1, 2)^*$ - ψ -closed and so by Theorem 3.4, $(1, 2)^*$ -sg-closed, $(1, 2)^*$ -gs-closed

MISSOURI J. OF MATH. SCI., VOL. 24, NO. 1

and $(1,2)^*$ -sp-closed in (X,τ_1,τ_2) . Therefore f is $(1,2)^*$ -sg-continuous and $(1,2)^*$ -gs-continuous and $(1,2)^*$ -sp-continuous. Any $(1,2)^*$ -gs-closed set is $(1,2)^*$ -gsp-closed since $(1,2)^*$ -spcl $(A) \subseteq (1,2)^*$ -scl(A). Therefore, f is $(1,2)^*$ -gsp-continuous.

The converses in Theorem 5.2 are not true as can be seen from the following examples.

Example 5.3. Let $X = Y = \{a, b, c, d\}$; $\tau_1 = \{\phi, \{a, b\}, X\}$; $\tau_2 = \{\phi, \{a, c\}, X\}$; $\tau_{1,2}$ -open sets $= \{\phi, \{a, b\}, \{a, c\}, \{a, b, c\}, X\} = \sigma_{1,2}$ -open sets. Define $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ by f(a) = a, f(b) = f(c) = f(d) = d. $f^{-1}(\{d\}) = \{b, c, d\}$ is not $(1, 2)^*$ -semi-closed and therefore f is not $(1, 2)^*$ -semi-continuous.

Example 5.4. Let $X = \{a, b, c, d, e\} = Y$; $\tau_1 = \{\phi, \{a, d, e\}, \{b, c\}, X\}$; $\tau_2 = \{\phi, \{b, c, d\}, X\}$; $\tau_{1,2}$ -open sets $= \{\phi, \{a, d, e\}, \{b, c\}, \{b, c, d\}, X\} = \sigma_{1,2}$ -open sets. Define $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by f(a) = e, f(b) = b, f(c) = a, f(d) = d, f(e) = a. $f^{-1}(\{b, c\}) = \{b\}$ is not $(1, 2)^*$ - ψ -closed and therefore, f is not $(1, 2)^*$ - ψ -continuous. However, f is $(1, 2)^*$ -sg-continuous.

Thus the class of $(1, 2)^*$ - ψ -continuous maps properly contains the class of $(1, 2)^*$ -semi-continuous maps and thus it contains the class of $(1, 2)^*$ continuous maps and the class of $(1, 2)^*$ - α -continuous maps. Also the class of $(1, 2)^*$ - ψ -continuous maps is properly contained in the class of $(1, 2)^*$ -sg-continuous maps and hence it is contained in the class of $(1, 2)^*$ sp-continuous maps, $(1, 2)^*$ -gs-continuous maps and $(1, 2)^*$ -gsp-continuous maps.

Theorem 5.5.

- (i) (1,2)*-ψ-continuity and (1,2)*-g-continuity are independent of each other.
- (ii) (1,2)*-ψ-continuity is independent of (1,2)*-αg-continuity, (1,2)*gα-continuity and (1,2)*-pre-continuity.

Proof. 1. Let $X = Y = \{a, b, c, d\}; \tau_1 = \{\phi, \{a\}, \{a, c, d\}, X\}; \tau_2 = \{\phi, \{b\}, \{a, b, d\}, X\}; \tau_{1,2}$ -open sets $= \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c, d\}, \{a, b, d\}, X\} = \sigma_{1,2}$ -open sets. Define $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ by $f(a) = a, f(b) = c, f(c) = d, f(d) = c. f^{-1}(\{c\}) = \{b, d\}$ is not $(1, 2)^*$ -g-closed and therefore, f is not $(1, 2)^*$ -g-continuous. However, f is $(1, 2)^*$ - ψ -continuous. Let $Z = \{a, b, c, d\}; \nu_1 = \{\phi, \{a, c\}, Z\}; \nu_2 = \{\phi, \{b, c\}, Z\}; \nu_{1,2}$ -open sets $= \{\phi, \{a, c\}, \{b, c\}, \{a, b, c\}, Z\}$. Define $g: (X, \tau_1, \tau_2) \to (Z, \nu_1, \nu_2)$ by $g(a) = d, g(b) = a, g(c) = d, g(d) = b. g^{-1}(\{a, d\}) = \{a, b, c\}$ is not $(1, 2)^*$ - ψ -closed and therefore, g is not $(1, 2)^*$ - ψ -continuous. However, g is $(1, 2)^*$ -g-continuous.

MISSOURI J. OF MATH. SCI., SPRING 2012

2. $X = Y = \{a, b, c, d\}; \tau_1 = \{\phi, \{a\}, \{a, b\}, X\}; \tau_2 = \{\phi, \{b, c\}, X\}; \tau_{1,2}$ -open sets $= \{\phi, \{a\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\} \sigma_1 = \{\phi, \{a, b, c\}, X\}; \sigma_2 = \{\phi, \{b, c, d\}, X\}; \sigma_{1,2}$ -open sets $= \{\phi, \{a, b, c\}, \{b, c, d\}, X\}$. Define $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ by f(a) = c, f(b) = d, f(c) = d, f(d) = a. $f^{-1}(\{d\}) = \{b, c\}$ is $(1, 2)^*$ - ψ -closed but not $(1, 2)^*$ - αg -closed, not $(1, 2)^*$ - αg -continuous, not $(1, 2)^*$ - $g \alpha$ -continuous and not $(1, 2)^*$ -pre-continuous. However, f is $(1, 2)^*$ - ψ -continuous.

Let $X = \{a, b, c, d, e\} = Y; \tau_1 = \{\phi, \{a, d, e\}, X\}; \tau_2 = \{\phi, \{b, c\}, \{b, c, d\}, X\}; \tau_{1,2}$ -open sets $= \{\phi, \{a, d, e\}, \{b, c\}, \{b, c, d\}, X\} = \sigma_{1,2}$ -open sets. Define $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ by $f(a) = e, f(b) = b, f(c) = a, f(d) = d, f(e) = a. f^{-1}(\{b, c\}) = \{b\}$ is not $(1, 2)^*$ - ψ -closed and therefore, f is not $(1, 2)^*$ - ψ -continuous. However, f is $(1, 2)^*$ -pre-continuous, $(1, 2)^*$ - αg -continuous and $(1, 2)^*$ - $g\alpha$ -continuous.

The composition of two $(1,2)^*-\psi$ -continuous maps need not be $(1,2)^*-\psi$ -continuous as can be seen from the following example.

Example 5.6. $X = Y = \{a, b, c, d\}; \tau_1 = \{\phi, \{a\}, \{a, b\}, X\}; \tau_2 = \{\phi, \{b, c\}, X\}; \tau_{1,2}$ -open sets $= \{\phi, \{a\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}; \sigma_1 = \{\phi, \{a, b, c\}, X\}; \sigma_2 = \{\phi, \{b, c, d\}, X\}; \sigma_{1,2}$ -open sets $= \{\phi, \{a, b, c\}, \{b, c, d\}, X\}$. Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be the identity map.

Let $Z = \{a, b, c, d\}; \nu_1 = \{\phi, \{a, c, d\}, X\}; \nu_2 = \{\phi, \{a, b, d\}, X\}; \nu_{1,2}\text{-open sets} = \{\phi, \{a, c, d\}, \{a, b, d\}, X\}.$ Define $g: (Y, \sigma_1, \sigma_2) \rightarrow (Z, \nu_1, \nu_2)$ by g(a) = b, g(b) = b, g(c) = a, g(d) = b. f and g are $(1, 2)^* - \psi$ -continuous but $g \circ f: (X, \tau_1, \tau_2) \rightarrow (Z, \nu_1, \nu_2)$ given by g(a) = b, g(b) = b, g(c) = a, g(d) = b is not $(1, 2)^* - \psi$ -continuous since $(g \circ f)^{-1}(\{b\}) = \{a, b, d\}$ is not $(1, 2)^* - \psi$ -closed in (X, τ_1, τ_2) .

We introduce the following definition.

Definition 5.7. A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called $(1, 2)^*$ - ψ -irresolute if $f^{-1}(V)$ is $(1, 2)^*$ - ψ -closed in (X, τ_1, τ_2) for every $(1, 2)^*$ - ψ -closed set V of (Y, σ_1, σ_2) .

Clearly every $(1, 2)^* - \psi$ -irresolute map is $(1, 2)^* - \psi$ -continuous. The converse is not true as can be seen from the following example.

Example 5.8. $X = Y = \{a, b, c, d\}; \tau_1 = \{\phi, \{a\}, \{a, b\}, X\}; \tau_2 = \{\phi, \{b, c\}, X\}; \tau_{1,2}$ -open sets $= \{\phi, \{a\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}; \sigma_1 = \{\phi, \{a, b, c\}, X\}; \sigma_2 = \{\phi, \{b, c, d\}, X\}; \sigma_{1,2}$ -open sets $= \{\phi, \{a, b, c\}, \{b, c, d\}, X\}$. Define $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ by f(a) = a, f(b) = c, f(c) = b, f(d) = d. f is $(1, 2)^*$ - ψ -continuous but not $(1, 2)^*$ - ψ -irresolute.

The following theorem can easily be proved.

MISSOURI J. OF MATH. SCI., VOL. 24, NO. 1

Theorem 5.9. Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ and $g: (Y, \sigma_1, \sigma_2) \to (Z, \nu_1, \nu_2)$ be any two functions. Then

- (i) $g \circ f: (X, \tau_1, \tau_2) \to (Z, \nu_1, \nu_2)$ is $(1, 2)^*$ - ψ -continuous if g is $(1, 2)^*$ continuous and f is $(1, 2)^*$ - ψ -continuous.
- (ii) $g \circ f: (X, \tau_1, \tau_2) \to (Z, \nu_1, \nu_2)$ is $(1, 2)^* \cdot \psi$ -irresolute if g is $(1, 2)^* \cdot \psi$ -irresolute and f is $(1, 2)^* \cdot \psi$ -irresolute.
- (iii) $g \circ f: (X, \tau_1, \tau_2) \to (Z, \nu_1, \nu_2)$ is $(1, 2)^*$ - ψ -continuous if g is $(1, 2)^*$ - ψ -continuous and f is $(1, 2)^*$ - ψ -irresolute.

Theorem 5.10. Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a bijective $(1, 2)^* - \psi$ -irresolute map. If (X, τ_1, τ_2) is a $(1, 2)^*$ -semi- $T_{1/3}$ space, then f is a $(1, 2)^*$ -irresolute map.

Proof. Let V be a $(1,2)^*$ -semi-open set in (Y,σ_1,σ_2) . Then V^c is a $(1,2)^*$ -semi-closed set and therefore, $(1,2)^*$ - ψ -closed set in (Y,σ_1,σ_2) . Since f is a $(1,2)^*$ - ψ -irresolute map, $f^{-1}(V^c)$ is a $(1,2)^*$ - ψ -closed set in (X,τ_1,τ_2) . Since (X,τ_1,τ_2) is a $(1,2)^*$ -semi- $T_{1/3}$ space, $f^{-1}(V^c)$ is a $(1,2)^*$ -semi-closed set in (X,τ_1,τ_2) . Since f is a bijection, $f^{-1}(V) = (f^{-1}(V^c))^c$. Thus, $f^{-1}(V)$ is a $(1,2)^*$ -semi-open set in (X,τ_1,τ_2) . Therefore, f is a $(1,2)^*$ -irresolute map.

Theorem 5.11. Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a surjective $(1, 2)^*$ sg-irresolute and a $(1, 2)^*$ -pre-semi-closed map. Then for every $(1, 2)^*$ - ψ closed subset A of (X, τ_1, τ_2) , f(A) is a $(1, 2)^*$ - ψ -closed subset of (Y, σ_1, σ_2) .

Proof. Let A be a $(1,2)^*$ - ψ -closed set in (X,τ_1,τ_2) and U be a $(1,2)^*$ -sgopen set in (Y,σ_1,σ_2) such that $f(A) \subseteq U$. Since f is a surjective $(1,2)^*$ -sgirresolute map, $f^{-1}(U)$ is a $(1,2)^*$ -sg-open set in (X,τ_1,τ_2) . Then $(1,2)^*$ - $\mathrm{scl}(A) \subseteq f^{-1}(U)$ since A is a $(1,2)^*$ - ψ -closed set and $A \subseteq f^{-1}(U)$. This implies $f((1,2)^*$ - $\mathrm{scl}(A)) \subseteq U$. Now $(1,2)^*$ - $\mathrm{scl}(f(A)) \subseteq (1,2)^*$ - $\mathrm{scl}(f((1,2)^*$ - $\mathrm{scl}(A))) = f((1,2)^*$ - $\mathrm{scl}(A))$ since f is a $(1,2)^*$ -pre-semi-closed map. Thus, $(1,2)^*$ - $\mathrm{scl}(f(A)) \subseteq U$ and therefore, f(A) is a $(1,2)^*$ - ψ -closed subset of (Y,σ_1,σ_2) .

Theorem 5.12. Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a surjective $(1, 2)^* - \psi$ irresolute and $(1, 2)^*$ -pre-semi-closed map. If (X, τ_1, τ_2) is a $(1, 2)^*$ -semi- $T_{1/3}$ space then (Y, σ_1, σ_2) is also a $(1, 2)^*$ -semi- $T_{1/3}$ space.

Proof. Let A be a $(1,2)^*$ - ψ -closed subset of (Y,σ_1,σ_2) . Since f is a $(1,2)^*$ - ψ -irresolute map, $f^{-1}(A)$ is a $(1,2)^*$ - ψ -closed subset of (X,τ_1,τ_2) . Since (X,τ_1,τ_2) is a $(1,2)^*$ -semi- $T_{1/3}$ space, $f^{-1}(A)$ is a $(1,2)^*$ -semi-closed set in (X,τ_1,τ_2) . Then $f(f^{-1}(A))$ is $(1,2)^*$ -semi-closed in (Y,σ_1,σ_2) since f is a $(1,2)^*$ -pre-semi-closed map. Since f is a surjection, $A = f(f^{-1}(A))$. Thus, A is $(1,2)^*$ -semi-closed in (Y,σ_1,σ_2) and therefore (Y,σ_1,σ_2) is a $(1,2)^*$ -semi- $T_{1/3}$ space.

MISSOURI J. OF MATH. SCI., SPRING 2012

Acknowledgment

We are thankful to the referee for giving suggestions to improve the presentation of the paper.

References

- [1] D. Andrijevic, Semi-preopen sets, Mat. Vesnik, 38 (1986), 24–32.
- [2] P. Bhattacharya and B. K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29 (1987), 375–382.
- [3] J. Dontchev, On some separation axioms associated with the α-topology, Mem. Fac. Sci. Kochi Univ., Ser. A. Math., 18 (1997), 31–35.
- [4] M. Lellis Thivagar and N. Mariappan, On weak separation axioms associated with (1,2)*-sg-closed sets in bitopological spaces, Int. Journal of Math. Analysis, 4.13 (2010), 631–644.
- [5] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, **70** (1963), 36–41.
- [6] N. Levine, Generalized closed sets in topology, Rend. circ. Mat. Palermo, 19 (1970), 89–96.
- [7] A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El Deeb, On pre continuous and weak pre continuous mappings, Proc. Math. Phys. Soc. Egypt., 53 (1982), 47–53.
- [8] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961–970.
- [9] O. Ravi and M. Lellis Thivagar, On stronger forms of (1,2)*-quotient mappings in bitopological spaces, Internat. J. Math. Game Theory and Algebra, 14.6 (2004), 481–492.
- [10] O. Ravi and M. Lellis Thivagar, A bitopological (1,2)*-semi-generalised continuous maps, Bull. Malays. Math. Sci. Soc., 2.29.1 (2006), 79–88.
- [11] J. Saeid, M. Lellis Thivagar, and N. Mariappan, $On (1, 2)^* \alpha \hat{g}$ -closed sets, Journal of Advanced Mathematical Studies, **2.2** (2010), 25–34.

MSC2010: 54E55, 54C55

School of Mathematics, Madurai Kamaraj University, Madurai, Tamilnadu, India

E-mail address: mlthivagar@yahoo.co.in

Department of Mathematics, Lady Doak College, Madurai-625002, Tamil Nadu, India

E-mail address: nirmala__mariappan@yahoo.com

MISSOURI J. OF MATH. SCI., VOL. 24, NO. 1