
STRONG LAW OF LARGE NUMBERS FOR

ARRAYS OF ROWWISE PAIRWISE

NQD RANDOM VARIABLES

Guang-hui Cai

Abstract. A strong law of large numbers for arrays of rowwise pair-
wise negatively quadrant dependent (NQD) random variables is obtained
which relaxes the usual assumption of rowwise negatively dependent (ND).
The moment conditions of the main result are weaker than the previous
results. The result obtained generalizes and improves the result of Taylor
(2002).

1. Introduction.

Definition 1. Two random variables X and Y are negatively quadrant
dependent (NQD), if for all x, y ∈ R, we have

P (X < x, Y < y) ≤ P (X < x)P (Y < y). (1)

A random variables sequence {Xk, k ∈ N} is said to be pairwise NQD, if
for all i 6= j, Xi and Xj are NQD.

This concept was given by Lehmann [1]. In 2002, Taylor [2] gave the
concept of LND, UND and ND. We have the following definitions.

Definition 2. A random variables sequence {Xk, k ∈ N} is said to be
(a) lower negatively dependent (LND), if for each n

P (X1 ≤ x1, . . . , Xn ≤ xn) ≤
n

∏

i=1

P (Xi ≤ xi) (2)

for all x1, . . . , xn ∈ R,
(b) upper negatively dependent (UND), if for each n

P (X1 > x1, . . . , Xn > xn) ≤

n
∏

i=1

P (Xi > xi) (3)

for all x1, . . . , xn ∈ R,
(c) negatively dependent (ND), if both (2) and (3) hold.

Taylor [2] gave a strong law of large numbers for arrays of rowwise ND
random variables. It is obvious that pairwise NQD is more general than ND
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or NA. The concept of NA was given by Joag [4]. Shao [5] discussed moment
inequality, complete convergence, invariance principle, and the strong law
of large numbers. In this paper, a strong law of large numbers for arrays
of rowwise pairwise NQD random variables is obtained which relaxes the
assumption of rowwise ND in Taylor [2]. The moment conditions of the
main result are weaker than those of Taylor [2]. The main result of this
paper is the following theorem.

Theorem 1. Let {Xnk, 1 ≤ k ≤ n, n ≥ 1} be an array of rowwise
pairwise NQD random variables with EXnk = 0 for each n and k. Let

Sn =
n

∑

k=1

Xnk.

sup
n,k

P (|Xnk| > t) ≤ P (|X | > t)

for all t ∈ R. Also,
E|X |ph(|X |

1

α ) < ∞, (4)

where αp > 1, 0 < p < 2, h(x) > 0 is a slowly varying function when
x → ∞. When α ≤ 1, EX = 0. Then,

for all ε > 0,

∞
∑

n=1

npα−2h(n)P ( max
1≤j≤n

|Sj | > εnα) < ∞. (5)

Throughout this paper, C will represent a positive constant though its
value may change from one appearance to the next, and an � bn will mean
an ≤ Cbn.

2. Proof of the Main Theorem. In order to prove our theorems,
we need the following lemma.

Lemma 1 (Lehmann [1]). If X and Y are NQD, then
(i) EXY ≤ EXEY ;
(ii) P (X > x, Y > y) ≤ P (X > x)P (Y > y) for all x, y ∈ R;
(iii) if f(x), g(x) are non-decreasing (or non-increasing) functions, then

f(X), g(X) are also NQD.
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Lemma 2. Let {Yi, i ≥ 1} be a sequence of centered pairwise NQD
random variables and E|Yi|

2 < ∞ for every i ≥ 1. Then there exists a C,
such that

E

∣

∣

∣

∣

n
∑

i=1

Yi

∣

∣

∣

∣

2

≤

n
∑

i=1

E|Yi|
2

E max
1≤k≤n

∣

∣

∣

∣

k
∑

i=1

Yi

∣

∣

∣

∣

2

≤ C log2 n
n

∑

i=1

E|Yi|
2.

Proof of Lemma 2. By Lemma 1 and EYi = 0, we have

E

∣

∣

∣

∣

n
∑

i=1

Yi

∣

∣

∣

∣

2

≤
n

∑

i=1

E|Yi|
2 + 2

∑

1≤i<j≤n

EYiEYj ≤
n

∑

i=1

E|Yi|
2.

By

E

∣

∣

∣

∣

n
∑

i=1

Yi

∣

∣

∣

∣

2

≤

n
∑

i=1

E|Yi|
2

and Theorem 2.4.1 in Stout [3], we have

E max
1≤k≤n

∣

∣

∣

∣

k
∑

i=1

Yi

∣

∣

∣

∣

2

≤ C

(

log(2n)

log 2

)2 n
∑

i=1

E|Yi|
2 ≤ C log2 n

n
∑

i=1

E|Yi|
2.

Proof of Theorem 1. We choose q. Then, 1/αp < q < 1. Let

X
(n)
nk = XnkI(|Xnk| ≤ nαq) + nαqI(|Xnk| > nαq) − nαqI(|Xnk| < −nαq),

Ynk = (Xnk − nαq)I(|Xnk | > nαq) + (Xnk + nαq)I(|Xnk| < −nαq),

Y +
nk = (Xnk − nαq)I(|Xnk | > nαq),

Y −
nk = −(Xnk + nαq)I(|Xnk| < −nαq),

Unk =

k
∑

i=1

X
(n)
ni .
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It is obvious that

max
k≤n

|Sk| ≤ max
k≤n

|Unk| +

n
∑

k=1

|Ynk | ≤ max
k≤n

|Unk| +

n
∑

k=1

Y +
nk +

n
∑

k=1

Y −
nk.

So we need only prove that

I =:
∞
∑

n=1

nαp−2h(n)P (max
k≤n

|Unk| ≥
ε

2
nα) < ∞; (6)

II =:

∞
∑

n=1

nαp−2h(n)P

( n
∑

k=1

Y +
nk ≥

ε

4
nα

)

< ∞; (7)

III =:

∞
∑

n=1

nαp−2h(n)P

( n
∑

k=1

Y −
nk ≥

ε

4
nα

)

< ∞. (8)

The proof of (7) and the proof of (8) are similar, so we only prove (7). Let

Znk = (Xnk − nαq)I(nαq < Xnk ≤ nαq + nα) + nαI(Xnk > nαq + nα).

It is obvious that Znk is a monotone function of Xnk and

{Y +
nk 6= Znk} v {Xnk > nα}.

So

II ≤

∞
∑

n=1

nαp−2h(n)nP (|Xnk| > nα) +

∞
∑

n=1

nαp−2h(n)P

( n
∑

k=1

Znk >
ε

4
nα

)

=: II1 + II2.

By (4) and
sup
n,k

P (|Xnk| > t) ≤ P (|X | > t)

for all t ∈ R, we have

II1 ≤ C

∞
∑

n=1

nαp−1h(n)P (|X | > nα) ≤ E|X |ph(|X |
1

α ) < ∞.
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If h(x) > 0 is a slowly varying function when x → ∞, then

lim
x→∞

xδh(x) = ∞.

By (4), we have for all 0 < δ < p that E|X |p−δ < ∞. Since 1/αp < q < 1,
αpq > 1. Choose δ such that p − δ − 1 > 0, if p > 1 and α(p − δ) >
α(p − δ)q > 1. Thus, when p > 1, n → ∞, we have

n−α
n

∑

k=1

|Ynk | ≤ n−α
n

∑

k=1

E|Xnk|I(|Xnk| > nαq)

≤ Cn−α
n

∑

k=1

E|X |I(|X | > nαq)

≤ Cn−α(p−δ)q+1−α(1−q)E|X |p−δI(|X > nαq) → 0. (9)

So

n−α
n

∑

k=1

Znk ≤ n−α
n

∑

k=1

|Ynk| → 0.

When p ≤ 1, n → ∞, we have

n−α
n

∑

k=1

Znk � nP (|X | > nα) + n1−αE|X |I(|X | < 2nα)

≤ n1−α(p−δ)E|X |p−δ + n1−α(p−δ)E|X |p−δI(|X | < 2nα)

≤ Cn1−α(p−δ) → 0. (10)
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By Lemma 2, we have

II2 ≤ C

∞
∑

n=1

nαp−2h(n)P

( n
∑

k=1

(Znk − EZnk) >
ε

8
nα

)

≤ C
∞
∑

n=1

nαp−2−2αh(n)V ar

( n
∑

k=1

Znk

)

≤ C

∞
∑

n=1

nαp−1−2αh(n)E(Zn1)
2

≤ C

∞
∑

n=1

nαp−1−2αh(n)E(X − nαq)2I(nαq < X ≤ nαq + nα)

+ C

∞
∑

n=1

nαp−1−2αh(n)nαI(X > nαq + nα)

≤ C

∞
∑

n=1

nαp−1h(n)P (X > nα) + C

∞
∑

n=1

nαp−1−2αh(n)EX2I(|X | < 2nα)

=: CII1 + CII3.

By (3), we have

II3 =

∞
∑

n=1

nαp−1−2αh(n)

n
∑

j=1

EX2I(2(j − 1)α < |X | ≤ 2jα)

=

∞
∑

j=1

∞
∑

n=j

nαp−1−2αh(n)EX2I(2(j − 1)α < |X | ≤ 2jα)

≤ C

∞
∑

j=1

jαp−2αh(j)EX2I(2(j − 1)α < |X | ≤ 2jα)
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≤ C

∞
∑

j=1

jαph(j)P (2(j − 1)α < |X | ≤ 2jα)

≤ CE|X |ph(|X |
1

α ) < ∞.

Thus, II2 < ∞. In order to prove (6), we first prove that when n → ∞,

n−α max
1≤j≤n

|EUnj | → 0.

When α ≤ 1, since αp > 1, p > 1. Notice that EX = 0. By (9), when
n → ∞, then

n−α max
1≤j≤n

|EUnj | = n−α max
1≤j≤n

∣

∣

∣

∣

j
∑

k=1

EYnk

∣

∣

∣

∣

≤ n−α
n

∑

k=1

E|Ynk | → 0.

When α > 1, p > 1, then

n−α max
1≤j≤n

|EUnj | ≤ n−α
n

∑

k=1

E|Xnk| ≤ n1−αE|X | ≤ Cn1−α → 0.

When α > 1, p ≤ 1, then

n−α max
1≤j≤n

|EUnj | ≤ n1−αE|X |

≤ nP (|X | > nα) + n1−αE|X |I(|X | < nα)

≤ n1−α(p−δ)E|X |p−δ + n1−α(p−δ)E|X |p−δI(|X | < nα)

≤ Cn1−α(p−δ) → 0.
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We now complete the proof of (11). Choose 0 < δ < p, such that 2−p+δ >
0, qδ < (2 − p)(1 − q). By (11) and Lemma 2, we have that

I2 ≤ C

∞
∑

n=1

nαp−2h(n)P

(

max
1≤j≤n

∣

∣

∣

∣

j
∑

k=1

(X
(n)
nk − EX

(n)
nk )

∣

∣

∣

∣

>
ε

8
nα

)

≤ C

∞
∑

n=1

nαp−2−2αh(n)E max
1≤j≤n

∣

∣

∣

∣

j
∑

k=1

(X
(n)
nk − EX

(n)
nk )

∣

∣

∣

∣

2

≤ C

∞
∑

n=1

nαp−1−2αh(n) log2 n(EX
(n)
n1 )2

≤ C

∞
∑

n=1

nαp−1−2αh(n)nαq(2−p+δ) log2 nE|X |p−δ

≤ C

∞
∑

n=1

n−1−α(2−p)(1−q)+αqδh(n) log2 n

< ∞.

We now complete the proof of Theorem 1.

Remark 1. Let h(x) ≡ 1, αp = 2. Notice that pairwise NQD is more
general than ND. Using Theorem 1, we can get Theorem 3.1 (iii) in Taylor
[2].

Corollary 1. Let h(x) ≡ 1, αp = 2. By E|X |p < ∞, when n → ∞, we
have

Sn

n2/p
→ 0 a.s.

This is because a negative quadrant dependent (NQD) sequence is
more general than a linear negative quadrant dependence (LNQD) sequence
or negatively associated (NA) sequence. Using Theorem 1, we have the
following two Corollaries.
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Corollary 2. Let {Xnk, 1 ≤ k ≤ n, n ≥ 1} be an array of rowwise
LNQD random variables with EXnk = 0 for each n and k. Let

Sn =

n
∑

k=1

Xnk.

sup
n,k

P (|Xnk| > t) ≤ P (|X | > t)

for all t ∈ R.
E|X |ph(|X |

1

α ) < ∞, (12)

where αp > 1, 0 < p < 2, h(x) > 0 is a slowly varying function when
x → ∞. When α ≤ 1, EX = 0. Then

for all ε > 0,
∞
∑

n=1

npα−2h(n)P ( max
1≤j≤n

|Sj | > εnα) < ∞. (13)

Corollary 3. Let {Xnk, 1 ≤ k ≤ n, n ≥ 1} be an array of rowwise NA
random variables with EXnk = 0 for each n and k. Let

Sn =

n
∑

k=1

Xnk.

sup
n,k

P (|Xnk| > t) ≤ P (|X | > t)

for all t ∈ R.
E|X |ph(|X |

1

α ) < ∞, (14)

where αp > 1, 0 < p < 2, h(x) > 0 is a slowly varying function when
x → ∞. When α ≤ 1, EX = 0. Then,

for all ε > 0,

∞
∑

n=1

npα−2h(n)P ( max
1≤j≤n

|Sj | > εnα) < ∞. (15)

For the definitions of LNQD sequence and NA sequence see the following.
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Definition 3 (Zhang [6]). A random variable sequence {Xk, k ≥ 1} is
said to be LNQD, if for any disjoint A, B and a positive constant sequence
{rj , j ≥ 1}, then

∑

i∈A

riXi and
∑

j∈B

rjXj

are NQD.

Definition 4 (Joag [4]). A finite family of random variables {Xi, 1 ≤
i ≤ n} is said to be negatively associated (NA) if for every pair of disjoint
subsets T1 and T2 of {1, 2, . . . , n}, we have

Cov(f1(Xi, i ∈ T1), f2(Xj , j ∈ T2)) ≤ 0,

whenever f1 and f2 are coordinatewise increasing and the covariance ex-
ists. An infinite family is negatively associated if every finite subfamily is
negatively associated.
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