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A NEW CLOSURE OPERATOR IN BITOPOLOGICAL
SPACES AND ASSOCIATED SEPARATION AXIOMS

R. Raja Rajeswari and M. Lellis Thivagar

Abstract. The aim of this paper is to introduce a new closure operator
and an associated new topology in bitopological spaces. We also define some
new separation axioms and a comparative study is done.

1. Introduction and Preliminaries. In 1986, Maki introduced
new sets called A-sets and V-sets of a given set B. He obtained B* and
BV as the intersection of all open sets containing B and the union of all
closed sets contained in B, respectively. By using the concept of A-sets and
V-sets, Maki, Umehara, and Yamamura [4, 5, 6] defined and investigated
different new classes of sets. In this paper, we define a new class of closure
operator, which is also a Kuratowski closure operator with respect to the
generalized A, -sets, an analogue of Maki’s work [4]. Thus, a new topology
7Vu is formed. We also characterize the class of ultra-T} /2 spaces using the
newly defined spaces T and T\Ifu.

Let us now recall some definitions which are useful to read this paper.
Throughout this paper, (X,71,72) and (Y,01,02) (or simply X and Y)
denote the bitopological spaces on which no separation axioms are assumed
unless explicitly stated.

Definition 1.1. [3] A subset A of X is called
(i) 7ym2-open if A € 7 U 7g;
(11) T1mo-closed if A € 71 U Ts.

Definition 1.2. [3] Let A be a subset of X. Then the 73 7-closure
of A is denoted as 7172-Cl(A) and defined as 7 72-Cl(A) = "{F | A C
F and F is 1 1o-closed}.

Definition 1.3. [3] A subset A of X is called (1,2)a-open if A C
T1-Int(1172-Cl(11-Int(A))). The complement of a (1, 2)a-open set is known
as a (1,2)a-closed set. The family of all (1,2)a-open and (1, 2)a-closed
sets are denoted as (1,2)aO(X) and (1,2)aC(X) (or (1,2)aCl(X)), re-
spectively.

Definition 1.4. [3] A subset A of X is called a (1,2)ag-closed set if
(1,2)aCl(A) C U whenever A C U and U € aO(X), where (1,2)aCl(A) =
N{F|FcCcAandF € (1,2)aC(X)}.

Definition 1.5. A space X is said to be

(i) [1] ultra-Ry space if and only if for every € G, where G is a

(1,2)a-open set, (1,2)aCl({z}) C G;

(ii) [3] ultra-Ty space if and only if for any two distinct points 2 and y in

X, there exists a (1,2)a-open set GG, containing = but not y.
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Definition 1.6. [3] A bitopological space X is called ultra-T} 5 if every
(1,2)ag-closed set is (1, 2)a-closed.

Remark 1.7. [3] In an ultra-T}/, space, every singleton set is either
(1,2)a-open or (1,2)a-closed.

Definition 1.8. [9] In a bitopological space X, a subset B of X is
an ultra-A-set (briefly, A,-set) if B = B, where B = n{G | G D
B and G € (1,2)a0(X)}.

Definition 1.9. [9] In a bitopological space X, a subset B of X is an
ultra-V-set (briefly V,-set) if B = BY+, where BY» =U{F | FC Band F €
(1,2)aC(X)}. The family of all A,-sets (resp. family of V,-sets) is denoted
by A,O(X) (resp. V,O(X)).

Proposition 1.10. [9] For any bitopological space X, the following hold:
i) The sets ) and X are both V,, sets and A,-sets.

)
)
(iii) Every intersection of V,-set is a V,-set.
) BV« C B.

)

)

Proposition 1.11. [9] Let {B; : i € I} be subsets of a bitopological
space (X, 71,72). Then the following are valid:

() (U B = U Bl
(i) (N B)M € N BM;

i€l icl

(iii) (U Bi)V* 2 U B, for any index set I.
i€l el
Definition 1.12. [9] In a space X, a subset B is called

(i) Generalized-A,-set (briefly g.A,-set) of X if BA« C F whenever B C F

and F € (1,2)aCL(X). D (X) denotes the family of all g.A,,-sets of
X;

(ii) Generalized V,-set (briefly g.V,-set) of X if B¢ is a g.Ay-set. DV« (X)
denotes the family of all g.Vv,,-sets of X.

Theorem 1.13. [9] A subset A of (X, 71,72) is a g.V,-set if and only if
U C BY* whenever U C B and U is a (1,2)a-open set.

2. A New Closure Operator C*:. By using the family of A,-
sets of a bitopological space X we define a closure operator C*+ and the
associated topology 7.

Definition 2.1. For any subset B of a bitopological space X we define
C*(B) =n{G : B C G and G € DM} and IntV+(B) = U{F : F C
B and F € DV+}.



36 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

Proposition 2.2. Let A and B be subsets of a bitopological space X.
Then
() CM(BY) = (Int"+(B))*;
(i) If A C B, then C*(A) C C*«(B);
(iii) If B is a g.A,-set, then C*«(B) = B;
(iv) If B is a g.Vy-set, then IntV«(B) = B.

Theorem 2.3. C*+ is a Kuratowski closure operator.

Proof. (i) C*=(()) = () is obvious.
(ii) A € C7(A) is true from the definition.
(iii) We now prove that C2« (AU B) = C*«(A) U CP(B).
Suppose there exists a point € X such that 2 ¢ C*«(A U B). Then
there exists a subset G € D™ such that AUB C G and z ¢ G. Then
ACG,BCG,and z ¢ G which implies 2 ¢ C*=(A) and = ¢ C*«(B). So
CM(A)UCMre(B) C CM(AUB).
Suppose that there exists a point # € X such that x ¢ (C*(A)UC?=(B)).
Then there exists two sets G1 and G5 in D+ such that A C G; and B C G4
but z ¢ G; and = ¢ G2. Now let G = G; U G3. By Proposition 2.4 of [9],
G € D*. Then AUB C G and = ¢ G and so ¢ C*«(A U B), which
implies C*+ (AU B) C C*(A) U C(B).
(iv) We now prove C«(CA+(B)) = C*«(B). Suppose there exists a point
r € X such that z ¢ C*(B). Then there exists a U € D" such that
r ¢ U and B C U. By Proposition 2.2, C*(B) C C*«(U) = U. Thus,
we have x ¢ C*«(C™«(B)). Hence, C*«(CA«(B)) C C*«(B). Also by (ii),
CA(B) C CM(CM+(B)). Therefore, CM«(C*+(B)) = CM(B).

Definition 2.4. Let 7+ be a bitopological space generated by C*+ in
the usual manner.
A ={B: B C X,CM(B°) = B°}.
Here, we also define another family of subsets.
pt ={B:C*(B) = B}. Then we can also say that
pte ={B: B¢ e i}

Theorem 2.5. For a space X, the following hold:
(i) 7™ ={B: B C X. Int'«(B) = B}.
(ii) (1,2)a0(X) C DA« C phe.
(iii) (1,2)aCL(X) C DY+ C 7hu,

Proof. (i) Let A C X. Then A € 7%+ if and only if C*=(A¢) = A°. By
Proposition 2.2, O« (A¢) = [IntV+(A)]¢ = A°, which implies Int"«(A) = A
and so A € 7hu.

(ii) Let B € (1,2)a0(X). Then B is a A,-set and, by the definition of
Ay-set and g.A,-set, B is a g.Ay-set. So B € DA . Then C*(B) = B
which implies B € p*+. So (1,2)a0(X) C DA C phu,

(i) Let B € (1,2)aC(X). Then B is a g.Vu-set. So B € DY+ and
so IntV+(B) = B, which implies C*«(B¢) = B°. So B € 7. Hence,
(1,2)aCL(X) C DV« C 7hu,
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Proposition 2.6. Let X be a bitopological space. Then
(i) for each x € X, {z} is either (1,2)a-open or {z}° is a g.A-set;
(ii) for each z € X, {z} is (1,2)a-open or {z} is a g.V,-set.

Proof. Assume {z} is not (1,2)a-open. Then X — {z} is not a
(1,2)a-closed set. So the only (1,2)a-closed set containing {x}¢ is X and
so {z}¢ is a g.Ay-set. Hence, {z} is a g.V,,-set.

Proposition 2.7. If (1,2)aO(X) = 72, then every singleton set {z} of
X is 7M-open.

Proof. Suppose {z} is not (1,2)a-open. By Proposition 2.6, {z}¢ is
a g.A,-set. Then x € 78«. If {z} is (1,2)a-open, then by assumption
{x} € The.

Proposition 2.8. Let X be a bitopological space. Then

(i) if (1,2)aCL(X) = 7%+, then every g.A,-set of X is (1,2)a-open;

(ii) if every g.A,-set of X is (1,2)a-open, then 7« = {B: B C X,B =
B,

Proof. Let B be a g.A,-set of X. That is, B € D and, by Theorem
2.5, B € pM and so B¢ € 7%+, By the assumption B¢ € (1,2)aCL(X), we
have B € (1,2)aO0(X).
(ii) Let A € X and A € 7%. Then C*«(A4°) = A° = N{G : A° C
Gand G € DM} =n{G: A° C G and G € (1,2)a0(X)} = (A°)*«. Then,
by Proposition 1.10, A¢ = (A°)* = X — AV, So we get A = AV+. That
is, Ac 7™ ={B: B C X and B = BV+}.

Remark 2.9. From Definition 1.8, 2.1, and by Theorem 2.5, we can say
that (1,2)aCL(X) C V,O(X) C DVu C 7w,

3. New Separation Axioms.

Definition 3.1. A bitopological space (X, 71, 72) is called a
(i) TE-space if and only if every g.V,-set is a V,-set;

(i) T.LT if and only if every g.V,,-set is a (1, 2)a-closed set.

Remark 3.2. Every TFT space is a T}F space, but the converse is not
always true as can be seen from the following example.

Example 3.3.  The space X defined in this example is a TL
space, but it is not a TErT space. Let X = {a,b,c,d}, 1 =
{6, X,{a},{c},{a,c}, {b,c},{a,b,c}, {b,c,d}} and 7 = {¢,X,{a,b}}.
Then (1,2)a0(X) = {¢, X, {a},{c},{a,c}, {b,c},{a,b,c},{a,c,d},{b,c,d}}
and D (X) = {¢, X, {a}, {c}, {a,c},{b,c}, {c,d}, {a,b,c},{a,c,d}, {b,c,d}}.

Definition 3.4. A space X is said to be a

(i) T\, space if every hu_open set is a g.V,-set;
(i) T& space if every T%u-open set is a V,-set.
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Example 3.5. X = {a,b,c,d}, 11 = {0,X,{d}}, and =» =
{0, X,{c,d}}. Then
(1,2)a0(X) = {0,X,{d},{a,d},{b,d},{c,d},{a,b,d},{a,c,d},{b,c,d}},
(1,2)aCL(X) = {0, X, {a}, {b}, {c}, {a,b},{a,c},{b,c},{a,b,c}}, DA« =
{0, X,{d},{a,d},{b,d},{c,d},{a,b,d},{a,c,d}, {b,c,d}}, and DY+ =
(1,2)aCL(X) = 7*. Here, X is a T® space.

Remark 3.6. Every T\Z—space is a T\, -space. But the converse is not
always true as seen from the following example.

Example 3.7. Let X = {a,b,c}, m = {¢,X,{a}}, and n =
{¢,X,{b,c}}. Then D"« = {¢, X,{a},{a,b},{a,c}} = 7™, This space
X is a T\, space but not a T\}fu-space.

Lemma 3.8. For a g.Vv,-set B of aspace X, if x € X is a point such that
x € Band X ¢ BV« then {z} is neither (1,2)a-closed nor (1, 2)a-open.

Proof. By the definition of BV, the set {z} is not (1,2)a-closed. By
Theorem 1.13, {z} is not (1, 2)a-open.

Lemma 3.9. For a bitopological space X, every singleton set {z} is
either (1,2)a-closed or {z}¢ is (1, 2)ag-closed.

Proof. If {z} is not (1,2)a-closed, then the only (1,2)a-open set con-
taining X — {«} is X. Hence, {z}° is (1,2)ag-closed.

Theorem 3.10. The following statements in (X, 71, 72) are equivalent.
(i) X is an ultra-T} ), space;
(i) X is a TE-space;
(iii) X is a T -space.

Proof. (i)=-(ii) Suppose X is not an T'-space. Then there exists a
g.V,-set which is not a V,-set. Let BY« C B but BV« is not equal to B.
Then there exists an € B but « ¢ BY+. Hence, {z} is not a (1, 2)a-closed
set. By Lemma 3.9, X —{x} is a (1, 2)ag-closed set. On the other hand, {z}
is not (1, 2)a-open (by Lemma 3.8). Therefore, X —{x} is not (1, 2)a-closed
but it is (1,2)ag-closed. This is a contradiction to the assumption that X
is an ultra-T} /o space.
(ii)=(i) Suppose X is not an ultra-T} /, space. Then there exists a B C X
such that B is a (1,2)ag-closed set but not (1, 2)a-closed. Since B is not
(1,2)a-closed, there exists a point « € X such that z € aCl(B) but = ¢ B.
By Proposition 2.6, the set {«} is either (1,2)a-open or a g.V,-set.

Case (i). {z} is (1,2)a-open. Then since z € (1,2)aCl(B), {z} N B =

¢. This is a contradiction.

Case (ii). If {z} is g.Vy-set and {z} is not (1,2)a-closed, {z}V+ = ¢.
Hence, {z} is not a g.V,-set. This is a contradiction.
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Case (iii). If {x} is a g.Vy-set and {z} is (1,2)a-closed, then X —
{z} is a (1,2)a-open set containing B. As B is a (1,2)ag-closed set,
(1,2)aCl(B) C X —{z}, again this is a contradiction that z € (1, 2)aCI(B).

(ii)=(iii) Let B be a 7"u-set. That is, B = IntV«(B). By assump-
tion, DV (X) = Vv, O(X). Also, (IntV(B))"* = {U{F : F C B,F €
DVu}Vu S| {F : FV+ C B,F € DV+} = IntV+(B). Again by Proposition
1.11, (IntV=(B))Y« C IntV+(B). Hence, IntV«(B) is a V,-set.

(iii)=-(ii) Let B be a g.V,-set. Then IntV+(B) = B (by Definition 2.1) and,
by assumption, it is a V,-set.

Theorem 3.11. If X is an ultra-T; /5 space, then X is a T\, space.

Proof. By Remark 2.9, we have (1,2)aCL(X) C V,O(X) C DV» C
7Au. Again by Theorem 3.10, V,,O(X) = 7V«. Therefore, DVv = 7Vv.
Hence, X is a T\, space.

Remark 3.12. The converse of Theorem 3.11 need not always be true.
This is shown by the following example.

Example 3.13. X = {a,b,c}, 1 = {0,X,{a},{b,c}}, and 7» =
{0, X,{a}}. Then (1,2)a0(X) = {0,X,{a,},{b,c}}, (1,2)aCL(X) =
{0, X, {a},{b,c}}, (1,2)aGCL(X) = {0, X, {a},{b}, {c}, {a, b}, {a, c}, {b, c}},
DA(X) = {0.X,{a} (b} {ch fa.bh facch {b.c}} = DY(X) = 7he.

Hence, the space X is Ty, but not ultra-T} ;.

Lemma 3.14. For a space X, every singleton set is a g.A,-set if and
only if G = GV* for every (1,2)a-open set G.

Proof. Let G be a (1,2)a-open set and let y € X — G. Then {y} is a
g.Ay-set and X —Gisa (1,2)a-closed set. {y}*« C X—G. Again, U{y}*« C
X — G for y € X — G. By Proposition 1.11, (U{y})* = u{{y} =} for
y € X — G and hence, {U{y}** 1y € X — G} = (X — G)* = {(U{y}))*« :
y € X —G} C X —G. Again by Proposition 1.11, X — G C (X — G)*
Therefore, (X — G)* = X —G =X —GY* and so G = G+,

Lemma 3.15. The bitopological space X is an ultra-Ry space if and
only if G = GV, where G is a (1, 2)a-open set.

Proof. Let X be ultra-Ry. Let © € G. Then (1,2)aCl({z}) C G. So
we have {z} C (1,2)aCl({z}) C G for each z € G. Then {U{z} : = €
G} C {uU(1,2)aCl({z});x € G} C G. Now let F' = (1,2)aCl({z}). Then
we have G =U{F : F C G and F € (1,2)aCl({z})} = GV".

Conversely, let G = U{F; : F; C G and F € (1,2)aC(X)} and also, let x €
G. Then = € F; for some i and F; is (1,2)a-closed. Then (1,2)aCl({z}) C
(1,2)aCI(F;) = F; € G. Hence, X is ultra-Ry.

Theorem 3.16. If X is an ultra-Ry space, then X is T\, .

Proof. By Lemma 3.15, if X is ultra-Ry and G is any (1,2)a-open
set, then G = G*+. By Lemma 3.14, every singleton set {b} is a g.A,-set.
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Now let B be any subset of X. Then B = U{{b} = b € B} is also a g.A,-
set. Thus, every subset of X is a g.A,-set. Hence, D* = P(X) and so
DVu = 72 That is, X is Ty, .

Remark 3.17. Every T\ ,-space need not always be an ultra-Ry-space.
This can be seen by the following example.

Example 3.18. Let X = {a,b,c}, 1. = {0, X, {a},{a,b},{a,c}}, and
o = {0, X, {b},{c},{b,c}}. Then (1,2)a0(X) = {0, X, {a}, {a,b},{a,c}},
(1,2)aCL(X) = {0, X, {b},{c},{b,c}}, D* = {0, X,{a},{b,a},{a,c}}.
Here, DY = (1,2)aCL(X) = 7. The space is not ultra-Ry but Ty, .

Remark 3.19. The concepts of ultra-Ty and 7\, are independent. Ex-
ample 3.13 and the following example justify this claim.

Example 3.20. Let X be the set of all real numbers and = =
{0, X} N{(a,0) :a € X}, 2 ={0,X}. Now (1,2)aO(X) = 1. Here, the
space X is ultra-Tp but not 13,,.
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