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Abstract. This paper shows that the nullity and rank of aP +bQ−
cQAP is a constant, where P and Q are outer inverses of a given
matrix A, c = a + b (a, b 6= 0) or c 6= a + b, a, b, c ∈ C. In addition,
the rank of aP +bQ−cQAP is equal to the rank of P −Q if c = a+b
and to P + Q if c 6= a + b.

1. Introduction

Let A be an m × n matrix over the field C of all complex numbers. A
matrix X is said to be an outer inverse of A if XAX = X, and is often
denoted by X = A(2). The collection of all outer inverses of A is denoted
by A{2}. The outer inverses and their applications have been extensively
investigated by many authors in the literature [1, 2, 3]. The rank of P1±P2

and combinations of P1 and P2 have been studied by the authors in [4], [5],
and [6], where P1 and P2 are idempotent matrices. Furthermore, Tian has
studied the rank of P ± Q and linear combinations of P and Q, where P
and Q are outer inverses of a given matrix A [7, 8]. In this paper, we study
the nullity and rank of combinations aP + bQ− cQAP , where P and Q are
outer inverses of a given matrix A, a, b 6= 0. We prove that the nullity and
rank of aP + bQ− cQAP is a constant, where P and Q are outer inverses
of a given matrix A, c = a + b (a, b 6= 0) or c 6= a + b. In addition, we get
the rank equality as follows:

r(aP + bQ− cQAP ) =

{
r(P −Q), when c = a + b

r(P + Q), when c 6= a + b,

(where P and Q are outer inverses of a given matrix A, a, b, c ∈ C, a, b 6= 0).
Our result generalizes the results given by J.J. Koliha and V. Rakočević [4]
and Kezheng Zuo [9].

Throughout this paper, we use C, Cn, Cm×n to denote the set of complex
numbers, the n-column vector space over C, and the set of m× n complex
matrices, respectively. If A ∈ Cm×n, we write N (A) and R(A) for the null-
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space and the range of A. The rank of A, r(A), is the dimension of R(A),
and the nullity of A, nul(A), is the dimension of N (A). The symbol In is
used to denote the n× n identity matrix.

The following result is obvious and we omit the proof.

Lemma 1.1. If A ∈ Cm×n be given, P,Q ∈ A{2}, we define T as the
restriction of (In − PA)Q to N (P ), that is,

T : N (P ) −→ [(In − PA)Q]N (P ), x 7−→ Tx = (In − PA)Qx.

Then

N (T ) = N [(In − PA)Q] ∩N (P ),R(T ) = R[(In − PA)Q(Im −AP )].

2. Main results and Proofs

Now we start our observation with the following result.

Theorem 2.1. Let A ∈ Cm×n be given, P,Q ∈ A{2}, a, b ∈ C\{0}, c ∈ C
and c 6= a+b. If T is defined as in the Lemma 1.1, then N (aP +bQ−cQAP )
is isomorphic to N (T ).

Proof. Let N = N (aP + bQ− cQAP ) and k 6= 0. First we show that

N ∼= (Im −AP )N and N (T ) ∼= (kIm −AQ)N (T ). (2.1)

Let x ∈ N and (Im − AP )x = 0, then x = APx, Qx = QAPx and
(aP + bQ − cQAP )x = 0. Therefore, Qx = (a + b − c)−1QA(aP + bQ −
cQAP )x = 0, Px = a−1(aP + bQ− cQAP )x = 0, and then x = APx = 0.
Hence, N ∼= (Im − AP )N . If x ∈ N (T ) and (kIm − AQ)x = 0, then
Px = 0, Qx = PAQx, and AQx = kx. Thus, Qx = P (kx) = 0, kx =
AQx = 0, that is x = 0. Hence, kIm −AQ restricted to acting from N (T )
to (kIm −AQ)N (T ) is an isomorphism. Next we prove that

(Im−AP )N ⊂ N (T ) and (kIm−AQ)N (T ) ⊂ N for some k 6= 0. (2.2)

If x ∈ N , then (aP + bQ − cQAP )x = 0. After the multiplication by QA
from left side and using the fact that QAQ = Q({2}-inverse), we obtain
that Qx = b−1(c− a)QAPx, Px = QAPx, and (In − PA)Q(Im −AP )x =
(In−PA)[b−1(c−a)Px−Px] = 0, that is (Im−AP )x ∈ N (T ). This proves
the first inclusion in (2.2).

If x ∈ N (T ) and k = b−1(a + b − c) 6= 0, then Px = 0, Qx = PAQx.
Thus, (aP + bQ− cQAP )(kIm −AQ)x = (bk − a− b + c)Qx = 0. That is,
(kIm −AQ)x ∈ N . This proves the second inclusion in (2.2). The proof is
completed by combining (2.1) and (2.2). ¤
Theorem 2.2. Let A ∈ Cm×n be given, P, Q ∈ A{2}, a, b ∈ C\{0}, c ∈ C,
and c 6= a + b. If T is defined as in the Lemma 1.1, then the rank of
aP +bQ−cQAP is a constant. Moreover, r(aP +bQ−cQAP ) = r(P +Q) =
r(P ) + r(T ) = m− dim[N ((In − PA)Q ∩N (P )].
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Proof. By Theorem 2.1 and Lemma 1.1,

r(aP + bQ− cQAP ) = m− nul(aP + bQ− cQAP )

= m− nul(T )

= m− dim[N ((In − PA)Q) ∩N (P )],
hence, r(aP + bQ − cQAP ) is constant. We set a = b = 1, c = 0, then
this constant is r(P + Q). According to Lemma 1.1 and Theorem 2.1,
r(T ) = nul(P )−nul(T ) = m−r(P )−nul(T ) = r(aP +bQ−cQAP )−r(P ),
which implies r(aP + bQ− cQAP ) = r(P ) + r(T ). ¤

Corollary 2.3. Let A ∈ Cm×n be given, P, Q ∈ A{2}, a, b ∈ C\{0}, c ∈ C,
and c 6= a + b, then the rank of aP + bQ− cPAQ is a constant and equals
to r(P + Q).

Proof. By Theorem 2.2, we obtain r(aP + bQ − cPAQ) = r(Q + P ) =
r(P + Q). ¤

Corollary 2.4. Let A ∈ Cm×n be given, P, Q ∈ A{2}, a, b ∈ C\{0},
a + b 6= 0. Then

(a) r(P + Q−QAP ) = r(P + Q− PAQ) = r(P + Q).
(b) r(aP + bQ) = r(P + Q).

Proof.
(a) In Theorem 2.2 and Corollary 2.3, we set a = b = c = 1, then

r(P + Q−QAP ) = r(P + Q− PAQ) = r(P + Q).

(b) In Theorem 2.2, we set c = 0, then r(aP + bQ) = r(P + Q). ¤

It is obvious that if A = In in (b) of Corollary 2.4, then P, Q ∈ In{2}
are idempotent matrices. Thus, we get the result in the Theorem 2.4 in [4].

Theorem 2.5. Let A ∈ Cm×n be given, P, Q ∈ A{2}, a, b ∈ C\{0}, c ∈ C,
and c = a + b, then

N (aP + bQ− cQAP ) = N (aP + bQ− cPAQ) = N (P −Q).

Proof. If x ∈ N (P − Q), then Px = Qx and (aP + bQ − cQAP )x =
(a+ b− c)x = 0. That is to say N (P −Q) ⊂ N (aP + bQ− cQAP ). On the
other hand, if x ∈ N (aP +bQ−cQAP ), then (aP +bQ−cQAP )x = 0, i.e.,
Qx = QAPx = Px and (P −Q)x = 0. Therefore, N (aP + bQ− cQAP ) ⊂
N (P−Q). Hence, we obtain the equality N (aP +bQ−cQAP ) = N (P−Q).
Since N (P −Q) = N (Q−P ), we have finally proved the desired result. ¤

Remark 2.6. It is obvious that if A = In in Theorem 2.1, Corollary 2.3,
and Theorem 2.5, then P,Q ∈ In{2} are idempotent matrices which yield
the results of [9].
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