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SOME BONNESEN-STYLE TRIANGLE INEQUALITIES

Stanley Rabinowitz

Abstract. Some Bonnesen-style isoperimetric inequalities for triangles in the
plane are presented. For example, it is shown that L2− 12

√
3A ≥ 35.098 r(R− 2r)

for triangles with perimeter L, area A, inradius r, and circumradius R. Equality
holds when and only when either the triangle is equilateral or the triangle is similar
to the isosceles triangle with sides 1, 1, and λ where λ ≈ 1.23628634 is the largest
root of the equation 31x3 − 28x2 − 16x+ 4 = 0.

The classical isoperimetric inequality for convex sets says that amongst all
convex sets in the plane with a given perimeter, the disc (i.e. a circle and its
interior) is the one with the largest area. In symbols,

L2 − 4πA ≥ 0 (1)

where L denotes the perimeter of the set and A denotes its area. The quantity,
L2 − 4πA is known as the isoperimetric deficit for the set. It is of interest to find
lower bounds (larger than 0) for the isoperimetric deficit.

During the 1920’s, Bonnesen ([2], [3], [4]) found many such inequalities. These
have come to be known as Bonnesen-style inequalities. For example,

L2 − 4πA ≥ (L− 2πr)2 (2)

L2 − 4πA ≥ (
A

r
− πr)2 (3)

L2 − 4πA ≥
(

L− 2A

r

)2

(4)

L2 − 4πA ≥ (2πR− L)2 (5)

L2 − 4πA ≥ π2(R− r)2 (6)

L2 − 4πA ≥
(

πR − A

R

)2

(7)

L2 − 4πA ≥
(

L− 2A

R

)2

(8)
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L2 − 4πA ≥ A2(
1

r
− 1

R
)2 (9)

L2 − 4πA ≥ L2 (R − r)2

(R + r)2
(10)

where r denotes the radius of a circle inscribed in the set and R denotes the radius
of the circle circumscribed about the set (see also [12] and [5]).

The analog for triangles of the isoperimetric inequality is well known [6]. Of all
triangles with a given perimeter, the equilateral triangle is the one with the largest
area. In other words, for triangles,

L2 − 12
√
3A ≥ 0. (1′)

Furthermore, equality holds if and only if the triangle is equilateral.
In this note, we will find analogs for some of the Bonnesen-style inequalities

for triangles. It is believed that the inequalities of Theorems 2, 3, and 4 are new
since they do not appear in the standard reference works [6] and [10].

First note, as Osserman did in [12], that the following lemma is a direct con-
sequence of simple algebraic manipulation.

Osserman’s Lemma. If A, L, ρ, and π denote any positive real numbers, then
the inequalities

L2 − 4πA ≥ (L− 2πρ)2

L2 − 4πA ≥
(

A

ρ
− πρ

)2

L2 − 4πA ≥
(

L− 2A

ρ

)2

are each algebraically equivalent to

ρL ≥ A+ πρ2.

We now state some Bonnesen-style inequalities for triangles.
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Theorem 1. If A, L, r, and R denote the area, perimeter, inradius, and cir-
cumradius of a triangle, then

L2 − 12
√
3A ≥ (L− 6

√
3r)2 (2′)

L2 − 12
√
3A ≥

(

A

r
− 3

√
3r

)2

(3′)

L2 − 12
√
3A ≥

(

L− 2A

r

)2

(4′)

and in each case equality holds if and only if the triangle is equilateral.

Proof. By Osserman’s Lemma (changing ρ to r and π to 3
√
3), we see that

inequalities (2′), (3′), and (4′) are equivalent. It is well known [8], that for a triangle,
A = rs where s denotes the semiperimeter (L/2). Thus, inequality (4′) is equivalent
to (1′) because L− 2A/r = L− 2s = 0. Hence, all three inequalities are valid.

Inequality (2′) can be found in [9].
The standard Bonnesen inequalities have the property that each side of the

inequality is 0 when the convex figure is a disc. In our triangle analogs, we want
each side of the inequality to be 0 when the triangle is equilateral. Thus, the
triangle analog of “L2 − 4πA” is “L2 − 12

√
3A”.

Inequality (5) has the expression “2πR − L” on the right, which is 0 for a
circle. The analog for triangles is “3

√
3R− L” since it is known that for all trian-

gles, 3
√
3R ≥ L with equality when and only when the triangle is equilateral [6].

However, there is no Bonnesen-style analog of the form

L2 − 12
√
3A ≥ k(3

√
3R− L)2

with k > 0 for it is straightforward to show that the ratio (L2−12
√
3A)/(3

√
3R−L)2

approaches 0 as the triangle approaches a degenerate triangle.
A referee has pointed out that the reason inequalities of the form (5)–(10) do

not exist for triangles is because Osserman’s inequality

xL ≥ A+ πx2

(which is true for convex sets when r ≤ x ≤ R) is not valid for x = R when π is
replaced by 3

√
3.

Instead, we have the following analog to inequality (5).
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Theorem 2. If A, L, r, and R denote the area, perimeter, inradius, and cir-
cumradius of a triangle, then

L2 − 12
√
3A ≥ 64

9

√
3 r(3

√
3R− L) (5′)

with equality when and only when the triangle is either an equilateral triangle or a
degenerate isosceles triangle (with sides a, a, and 2a).

The equality case is straightforward. If the sides of a triangle are a, a, and x,
then

lim
x↑2a

L2 − 12
√
3A

r(3
√
3R − L)

= lim
x↑2a

L2 − 12
√
3A

(3
√
3Rr − rL)

= lim
x↑2a

(2a+ x)2 − 12
√
3A

(3
√
3a2x

2L − 2A)

=
(4a)2 − 0

3
√
3a2(2a)

8a − 0

=
64

9

√
3.

We have used above the facts that in a triangle, r = 2A/L and R = abc/4A [8].
To prove the inequality in general will require some machinery. Before pro-

ceeding to the proof, we review the proof technique devised by Blundon [1]. Other
expositions of this technique can be found in [7] and [11].

Given an ordered triple (R, r, s) of positive real numbers, a triangle with cir-
cumradius R, inradius r, and semiperimeter s exists if and only if the triple satisfies
Blundon’s Fundamental Inequality:

s2(18Rr − 9r2 − s2)2 ≤ (s2 − 3r2 − 12Rr)3. (11)

This is a homogeneous polynomial in R, r, and s, so only the ratios of R, r, and s
are of interest. Following a variation of Bottema [7], we let

x =
r

R

y =
s

R

(12)
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and consider x and y as Cartesian coordinates in the Euclidean plane. Inequality
(11) transforms into

(x2 + y2)2 + 12x3 − 20xy2 + 48x2 − 4y2 + 64x ≤ 0. (13)

Each point in the xy-plane corresponds to an equivalence class of triples (R, r, s).
Those triples that determine a triangle lie inside the region, K, bounded by the
y-axis and the hypocycloid whose parametric representation is given by

x =
4t2(1− t2)

(1 + t2)2

y =
8t

(1 + t2)2

0 < t < 1. (14)

The region K has cusps at (0, 0), (0, 2), and (1/2, 3
√
3/2). The points on the

bounding hypocycloid correspond to isosceles triangles. The points of K on the
y-axis correspond to degenerate triangles.

To verify a proposed homogeneous inequality between R, r, and s, one need
only show that the graph of the proposed inequality in this xy-plane contains the
region K.

Proof of Theorem 2. We want to find the largest value of k such that the
inequality

L2 − 12
√
3A ≥ kr(3

√
3R − L) (15)

holds for all triangles. Let L = 2s and A = rs. Apply the transformation (12) to
get

f(x, y) = 4y2 + 2(k − 6
√
3)xy − 3kx

√
3 ≥ 0. (16)

The graph of f(x, y) = 0 is an ellipse and a point satisfies inequality (16) if it lies
on or outside this ellipse. We therefore need only show that the region K lies on or
outside this ellipse. It will suffice to show that the boundary of K lies on or outside
the ellipse. Applying the transformation (14), we see that this sufficiency condition
is equivalent to

64t2 + 16(k − 6
√
3)t3(1− t2)− 3k

√
3(1 + t2)2t2(1− t2) ≥ 0

for 0 < t < 1.
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This is equivalent to

k ≤ 64− 96
√
3t(1− t2)

(1− t2)
[

3
√
3(1 + t2)2 − 16t

] .

Let z = t
√
3 to get

k

96
√
3
≤ 2− z(3− z2)

(3− z2) [(3 + z2)2 − 16z]

for 0 < z <
√
3. Invert and cancel the common factor (z − 1)2 and we get:

96
√
3

k
≥ (3− z2)(z2 + 2z + 9)

z + 2
= −z3 − 6z + 18− 9

z + 2
≡ h(z). (17)

We are looking for the largest value of k for which the inequality (17) holds for all
z in the interval (0,

√
3). In other words, we need to determine the maximum value

of h(z) for z ∈ (0,
√
3). It is straightforward to verify that, in the interval (0,

√
3),

h(z) monotonically decreases from 27/2 to 0, so the maximum value of h(z) is 27/2.
We thus see that the largest value that k can have occurs when 96

√
3/k = 27/2,

i.e. when k = 64
√
3/9.

Equality holds when and only when z = 0 or equivalently, (x, y) = (0, 0). The
point (0, 0) of region K corresponds to degenerate isosceles triangles.

A more remarkable theorem comes about as the analog of inequality (6). Again,
the term “(R− r)” should be replaced by “(R− 2r)” since it is well known that for
all triangles, R ≥ 2r with equality when and only when the triangle is equilateral
[6]. It is also straightforward to show that there is no analog of the form

L2 − 12
√
3A ≥ k(R − 2r)2

with k > 0 because the ratio (L2 − 12
√
3A)/(R− 2r)2 approaches 0 as the triangle

approaches an equilateral triangle. We have, however, the following analog:

Theorem 3. If A, L, r, and R denote the area, perimeter, inradius, and cir-
cumradius of a triangle, then

L2 − 12
√
3A ≥ µ r(R − 2r) (8′)
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where µ ≈ 35.098131 is a root of the equation w3 − 280w2 + 10368w − 62208 = 0.
Equality holds when and only when either the triangle is equilateral or the triangle
is similar to the isosceles triangle with sides 1, 1, and λ where λ ≈ 1.23628634 is
the largest root of the equation 31x3 − 28x2 − 16x+ 4 = 0.

Proof. We again apply the technique of Blundon. We want to find the largest
value of k such that the inequality

L2 − 12
√
3A ≥ kr(R − 2r)

holds for all triangles. Let L = 2s and A = rs. Apply the transformation (12) to
get

f(x, y) ≡ 4y2 + 2kx2 − 12xy
√
3− kx ≥ 0. (18)

The graph of f(x, y) = 0 is an ellipse and it suffices to show that the boundary of K
lies on or outside this ellipse, i.e. that the boundary of K satisfies inequality (18).
Applying the transformation (14) shows that this sufficiency condition is equivalent
to

256t2 + 32kt4(1− t2)2 − 384t3(1 − t2)
√
3− 4kt2(1− t2)(1 + t2)2 ≥ 0

for 0 < t < 1. Solving for k and letting z = t
√
3 gives

k ≤ 96(z + 2)

(z + 1)2(3− z2)
(19)

for 0 < z <
√
3. We are therefore looking for the largest value of k for which

h(z) ≡ −z3 + 2z + 2− 1

z + 2
≤ 96

k

in the interval 0 < z <
√
3. Thus, for this k, 96/k is the maximum value of h(z) in

the interval (0,
√
3). We note that

h′(z) = −3z2 + 2 +
1

(z + 2)2

and that h′(z) = 0 if and only if

(z + 1)(3z3 + 9z2 + z − 9) = 0.
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This equation is true for only one positive value of z, so h(z) has one relative
maximum in the interval (0,

√
3). The value of h(z) at this extremal point, z0, is

larger than the value of h(0) = 3/2 or h(
√
3) = 0, so this is the absolute maximum

on that interval.
Equality occurs when and only when z = z0, where z0 ≈ 0.841399865 is a

solution of the equation
3z3 + 9z2 + z − 9 = 0. (20)

Thus k0, the corresponding value of k, is obtained from the equality condition in
inequality (19):

k0 =
96(z0 + 2)

(z0 + 1)2(3− z20)
≈ 35.0981313.

It is straightforward to check that

96(z + 2)

(z + 1)2(3− z2)
≡ −4(33z2 + 45z − 70) (mod 3z3 + 9z2 + z − 9)

so that
k0 = −4(33z20 + 45z0 − 70).

It is also straightforward to check that

k30 − 280k20 + 10368k0 − 62208 ≡ 0 (mod 3z3 + 9z2 + z − 9)

showing that k0 is a root of the equation w3 − 280w2 + 10368w − 62208 = 0 as
claimed.

Note that equality occurs on the boundary of K, i.e. when the triangle is
isosceles. As an aside, had we known this in advance, we could have proceeded as
follows.

Assume that the triangle that achieves the minimum value of

L2 − 12
√
3A

r(R − 2r)

has sides 1, 1, and x. Then

k =
L2 − 12

√
3A

r(R − 2r)
= 2(x+ 2)2

(x+ 2)
√
4− x2 + 3x(x− 2)

√
3

(x− 1)2x
√
4− x2

≡ f(x)
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where x can vary from 0 to 2. It is straightforward to calculate that

lim
x↓0

f(x) = ∞

and
lim
x↑2

f(x) = 64,

so the minimum value of f does not occur at an endpoint of the interval (0, 2).
Also,

lim
x→1

f(x) = 36 > 35.098,

so the minimum does not occur at x = 1. The minimum must therefore occur at a
point where f ′(x) = 0. Taking the derivative, we find that

f ′(x) = −4(x+ 2)
(x+ 2)(4x− 1)

√
4− x2 + 3

√
3x2(2x− 5)

(x− 1)3x2
√
4− x2

.

The derivative vanishes if

(x+ 2)(4x− 1)
√

4− x2 = 3
√
3x2(5− 2x)

since x = −2 is of no concern to us and x = 1 and x = 2 have already been ruled
out. Squaring both sides gives

(x+ 2)2(4x− 1)2(4− x2) = 27x4(5 − 2x)2.

Bringing all terms to the same side and factoring gives

4(x− 1)3(31x3 − 28x2 − 16x+ 4) = 0.

The value x = 1 has already been ruled out, so we see that the minimum must
occur when x is a zero of 31x3 − 28x2 − 16x+4. This polynomial has three zeroes,
x ≈ −0.53, x ≈ 0.197, and x ≈ 1.2362863384. The first zero is ruled out because it
is negative and the second zero is ruled out because it produces a larger value for
f(x) than the third zero.

Part of Theorem 1 states that L2 − 12
√
3A ≥ (A/r − 3

√
3r)2 holds for all

triangles with equality for equilateral triangles. This fact alone does not rule out
a stronger inequality of the form L2 − 12

√
3A ≥ k(A/r − 3

√
3r)2 for some k > 1
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since both sides of this inequality are 0 when the triangle is equilateral. In fact,
this inequality is true for k = 4 since in that case it is equivalent (using A = rs) to
inequality (2′). Applying Blundon’s method shows, furthermore, that k = 4 yields
the best possible inequality of this form. Various other possible analogs of the
Bonnesen inequalities (2)–(10) were investigated by this method. Since the proof
techniques are no different than those shown in the proofs of Theorems 2 and 3,
the tedious details will be omitted and the results are stated as Theorem 4.

Theorem 4. In the Bonnesen-style inequalities

L2 − 12
√
3A ≥ k1(L− 6

√
3r)2 (1′′)

L2 − 12
√
3A ≥ k2

(

A

r
− 3

√
3r

)2

(2′′)

L2 − 12
√
3A ≥ k3r(L − 6

√
3r) (3′′)

L2 − 12
√
3A ≥ k4r(3

√
3R − L) (4′′)

L2 − 12
√
3A ≥ k5r(R − 2r) (5′′)

L2 − 12
√
3A ≥ k6r

(

3

4

√
3R− A

R

)

(6′′)

L2 − 12
√
3A ≥ k7

(

L− 4A

R

)2

(7′′)

L2 − 12
√
3A ≥ k8A

2

(

1

2r
− 1

R

)2

(8′′)

L2 − 12
√
3A ≥ k9L

2 (R− 2r)2

(R+ 2r)2
(9′′)

L2 − 12
√
3A ≥ k10r

(

A

r
− 3

√
3r

)

(10′′)

L2 − 12
√
3A ≥ k11r

(

L− 4A

R

)

(11′′)
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1. The best possible triangle inequality of the form (1′′) occurs when k1 = 1. In
that case, equality occurs when and only when the triangle is either an equi-
lateral triangle or a degenerate isosceles triangle. This inequality is equivalent
to L ≥ 6

√
3r.

2. Inequality (2′′) is equivalent to inequality (1′′) with k2 = 4k1.
3. The best possible triangle inequality of the form (3′′) occurs when k3 = 6

√
3.

In that case, equality occurs when and only when the triangle is equilateral.
Inequality (3′′) is equivalent to the condition {L = 6

√
3r or L ≥ k3r}.

4. The best possible triangle inequality of the form (4′′) occurs when k4 =
64

√
3/9. In that case, equality occurs when and only when the triangle is

either an equilateral triangle or a degenerate isosceles triangle. This is the
same as Theorem 2 but is restated here to show the correspondence between
inequalities (2)–(10) and (1′′)-(9′′).

5. The best possible triangle inequality of the form (5′′) occurs when k5 ≈
35.0981313 is the second largest root of the equation x3 − 280x2 + 10368x−
62208 = 0. In that case, equality occurs when and only when either the trian-
gle is equilateral or the triangle is similar to the triangle with sides 1, 1, and λ
where λ ≈ 1.23628634 is the largest root of the equation 31x3−28x2−16x+4 =
0. This is the same as Theorem 3.

6. The best possible triangle inequality of the form (6′′) occurs when k6 ≈
19.9777234. In that case, equality occurs when and only when either the
triangle is equilateral or the triangle is similar to the triangle with sides 1,
1, and λ where λ ≈ 1.23983866 is the smallest real root of the equation
7x8 + 45x7 + 60x6 − 162x5 − 447x4 − 99x3 + 488x2 + 324x+ 108 = 0.

7. The best possible triangle inequality of the form (7′′) occurs when k7 ≈
0.87281834. In that case, equality occurs when and only when either the
triangle is equilateral or the triangle is similar to the triangle with sides 1, 1,
and λ where λ ≈ 1.956272 is the largest root of the equation 28x4 + 10x3 −
69x2 − 94x− 37 = 0.

8. Inequality (8′′) is equivalent to inequality (7′′) with k8 = 16k7.
9. The best possible triangle inequality of the form (9′′) occurs when k9 ≈

0.94204112. In that case, equality occurs when and only when either the
triangle is equilateral or the triangle is similar to the triangle with sides
1, 1, and λ where λ ≈ 1.9913932 is the largest real root of the equation
27x6 − 54x5 + 193x4 − 392x3 + 354x2 − 538x− 229 = 0.

10. Inequality (10′′) is equivalent to inequality (3′′) with k10 = 2k3.
11. The best possible triangle inequality of the form (11′′) occurs when k11 ≈

6.829212. In that case, equality occurs when and only when either the triangle
is equilateral or the triangle is similar to the triangle with sides 1, 1, and λ
where λ ≈ 1.129475 is the second largest real root of the equation 7x4−18x3+
5x2 + 9x− 2 = 0.
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There are no triangle inequalities with any of the forms

L2 − 12
√
3A ≥ k(3

√
3R− L)2

L2 − 12
√
3A ≥ k(R− 2r)2

L2 − 12
√
3A ≥ k

(

3

4

√
3R− A

R

)2

with k > 0.

Note. The forms considered as possible analogs of the Bonnesen inequalities
have the property that the left side of the inequality represents the “isoperimetric
deficit”. Both sides of the inequality should be 0 for the equilateral triangle. In
justifying the forms considered above, we point out the following known inequalities
(with equality when and only when the triangle is equilateral): R ≥ 2r, 3

√
3R ≥ L,

L ≥ 6
√
3r, and 3

√
3r2 ≤ A ≤ 3

4

√
3R2 [6].
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