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DURAND-KERNER ROOT-FINDING METHOD FOR THE

GENERALIZED TRIDIAGONAL EIGENPROBLEM

Kuiyuan Li

Abstract. In this paper we present a method, parallel in nature, for finding

all eigenvalues of a symmetric generalized tridiagonal matrix. Our method employs

the determinant evaluation and the Durand-Kerner root-finding scheme. It will be

shown that the method converges quadratically and is reliable, efficient, and easy

to implement in practice.

1. Introduction. In this paper we consider the generalized eigenvalue prob-

lem

Ax = λMx, (1)

where A and M are both real, symmetric, and tridiagonal and one of them, say

M , is positive definite. These assumptions imply real eigenvalues and the existence

of an M — orthogonal basis of eigenvectors. Eigenvalue problems with such a

special structure arise in many applications, such as finding numerical solutions of

the Sturm-Liouville and the radial Schrödinger equations [1, 3, 8, 18] and the finite

element approximations for free longitudinal vibrations problems of non-uniform

rod [16, 19].

There are some traditional approaches to solving (1). The first approach is to

reduce (1) to a standard eigenvalue problem [7, 14, 20]:

L−1AL−T (LTx) = λ(LTx), (2)

where M = LLT is the Cholesky factorization of M . Then the eigenvalue problem

(2) can be solved by many efficient algorithms, such as the QR algorithm [14],

the bisection/multisection algorithms [13], the divide-conquer algorithm [4, 5], and

homotopy algorithm [11]. However, this approach is less attractive because it can

not take advantage of the tridiagonal form ofA andM and a full matrix L−1AL−T is

generated in the process. Furthermore, the accuracy of this method also depends on

the conditioning of M , since the inverse of L is explicitly required. The complexity

of this method is O(n3).
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The second approach, the QZ method [20], disregards the symmetry and the

tridiagonal structure of the problem and after a direct phase requiring O(n3) opera-

tions, enters an iterative phase requiring O(n3) operations to simultaneously reduce

A and M to triangular-quasi-triangular form. This algorithm is not sensitive to the

conditioning of M , though it is even more expensive than the first approach.

Another approach is the bisection/multisection method [15]. This parallel

method is very easy to implement in practice and is reliable and accurate. However,

the speed of the convergence is slow.

In this paper, we propose a method that computes all eigenvalues of (1) through

finding zeroes of the polynomial equation

p(λ) =
1

α
det(a− λM), (3)

where α is (−1)n times det(M). Since M is positive definite, α 6= 0.

Our method can be divided into two stages: root isolation and root extraction.

The root isolation can be done by bisections or multisections of order np, the

number of processors. A multisection splits a given interval [a, b] into np subintervals

[µi, µi+1], where µi = a + i(b − a)/np, i = 0, 1, 2, . . . , np, by computing Sturm

sequences at µi. As a result, the number of roots of p(λ) which are smaller than

each µi are obtained and so are the number of roots in each subinterval. The

process is recursively applied to every subinterval containing more than one root.

This step results in a list of intervals consisting of single roots. When multiple roots

are present, the isolation process continues until the required precision is reached.

The root extraction shall be done by the Durand-Kerner root-finding method which

shall be discussed in detail in section 3. We shall also show how we can virtually

eliminate the overflow and underflow problems in section 2 and 3. In section 4, we

shall show that our method is reliable and backward stable.

There are other approaches to this problem. In [2, 17], divide-and-conquer

methods are proposed; the method based on the determinant evaluation and the

Laguerre iterations is suggested in [10, 12]; and the parallel implementations of the

multisection method and Lanczos method are discussed in [15].
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2. The Sturm Sequences. Without loss of generality, we assume the matrix

pencil (A,M) is unreducible, that is, β2
i + δ2i 6= 0, i = 2, . . . , n, where

A =












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β2 α2 β3

. . .
. . .

. . .

βn−1 αn−1 βn

βn αn












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











γ1 δ2
δ2 γ2 δ3

. . .
. . .

. . .

δn−1 γn−1 δn
δn γn













.

(4)

It is well known that polynomials defined by

{

ρ0(λ) = 1, ρ1(λ) = α1 − λγ1,

ρi(λ) = (αi − λγi)ρi−1(λ) − (βi − λδi)
2ρi−2(λ), i = 2, 3, . . . , n,

(5)

form a Sturm sequence and

p(λ) =
1

α
ρn(λ).

The number of sign changes between consecutive terms of {ρi}
n
i=1, denoted by κ(λ)

is equal to the number of roots of p(λ) that are less than λ.

The Sturm sequence (5) may suffer from severe overflow and underflow prob-

lems and require frequent scaling [10]. To remedy this, we propose following alter-

native recurrences. Let

ξi =
ρi

ρi−1
, i = 1, 2, . . . , n. (6)

Dividing both sides of (5) by ρi−1 yields,

{

ξ1 = α1 − λγ1,

ξi = αi − λγi −
(βi−λδi)

2

ξi−1

, i = 2, 3, . . . , n.
(7)

To avoid possible breakdown, namely, when ξi = 0 for certain i, the following

adjustment is asserted:
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• If ξ1 = 0, set ξ1 = γ1ǫ
2.

• If ξi = 0, i > 1, set ξi =
(|βi|+|λδi|)

2ǫ2

ξi−1

.

That is, if ξi = 0, we perturb the corresponding entries beyond the last significant

digit stored in the machine.

Obviously,

ρi =
i

∏

k=1

ξk (8)

and κ(λ), the number of roots of p(λ) that are less than λ, is now equal to the

number of negative terms in {ξi}
n
i=1.

(7) virtually eliminates hazards of overflow and underflow problems to compute

κ(λ) because of its self-scaling.

3. The Durand-Kerner Method. Since

p(λ) =
1

α
det(A− λM),

it can be rewritten as

p(λ) = λn + a1λ
n−1 + · · ·+ an−1λ+ an. (9)

Assume λ1, λ2, . . . , λn are zeroes of p(λ).

Let

h(λ) = (λ− µ1)(λ − µ2) · · · (λ− µn).

The following iterative formula

µ
(k+1)
i = µ

(k)
i −

p(µ
(k)
i )

h′(µ
(k)
i )

, i = 1, 2, . . . , n (10)

is called the Durand-Kerner root-finding iteration [6, 9]. Numbers µ
(k)
i , i =

1, 2, . . . , n, are a set of approximations to n zeroes of p(λ). Numbers µ
(k+)
i ,

i = 1, 2, . . . , n, are a set of, normally, better approximations.
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Theorem 3.1. Let µ
(0)
i , i = 1, 2, . . . , n be arbitrary real numbers and µ

(1)
i ,

i = 1, 2, . . . , n be computed from (10). Then

n
∑

i=1

µ
(1)
i =

n
∑

i=1

λi, (11)

where λi’s are eigenvalues.

Proof. Since λ1, λ2, . . . , λn are roots of p(λ) = 0,

p(λ) = (λ− λ1)(λ− λ2) · · · (λ− λn). (12)

Comparing (9) with (12) yields

a1 = −

n
∑

i=1

λi.

On the other hand, by the results from [6, 9],

a1 = −

n
∑

i=1

µ
(1)
i .

Therefore,

n
∑

i=1

µ
(1)
i =

n
∑

i=1

λi.

Theorem 3.1 implies that after one iteration, the sum of n approximations is

equal to the sum of all roots of p(λ), even if initial approximations are arbitrary.

The sum of n improved approximations is always constant and equal to the sum of

all roots of p(λ).
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It can be shown [6] that the iteration (10) is the Newton method applied to

the function f(x) = (f1(x), f2(x), . . . , fn(x))
T , where x = (x1, x2, . . . , xn)

T and

f1(x) = x1 + x2 + · · ·+ xn + a1,

...

fk(x) =
∑

i1<i2<···<ik

xi1xi2 · · ·xik + (−1)k−1ak,

...

fn(x) =

n
∏

i=1

xi + (−1)n−1an.

The Newton iteration implies that the convergence is quadratic whenever the

Jacobian of f(x) is nonsingular at (λ1, λ2, . . . , λn)
T , i.e., whenever those roots λi

are simple and there are ri components of x which converge to λi, if the multiplicity

of λi is ri. In the case of multiple zeroes, the convergence is only linear. However,

the case of multiple zeroes can be eliminated since our method consists of two

parts: root isolation and root extraction. Without loss of generality, assume λ1 is

a multiple root with multiplicity m and λm+1, . . . , λn are distinct. After the root

isolation, λ1 is obtained. Therefore, we use the modified Durand-Kerner method:

µ
(k+1)
i = λ1, i = 1, 2, . . . ,m.

µ
(k+1)
i = µ

(k)
i −

p(µ
(k)
i )

h′(µ
(k)
i )

, i = m+ 1,m+ 2, . . . , n.

The convergence is still quadratic.

Although (10) always converges in practice [6, 9] and no counterexample has

been given so far, no proof of this property has been given. Many authors conjecture
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that this scheme converges for almost any starting points. However, to our special

problem, we have the following result.

Theorem 3.2. Assume

µ1 < λ1 < µ2 < λ2 < · · · < µ[n
2
] < λ[n

2
] < λ[ n

2
]+1 < µ[n

2
]+1 < · · · < λn < µn,

where λ1, λ2, . . . , λn are roots of p(λ) = 0 and µ1, µ2, . . . , µn are starting points

for (10). Then,

µi < µ
(1)
i , if i ≤

n

2

and

µi > µ
(1)
i , if i >

n

2
,

where µ
(1)
1 , µ

(1)
2 , . . . , µ

(1)
n are computed from (10).

Proof.

µ
(1)
i = µi −

p(µi)

h′(µi)

= µi −

∏n
j=1(µi − λj)

∏

j=1
j 6=i

(µi − µj)

= µi − (µi − λi)

∏

j=1
j 6=i

(µi − λj)

∏

j=1
j 6=i

(µi − µj)
.

Clearly,

∏

j=1
j 6=i

(µi − λj)

∏

j=1
j 6=i

(µi − µj)
> 0, for i = 1, 2, . . . , n,

therefore,

µi < µ
(1)
i , if i ≤

n

2
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and

µi > µ
(1)
i , if i >

n

2
.

Theorem 3.1 and 3.2 suggest that we should choose starting points like those

we mentioned in Theorem 3.2. After each iteration, we should have better approx-

imations. In case µ
(k+1)
i > µ

(k)
i+1 happens for i ≤ n

2 or µ
(k+1)
i < µ

(k)
i−1 for i ≥ n

2 , we

give up µ
(k+1)
i and do bisection at this point to insure the convergence.

From (8), (10) can be rewritten as

µ
(k+1)
i = µ

(k)
i −

∏n
j=1 ξj

α
∏n

j=1
j 6=i

(µ
(k)
j − µ

(k)
i )

(13)

= µ
(k)
i −

ξi
∏n

j=1
j 6=i

ξj

α
∏n

j=1
j 6=i

ηji

= µ
(k)
i −

ξi
α

n
∏

j=1
j 6=i

ξj
ηji

i = 1, 2, . . . , n,

where ηji = µ
(k)
j − µ

(k)
i .

Directly computing those products in (13) may lead to severe overflow and

underflow problems. To avoid the problems, we do the following:

(1). Compute vj =
ξj
ηji

, j = 1, 2, . . . , n and j 6= i.

(2). If |vj | ≤ 1, let vj in S. If |vj | > 1, let vj in B. Then S = {s1, s2, . . . } and

B = {b1, b2, . . . }.

(3). Let w = s1b1s2b2 · · · .

Hence,

µ
(k+1)
i = µ

(k)
i − wξi/α, i = 1, 2, . . . , n. (14)

In this way, overflow and underflow problems can be eliminated.
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Since µ
(k+1)
i and µ

(k+1)
j , i 6= j, can be computed independently, the method is

parallel in nature.

4. Error Analysis. Let fl(•) denote the floating point computation of •.

In practice, when we intend to evaluate zeros of p(λ), actually zeros of fl[p(λ)]

are evaluated. We now do some error analysis and thereby establish the backward

stability of our algorithm.

The most frequently used model for floating point arithmetic is

fl(x ◦ y) = (x ◦ y) · (1 + e), |e| ≤ ǫ,

where ◦ is either +,−,×, or / and ǫ above is the machine precision, which is

approximately 6 × 10−8 for single precision and 2.2 × 10−16 for double precision

under IEEE standards.

Proposition 4.1. [12]

fl[f(λ)] = (1 + ǫ1) det[(A+ δA)− λ(M + δM)], (15)

where

|ǫ1| ≤ nǫ,

and both δA and δM are symmetric tridiagonal matrices satisfying entrywise in-

equalities

|δA| ≤ 2.51ǫ|A|, |δM | ≤ 3.51ǫ|M |. (16)

Assume λmin(M) > 3.51ǫ‖M‖∞. Then by Proposition 4.1,

λmin(M + δM) > λmin − ‖δM‖∞

≥ λmin − 3.51ǫ‖M‖∞ > 0.

Therefore, (A+δA,M +δM) is a symmetric, positive definite, tridiagonal pencil, if

λmin(M) > 3.51ǫ‖M‖∞ and this implies that, unless the pencil (A,M) is extremely

ill-conditioned, for which λmin < 3.51ǫ‖M‖∞, the floating point computation of our

algorithm is still performed on a symmetric definite pencil.
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This establishes the backward stability of our algorithm.

5. Conclusion. In this paper, we have shown that the Durand-Kerner root-

finding method converges for the generalized tridiagonal eigenvalue problem. The

asymptotic convergence rate is quadratic. After each iteration, the sum of the im-

proved approximations is the sum of all the eigenvalues. This indicates why our

method converges so fast in practice. We have also shown how overflow and un-

derflow problems can be eliminated. These good properties and schemes make our

method an excellent candidate for the generalized tridiagonal eigenvalue problem.
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