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ABSTRACT. We prove the analytic smoothing effect for solutions to the system of
nonlinear Schrodinger equations under the gauge invariant nonlinearities. This re-
sult extends the known result due to Hoshino [Nonlinear Differential Equations
Appl. 24 (2017), Art. 62]. Under rapidly decaying condition on the initial data,
the solution shows a smoothing effect and is real analytic with respect to the
space variable. Our theorem covers not only the case for the gauge invariant set-
ting but also multiple component case with higher power nonlinearity up to the fifth
order.

1. Introduction
We consider the Cauchy problem of the following nonlinear Schrédinger
equations:

i0u; + Auj = fi(u,i), teR,xeR" j=1,2,...,k, keN,

1
2my
u;(0) = ¢, xeR",

(1.1)

where m; > 0, f/‘:(ljk xCh =@, u= (ul,...,uk):]Rx]R”H(Ek is the un-
known function and ¢ = (¢,,...,4;) : R" — C€* is a given initial data.

The nonlinear Schrédinger equation is classified as a dispersive type of
partial differential equations and there is no smoothing effect that often appears
in solutions to parabolic type equations. However if we restrict the initial data
satisfying spacial weight condition, then one can find that solutions to the
nonlinear Schrédinger equations exhibits a local smoothing effect (cf. Kato
[14]). Hayashi-Saitoh [4] proved that if the initial data ¢ decays exponentially
as |x| — oo, then there exists an analytic solution to the single nonlinear
Schrédinger equation:
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1
i0u—+——Au= f(u), teR, xeR",
2m
u(0) = ¢, xeR",
where f(u) = [u|*u. For the cases of general polynomial nonlinearities f(u),

it was shown by several authors that the solution has the analytic smoothing
effect ([2], [4], [5], [8]-{13], [15], [16], [18]).

Hoshino-Ozawa [13] showed the analytic smoothing effect for the solution
to the following nonlinear Schrédinger equations:

1
i0u; +=—Adu; = fi(u,up), teR, xeR",
2Wll

i@,lh—FLﬁuz Zfz(ul,uz), teR, xeR", (1.2)
Zmz
(1(0),u2(0)) = (¢1, ), xeR",

where the nonlinear coupling (f, f>) is given by either of the followings

fl(ul,uz) = Uiy,
for p =2, 1.3
{fz(uhuz) = uj, ? -
. ) 2 2
Aluy,u) —u; Uy + |2ul| up + |2uz| M for p=3 (1.4)
Solurur) = uy + |ua|“uz + |y [z,
_ 4 4
fl(ul,uz)—uls u2+|fl| ut, for p=S5. (1.5)
Solur,un) = w7 + |us|"ur,

The nonlinearities given by (1.3), (1.4), and (1.5) satisfy
{Ei(}_fi(ZI,Zz) = ﬁ(ei021,€lp022),

e?fy(z1,22) = fo(e"z1,e""z;)

for any 6 e R and z;,z, € C.
We prove the analytic smoothing effect of the solution to (1.1) with the

p-th powered nonlinearities {fj(u,i)};_; ,  satisfying a gauge invariance.

DEerINITION 1. The nonlinear coupling functions f;: C* = ¢ satisfy

the gauge invariance if each f; (j=1,...,k) satisfies for any 0 eIR and
w,z e CK,
MO (Wi, Wiy 21, zk) = (@™ 0wy, e ™y ™0z e 07y (1.6)

for some m= (mi,...,m;) e Z:,. We call the condition (1.6) the mass
resonance.
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We restrict the nonlinearity to the following form: for any u = (uy, ..., u),
v=(v1,...,0) : R x R" — Ck,

k
Si(u,v) = /I_I»Hu;f‘/vf"’ for j=1,... .k, (1.7)
7=1

where 4; € C, o = (% 1,...,%) and B; = (B;1,....B; 1) € Z¥, satisfy
Gt tortB o+ Bik=0r (1.8)
with peN. In this paper, we consider the type of nonlinearity f;(u,u).

ProposITION 1. Let k,peIN. The nonlinearity f; given by (1.7) and
(1.8) satisfies the condition (1.6) if and only if given a set of constants m =
(my,...,mg) elgo, exponents o; and f; elgo satisfy

mj = my (a1 — Bj1) + -+ mu(og — B i) (1.9)
for any j=1,2,... k.
In the 2-component case, the following nonlinearity (fi, ) defined by
S, w) = | Pun, s [Pz, i, w o sy, fua|*uy - for j=1,2
satisfies the condition (1.6) with m = (1,1), p =3 and the nonlinearity
{fl(uhuz) = u’u3,
folur, ) = ui

satisfies (1.6) with m = (2,3) and p = 4.

In order to state our result, we introduce the following function spaces
introduced by Hayashi-Ozawa [10] and Hoshino-Ozawa [12]. For any m > 0
and o« €N,

L m(R") = {feLz(lR"); 171

Lezxp,m(]R") = aesgllz()) Hema»XfHLz < OO},

H? (R

exp,m

exp, m

{feH“(lR”); 1 ez, oy = sup (€™ S| < OO},
u€B|(O)

where L? = L?(R") and H* = H*(R") are the Lebesgue and the Sobolev
spaces, respectively and B;(0) = {x e R"; |x| < 1}. Let L%(I; LY(R")) be the
Bochner space where / C R is an open interval. We call L%(I; LY(R")) the
Strichartz space if a pair of exponents (0,q) is admissible as

n 2

n_n,.c
2 g 0
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with
ZS(IS zn ) n )
n—
2<g< oo, n=2,
2<g< oo, n=1.
Let
it
Jn(t) = -V
(1) x+m

be the generator of the Galilei transform. The following operator e”“’» has
been introduced in [10], [12] and Hoshino [7]: For a € B;(0),

mk

madnll) = ;F(a ()

with the domain

D@W*M>{feywvxsw>WWMWVMq<w}

0631(0)

for any t# 0 and ¢ > 2. For any ¢ # 0, ¢”*/» is represented as

ema-J,,,f — el(l/Zm)Aema-xe—l(t/Zm)Af’

and
emaIn(0f — oimIxI*/20) itV ,i(=m|x|?/20) 1, (1.10)
where
eV — e ¢S] for any te R, a e R”
and Z 7! is the Fourier inverse transform:
FUNE = s | e
Q2r)"* Jre

For m > 0 and an open interval I C R, we define an analytic space:

An(I) = {f e LO(I; LY); /14,y = sup e f ooy < 00}

aeBl(O)

The function space 4,,(I) with weight ¢** has already been introduced in
papers by Hayashi-Ozawa [6] (in space dimension #» = 1 with open interval like
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as D = (—a,a)) and [12] (in space dimension n > 1 with symmetric domain
D C R” such that 0 e D, —D = D).
We denote e/ for m = (my,...,my) € Z%, as follows:

emad,ﬂ(l)f = (emlaJ,,,l (r)fl e emka'lm/r(t)ﬁ() (1.1 1)

for any f:IR" — C.
Our main results are the following.

THEOREM 1. Let 1<n<4 1<p<l1 +% and m; > 0. Assume that the
nonlinearities { fj(u,it)}, ;- given by (1.7) satisfy the condition (1.8) and (1.9).
Then for any ¢ € H};l Lezxp_’m/(]R”), there exists T > 0 and a unique solution u €
H};l Ap,((=T,T)) to (1.1).  In particular, the solution w;(t,x) is real analytic in
xeR" for all te (—T,0)U(0,T) and any j=1,2,... k.

Since we consider the L? solution of the Cauchy problem (1.1), we need to
restrict 1 < p<1+% (cf. Tsutsumi [20]). In order to obtain the analytic
smoothing effect for the solution to (1.1), the power of the nonlinearity is
restricted to a natural number. Hence the spatial dimension n is naturally
restricted to n=1,2,3,4. Hoshino [8] showed the existence for the analytic
solution to (1.1) with second order nonlinear monomial for 2-component case.
Theorem 1 implies the existence for the analytic solution to (1.1) with non-
linear p-th order monomial in lower space dimensions and an extension for
k-system. If we relax the regularity of initial data, then the result can be
extended into higher dimensional case.

THEOREM 2. LetaeWN, 1 <n<2u+4/(p—1), and p € N such that p < oo
if n<2u p<1+4/(n—20) if n>20a Then for any ¢ € H};l Hef(pwj(]R"),
there exists T >0 and a unique solution u e H;;l A, ((=T,T)) to (1.1) with
the nonlinearities given by (1.7) satisfying (1.8) and (1.9). In particular, the
solution u;(t,x) is real analytic in x e R" for all te (—T,0)U(0,T) and any
i=1,2,... .k

ReEMARK. All the results by Hoshino-Ozawa [13] involving (1.3), (1.4) and
(1.5) can be covered by Theorem 1 under the restriction p =3 for the gauge
invariant monomials {fj, f>} satisfying (1.6). 1In [13], they proved the existence
of a global analytic solution to the Cauchy problem (1.2) for small data in
higher dimension. On the other hand we proved the existence of an analytic
solution to (1.2) for a large initial data in lower dimensional cases and our
Theorem 1 also extends the known result by Hoshino [8].

In order to show the analytic smoothing effect for the solutions of (1.2),
we introduce the operator e™/». For each fixed a € B|(0), the integrability
of e™*Inf implies real analyticity to a-direction of a function f e D(e”%/n).
Therefore, any function f € A4,,((—7,T)) is real analytic in x € B,(0) for
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te(=T,00U(0,T). We employ the norm; supaeBl(o)||e”""J”'u||Ln(07T;Lt,) and

it plays an substituted role of the norm é%H(Jm)kuH Lo, T; 4)» Where the
norm |- || o 7.4 is the Bochner norm with the L?-Strichartz admissible
n/q+2/0=n/2 fullfilled. Besides the operator ¢”/» commutes with the
free Schrodinger operator %, = i(?,—&—ﬁd and satisfies the Leibniz rule for
the gauge invariant nonlinearities in (1.1). These properties of the operator
e™n simplify the proof of Theorem 1. Because of a commutative relation
(L, Jm) = 0, operating J» with multi-index « € ZZ,, to the linear Schrédinger

equation:
. 1
l@tv—l—%AU:O (1.12)

and taking summation in o, we have the analyticity for the solution to (1.12).
We need to show an estimate for the nonlinear term in order to obtain the
analyticity for the solution to the Cauchy problem (1.1). We estimate the
gauge invariant nonlinearity in (1.1) by using the Galilei transform J,,(f) =
x+1V that satisfies chain rule for the nonlinear term |u|” s

_p+l

L o) 25 0w,

Tn0) () -

where peN and m > 0. In the case of k-component, the condition (1.6)
enables us to compute for the nonlinear term {/j},.;.,- Then we introduce

a new unknown function u; , = """ u; (see Section 3 below) and it naturally
satisfies the similar system:

1
ié’tujﬂ + —Auj_u = _};’(”j.m I/lj_,a), _] = 1,2, Ce ,k7 ke N,
2my ’ ’

Ui a(0) = ™%,

(1.13)

where f;(uj 4,uj —,) is a monomial for a unknown function u;, and u; _,.
Solving the system (1.13) in a proper function space, we obtain that the cor-
responding solution u also maintains the desired regularity on a direction.
Then choosing a € B;(0) for all direction, we can show that the original solu-
tion to (1.1) has real analytic regularity in space variable. Therefore, we have
the analytic smoothing effect for the solution to the Cauchy problem (1.1).

2. Preliminary

In this section, we state some properties of operator ¢”¢/» and some basic
inequalities. For any set of functions u = (uy,...,u) and v = (vy,...,v) :
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R” — C*, we define a function f: C* = € as follows:
k 5
fluv) =] Juv?, (2.14)
j=1

where 1 e C.
Hoshino-Hyakuna ([9], Lemma 4) proved the following Lemmas 1
and 2.

Lemma 1 ([9)). Let (o, .. o), (By,---,B) € ZX,, and f be the p-th order
monomial given by (2.14). Then for any y e R", it holds that

eV (u,a) = f(e™ u,e=Vu) for any ue D(e"),
where @ denotes as complex conjugate of u.

LemMA 2 ([9]). Let peN, m>0, ae Bi(0), (%,/);</<p> (ﬁj,/)lgfsk €
Zio and f = (fi,..., fx) be a pair of the p-th order monomial with the condition
(1.9) given by (1.7). Then for any mass coefficient m= (my,...,my) € NK
satisfying the condition (1.9), it holds that for j=1,2,... k,

"I O () = fi(em Iy, e=madn(y) (2.15)

for any teR and ue D(e™’"), where ey and e "Dy are defined
by (1.11).

Stein-Weiss [19] proved the following Lemma 3. The essence of Lemma 3
is similar to that of Lemma A.l in [12].

Lemma 3 ([12], [19]). Let M >0 and f satisfy

le”Vfll,. < M, for any ye Bi(0).

Then

R IO

is analytic in R" +iB1(0) = {x+iy; xe R", y € B;(0)}.

LEmMMA 4. Let n>1, m >0, and (0,q) be an admissible pair. Then there
exists Co = Co(n,q) such that for any f e L*(R"),

e 1 | o 7.0y < Coll /N o- (2.16)
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Moreover, for any T > 0,

T
JO e(i/2m)(1—s)Af<S>ds

< Gollf o —7,7;10); (2.17)

L2
where p’ is the dual exponent to p defined by 1/p+1/p’ = 1.

See for the proof, Ginibre-Velo [3], Yajima [21], Cazenave-Weissler [1] and
Keel-Tao [17].

3. Proof of Theorem 1

Proor. Let wu= (u,...,ux), @=(uf,...,u): RxR"— ck, Uj g =
e"*my; and an initial data ¢ = (¢,...,¢) € Hle Lipm- We define a

p-th order function f(u,v):C¥xC* = a* by flu,v)=(filu,v),...,
Jic(u,v)) and

k
Si(u,v) = /lj»Hu;f‘”vfj'/ for j=1,...,k,
721

where 4; € C, o = (%,/)1</<t> Bi = (Bjr)1</<k and m = (mj)lsjsk € Zio sat-
isfy the condition (1.8) and (1.9). We operate ¢”“” to the j-th equation in
(1.1). Then, by using the commutative relation {ij(t), i0; + ﬁA} =0 and the

identity (2.15) in Lemma 2, we see that ‘

. 1 : .

latuj.a + 2—Auj7a = f/'(uj,llau/'ﬁ—a% J = 1a2a tee 7k7 ke Na
mj

uj,a(0) = €™ ¢;.

In order to show the analytic smoothing effect for the solution, we solve the
following system of integral equations on L?(—T, T;L4):

t k
U = e(i/2m1)1A¢j _ l/ljj e(i/ij)(tfs)A H u?j'/u_/ﬁﬂ ds
' 0 /=1

for j=1,...,k. Let I=(-T7,T) and M E4kC0||(/75||L3‘p , where Cp >0
depends only on the dimension n and exponent ¢ > 2 in the Strichartz estimate

(2.16) and (2.17). We define the metric space

k k

Xu(l) = {” = (ur,... ux) € HA,,,/(I); (”ujHL”(I;L‘I) + Huj”Amj(I)) <M
=1

Jj=1 J

for any admissible pair (6,q) p, (3.18)

—
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with the metric

k
d(u,v) = Z(Huj - U/Hmu;u) + [luj — Uj||Amj(1))

J=1

for some admissible pair (0,q). We see that (Xy,(I),d) is a complete metric
space. Therefore we define the operator @[u] = (@;[u1],. .., Pxlux]) on Xy (1)
by

t
®jfuj] = P g, — J ePmIUAL (1) ds (3.19)
0
for j=1,...,k and apply Banach’s fixed point theorem to the operator @
defined by (3.19). For 1 <n <4, by the Strichartz estimates (2.16), (2.17)
and the representation for the operator defined by (1.10), we can estimate
for @;
)

" @yl sy < (e emee= )i 2miag )y

+

t
J I2m)=94 gy £ (14 3) s
0

LO(I; L)
= 4,1 +Lj,27 (320)

where L;; and L;, are the linear part and the Duhamel part of the in-
tegral equation (3.19), respectively. By the Strichartz estimate (2.16), we
have
1
L ||€ 1/2mj)tA mja- x¢jHL0 (1:19) < COHem/a ¥¢]HL2 < 4kM (3.21)
Similarly applying (2.17) to L;, with admissible pair (4¢q/(4q + nq — 2np),q/p)
and using Holder’s inequality, we have

k
Li>» <G H Mgy, )% (@M u/)ﬁ”
/=1 L4/ (q+nq=2np) (I [ 4/p)
k B
o —ma i
< Co [T e = earll i e~ w5
/=1 L4/ (4ang=2m) (T
1—(n/4)(p mya-J, %, ¢ —mya-J, ﬁ/‘./
< GT H e ”f"”L” 1% lle " WHL”(I;U)

< CoT'=0/Hw=0 ppr, (3.22)
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Conbining (3.20), (3.21) and (3.22), we have

1
dej[uj”|Ami(1) < @M#’ COTI*()1/4)(P*1)MP'

In the same way as above, we have that for u,ve Xy (1),
mja-J,
€™ (@{u) — @i[o) | Lo, 1oy

t
<[] ermressem s ) - s o)as

0

LU(I;L‘/)
k
< CoT' =Dl — vy, -
J=1 ,
Hence we obtain

d(D[u], ®[v]) < CoT'=WHP=D prr=1d(u, v).

Choosing T > 0 such that

1
CoT' =D pr < — M
0 Y )
CoT\— (=1 g1 < %

we have that the map @ is a contraction over Xy(I). Then Banach’s fixed
point theorem implies that @ has a unique fixed point u in Xy (/) which is
a solution of the integral equation (3.19). In other words, the solution u =
(uy,...,uy) satisfies

sup \|€m"Mm’“jHLﬂ(1;L4): sup |le
ae B (0) aeB(0)

itaV ,—(imj|x|*/21),
e jll pogr, Loy < ©

for any a € B;(0) and j=1,...,k. Therefore Lemma 3 yields that e‘i’”f‘x|2/2’uj
is analytic over R” +iB,(0). Since e~/ g analytic over R” + iR", u is
real analytic in x e R".

In the critical case for n =4, we define

M = sup ‘|€(it/2m/>dem/a'x¢||LO(I-Ltz)
ae By (0) ’

in the space Xy () defined by (3.18). Taking sufficiently small 7" > 0, we can
construct the local solution v = e”*/ny in the Stricartz space L’(I;L?) by
applying Banach’s fixed point theorem.
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The same argument for the proof of Theorem 1 can be applied to the

proof of Theorem 2.
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