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Abstract. In this paper, we give a Zariski triple of the arrangements for a smooth

quartic and its four bitangents. A key criterion to distinguish the topology of such

curves is given by a matrix related to the height pairing of rational points arising from

three bitangent lines.

1. Introduction

Let ðB1;B2Þ be a pair of reduced plane curves. The pair ðB1;B2Þ is said
to be a Zariski pair if it satisfies the following two conditions:

( i ) For each i, there exists a tubular neighborhood TðB iÞ of B i such that

ðTðB1Þ;B1Þ is homeomorphic to ðTðB2Þ;B2Þ.
(ii) There exists no homeomorphism between ðP2;B1Þ and ðP2;B2Þ.
An N-ple ðB1; . . . ;BNÞ is called a Zariski N-ple if ðBi;BjÞ is a Zariski pair

for any 1a i < jaN. The first condition for a Zariski pair can be replaced

by the combinatorics (or the combinatorial type) of B i. For the precise

definition of the combinatorics, see [2] (It can also be found in [17]).

Since the combinatorics is more tractable, we always consider the combina-

torics rather than the homeomorphism type of B i. In [18], Zariski first finds

that the topology of a pair ðP2;BÞ is not determined by the combinatorics of B

in the case where B is an irreducible sextic with 6 cusps as its singularities.

We refer to [2] for results on Zariski pairs before 2008. Within these several

years, new approaches to study Zariski pairs for reducible plane curves have

been introduced, such as (a) linking sets ([9]), (b) splitting types ([3]), (c)

splitting and connected numbers ([15, 16]) and (d) the set of subarrangements

of B ([4, 5]).
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In [9, 4], Zariski pairs for a smooth cubic and its k-inflectional tangents

ðkb 4Þ are investigated based on the method (d) as above. This generalizes E.

Artal’s Zariski pair for a smooth cubic and its three inflectional tangents given

in [1]. In [16], Shirane introduces connected numbers and generalizes E. Artal’s

example to smooth curves of higher degree.

Also, in constructing plane curves which can be candidates for Zariski

pairs, the first and the second authors introduce a new method by using the

geometry of sections and multi-sections of an elliptic surface ([5, 6, 17]). In [3,

5, 6], with the methods (b) and (d), they give some examples for Zariski N-plet

for arrangements of curves with low degrees.

In this article, we consider Zariski pairs for a smooth quartic and its

bitangents, which can be considered not only as a continuation of previous

studies (e.g., [4]), but also as a new point of view for such a classically well-

studied object.

A smooth quartic Q and its 28 bitangents have been studied intensively by

various authors and there are a lot of results on them. A detailed account of

the history of the study of quartic curves and their bitangents can be found

in [8, Chapter 6]. As for Zariski pairs, however, there do not seem to be any

results except a Zariski pair for a smooth quartic and its three bitangents by

E. Artal and J. Vallès, about which the authors were informed via private

communication. In this article, we study such objects through the Mordell-

Weil lattices, the connected numbers and the set of subarrangements. Here are

our main results:

Theorem 1.1. Consider the following two combinatorial types of arrange-

ments consisting of a smooth quartic Q and some of its bitangents as follows:

(a) the quartic Q and three of its bitangent lines which are non-

concurrent,

(b) the quartic Q and four of its bitangent lines, none of three of which are

concurrent.

Then the following statements hold:

( i ) there exists a Zariski pair for the arrangement (a),

(ii) there exists a Zariski triple for the arrangement (b).

The first statement has already been claimed by E. Artal and J. Vallès.

Yet we believe that our proof based on the theory of Mordell-Weil lattices is

di¤erent from that of theirs and is new. Hence we believe that it is worthwhile

to present it here.

In order to explain how we prove Theorem 1.1, we need some preparation.

Let Q be a smooth quartic and choose a point zo of Q. We can associate a

rational elliptic surface SQ; zo (see [5, 2.2.2], [17, Section 4]) to Q and zo, which is

given as follows:
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( i ) Let fQ : SQ ! P2 be the double cover branched along Q. Since Q is

smooth, SQ is smooth.

( ii ) The pencil of lines passing through zo on P2 gives rise to a pencil Lzo

of curves of genus 1 with a unique base point ð fQÞ�1ðzoÞ.
(iii) Let nzo : SQ; zo ! SQ be the resolution of the indeterminancy for the

rational map induced by Lzo . We denote the induced morphism

jQ; zo : SQ; zo ! P1, which gives a minimal elliptic fibration whose

generic fiber is denoted by EQ; zo . Note that EQ; zo is an elliptic

curve over CðP1ÞGCðtÞ. The map nzo is a composition of two

blowing-ups and the exceptional curve for the second blowing-up

gives rise to a section O of jQ; zo . Note that we have the following

diagram:

SQ SQ; zo???yfQ

???yfQ; zo

P2  ���
qzo

ðP2Þzo ;

 ����nzo

where fQ; zo is a double cover induced by the quotient under the

involution ½�1�jQ; zo on SQ; zo , which is given by the inversion with

respect to the group law on the generic fiber. The morphism qzo is a

composition of two blowing-ups over zo.

In what follows,

we choose zo so that the tangent line lzo at zo is neither a bitangent line nor a

line with intersection multiplicity 4.

Under this situation, we claim that any bitangent line L of Q gives rise to

two sections sGL . On the generic fiber ESQ; zo
, we obtain two CðtÞ-rational points

GPL by restricting these sections to ESQ; zo
.

Let us explain how to prove Theorem 1.1 (i). Let Li ði ¼ 1; 2; 3Þ be three

distinct bitangent lines to Q and letGPi be the rational points obtained from Li

respectively. Put s¼ L1 þ L2 þ L3. We then consider the connected number

cfQðsÞ ([16] or see § 1) in order to distinguish the topology of Qþs. In this

article, we give a criterion for cfQðsÞ to be 1 or 2 by using a matrix related to

the height pairing hPi;Pji defined by Shioda ([13]).

As for Theorem 1.1 (ii), we consider all subarrangements of type Qþs to

distinguish the topology of Q and its four bitangent lines.

The organization of this note is as follows. In § 1, we give a brief sum-

mary on tools and methods to prove Theorem 1.1. We give a key criterion

in § 2. Our proof of Theorem 1.1 is given in § 3 where we give an explicit

example in the case when Q is the Klein quartic.
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2. Preliminaries

In this section, we introduce various notions which we will use to prove

Theorem 1.1. The first is the connected number introduced by T. Shirane in

[16], which will be the key tool in distinguishing the Zariski pair that is claimed

to exist in Theorem 1.1 (i). Another is the method considered and refined in

[4], where the analysis of subarrangements e¤ectively distinguishes arrange-

ments with many irreducible components. This method distinguishes the

Zariski triple that is claimed to exist in Theorem 1.1 (ii). Finally, we introduce

the theory of Mordell-Weil lattices, which enables us to conduct the compu-

tations needed to apply the above two.

2.1. Connected Numbers. In [16], the connected number is defined for a wide

class of varieties, but in this subsection we restate the definition and proposi-

tions to fit our setting for the sake of simplicity. The following are simplified

versions of [16, Definition 2.1, Proposition 2.3].

Definition 2.1. Let f : X ! P2 be a double cover of the projective plane

with smooth branch locus B � P2. Let C � P2 be a plane curve whose irre-

ducible components are not contained in B and assume that CnB is connected.

Under this setting, the number of connected components of f�1ðCnBÞ is called

the connected number of C with respect to f, and will be denoted by cfðCÞ.

Note that we will often omit ‘‘with respect to f’’ when it is apparent from

the context. Also, note that since we are considering double covers only,

cfðCÞ ¼ 1 or 2. The key proposition of connected numbers that will be used

in distinguishing the topology of plane curves is the following:

Proposition 2.1. For each i ¼ 1; 2, let fi : Xi ! P2 be a double cover of

P2 with smooth branch locus Bi � P2 and let Ci be a plane curve whose irre-

ducible components are not contained in Bi, such that CinBi is connected. If

there exists a homeomorphism h : P2 ! P2 with hðB1Þ ¼ B2 and hðC1Þ ¼ C2

then cf1ðC1Þ ¼ cf2ðC2Þ.

Proof. As we are considering double covers only, the assumptions of

Proposition 2.3 in [16] are necessarily satisfied if a homeomorphism h : P2 !
P2 with hðB1Þ ¼ B2 exists. Hence, our statement follows. r

2.2. Distinguishing the embedded topology of plane curves through subarrange-

ments. In [4], we formulated a method to study the topology of reducible

plane curves via subarrangements. We here explain its simplified version

which fits our case. Let Q be a smooth quartic and Li ði ¼ 1; . . . ; 28Þ be

its bitangents. Choose a subset I � f1; . . . ; 28g and put LI :¼
P

i A I Li.
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Define

SubsðQ;LI Þ :¼ Qþ
X3
k¼1

Lik

���� Efi1; i2; i3g � I

( )
:

Define a map cI : SubsðQ;LI Þ ! f1; 2g:

cI : SubsðQ;LI Þ C Qþ
X3
k¼1

Lik 7! cfQ

X3
k¼1

Lik

 !
A f1; 2g

where fQ is the double cover of P2 branched along Q. Chose two subset

I1; I2 � f1; . . . ; 28g and let Bi :¼ QþLIi . If there exists a homeomorphism

h : ðP2;B1Þ ! ðP2;B2Þ, as hðQÞ ¼ Q and hðL1Þ ¼L2 necessarily hold, it

induces a map h\ : SubsðQ;LI1Þ ! SubsðQ;LI2Þ such that cI2 ¼ cI1 � h\:

SubsðQ;LI1Þ

h\

???y cI1

SubsðQ;LI2Þ ���!
cI2

f1; 2g

 �����
���

Hence, as in [4, Proposition 1.2], we have the following proposition:

Proposition 2.2. With the same notation as above, if B1 and B2 have the

same combinatorics and ac�1I1
ð1Þ0ac�1I2

ð1Þ, then ðB1;B2Þ is a Zariski pair.

2.3. Elliptic surfaces and Mordell-Weil lattices. As for basic references about

elliptic surfaces and Mordell-Weil lattices, we refer to [10, 11, 13]. In partic-

ular, for those on rational elliptic surfaces, we refer to [12]. In this article, by

an elliptic surface, we always mean the same notion as in [13, 5]. Namely it

means a smooth projective surface S with a relatively minimal genus 1 fibration

j : S ! C over a smooth projective curve C with a section O : C ! S, which

we identify with its image, and at least one singular fiber. Let SingðjÞ ¼
fv A C j j�1ðvÞ is singularg. For v A SingðjÞ, we put Fv ¼ j�1ðvÞ. We denote

its irreducible decomposition by Fv ¼ Yv;0 þ
Pmv�1

i¼1 av; iYv; i, where mv is the

number of irreducible components of Fv and Yv;0 is the unique irreducible

component with Yv;0 �O ¼ 1. We call Yv;0 the identity component. The clas-

sification of singular fibers is well-known ([10]). We use the Kodaira notation

for the types of singular fibers. Let MWðSÞ be the set of sections of j : S !
C. We have MWðSÞ0q as O A MWðSÞ. By [10, Theorem 9.1], MWðSÞ is
an abelian group with O acting as the zero element. We call MWðSÞ the

Mordell-Weil group. On the other hand, the generic fiber ES of j : S ! C is

a curve of genus 1 over CðCÞ, the rational function field of C. The restriction

of O to E gives rise to a CðCÞ-rational point of E, and one can regard E
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as an elliptic curve over CðCÞ, the restriction of O being the zero element.

The group MWðSÞ can be identified with the group of CðCÞ-rational points

EðCðCÞÞ canonically. For s A MWðSÞ, we denote the corresponding rational

point by Ps. Conversely, for an element P A EðCðCÞÞ, we denote the corre-

sponding section by sP.

In [13], a lattice structure on EðCðCÞÞ=EðCðCÞÞtor is defined by using

the intersection pairing on S through P 7! sP. In particular, h ; i denotes the

height pairing and Contrv denotes the contribution term given in [13] in order

to compute h ; i.
For the elliptic surface jQ; zo : SQ; zo ! P1 in the Introduction, jQ; zo has a

unique reducible singular fiber Fy, whose type is either I2 or III and all other

singular fibers are irreducible. Let Fy ¼ Yy;0 þYy;1 be the irreducible decom-

position. Then for P1;P2 A EQ; zoðCðtÞÞ, we have

hP1;P2i :¼ 1þ sP1
�Oþ sP2

�O� sP1
� sP2
�

1
2 if Yy;1 � sP1

¼ Yy;1 � sP2
¼ 1

0 otherwise

�
:

Here, the symbol ‘�’ denotes the intersection product of divisors.

3. The height pairing and intersection number of sections

3.1. Connected numbers of three bitangents. Let Q be a smooth plane quartic.

We choose homogeneous coordinates ½T ;X ;Z� of P2 such that zo ¼ ½0; 1; 0�
and Z ¼ 0 is the tangent line of Q at zo. Then we may assume that Q is given

by a homogeneous polynomial FQðT ;X ;ZÞ of the form

FQðT ;X ;ZÞ ¼ ZX 3 þ pðT ;ZÞX 2 þ qðT ;ZÞX þ rðT ;ZÞ:

Then the a‰ne part of Q, i.e., the part with Z0 0 is given by

FQðt; x; 1Þ ¼ x3 þ pðt; 1Þx2 þ qðt; 1Þxþ rðt; 1Þ:

Then let jQ; zo : SQ; zo ! P1 be the rational elliptic surface as in the Introduction

and let EQ; zo be the generic fiber of jQ; zo . Then, by [13, Theorem 10.4], we

have

EQ; zoðCðtÞÞGE �7 ;

where E �7 is the dual lattice of the root lattice E7. By [14], EQ; zoðCðtÞÞ contains
56 CðtÞ-rational points P ¼ ðx; yÞ of the form:

x ¼ atþ b; y ¼ ct2 þ dtþ e:

Since �P ¼ ðx;�yÞ, we denote them by

GPi ¼ ðxi;GyiÞ ¼ ðaitþ bi;Gðcit2 þ ditþ eiÞÞ ði ¼ 1; . . . ; 28Þ:
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Note that, by [14, Proposition 4], 28 lines Li : xi ¼ aitþ bi are the 28 bitangents

to Q. As in § 1, we denote the sections corresponding to P by sP. Let

qzo � fQ; zo : SQ; zo ! P2 be the map introduced in the Introduction and let

ðqzo � fQ; zoÞ
�ðLiÞ ¼ sþi þ s�i ði ¼ 1; . . . ; 28Þ. Here, sþi ¼ sPi

and s�i ¼ s�Pi
.

Since Yy;1 � sGPi
¼ 1 and O � sGPi

¼ 0 ði ¼ 1; . . . ; 28Þ, by the explicit formula

for the height pairing, we have the following lemma:

Lemma 3.1. For Pi, Pj A fGP1; . . . ;GP28g,
( i ) if i ¼ j, then hPi;Pji ¼ 3

2 , sPi
� sPj
¼ �1, and sPi

� s�Pj
¼ 2,

(ii) if i0 j, then

(a) hPi;Pji ¼ � 1
2 if and only if sPi

� sPj
¼ 1 and sPi

� s�Pj
¼ 0,

(b) hPi;Pji ¼ 1
2 if and only if sPi

� sPj
¼ 0 and sPi

� s�Pj
¼ 1.

Choose three distinct bitangents Li, Lj , and Lk to Q. Put sijk :¼ Li þ
Lj þ Lk. Then, by § 1, we have connected numbers cfQðsijkÞ ¼ 1 or 2. From

Lemma 3.1, we classify splitting types of three bitangents via the intersection

number of sGPi
’s. Let the matrix Gði; j; kÞ be the matrix defined to be two

times the Gramm matrix defined by the height pairing of Pi, Pj, and Pk. The

diagonal entries of Gði; j; kÞ are equal to 3, and the o¤-diagonal entries take

values G1. Since Gði; j; kÞ is a symmetric matrix, there are 8 possible choices

of Gði; j; kÞ. By the following lemma, the 8 matrices are classified into two

classes depending on cfQðsijkÞ.

Lemma 3.2. (i) cfQðsijkÞ ¼ 1 if and only if

Gði; j; kÞ A

8><
>:

3 1 1

1 3 1

1 1 3

2
64

3
75; 3 1 �1

1 3 �1
�1 �1 3

2
64

3
75;

3 �1 1

�1 3 �1
1 �1 3

2
64

3
75; 3 �1 �1
�1 3 1

�1 1 3

2
64

3
75
9>=
>;:

(ii) cfQðsijkÞ ¼ 2 if and only if

Gði; j; kÞ A

8><
>:

3 �1 �1
�1 3 �1
�1 �1 3

2
64

3
75; 3 �1 1

�1 3 1

1 1 3

2
64

3
75;

3 1 �1
1 3 1

�1 1 3

2
64

3
75; 3 1 1

1 3 �1
1 �1 3

2
64

3
75
9>=
>;:
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Proof. We give a proof when

Gði; j; kÞ ¼
3 1 1

1 3 1

1 1 3

2
64

3
75 or

3 �1 �1
�1 3 �1
�1 �1 3

2
64

3
75;

since the proof for the other 6 matrices can be done in the same manner.

( i ) If

Gði; j; kÞ ¼
3 1 1

1 3 1

1 1 3

2
64

3
75;

i.e., 2hPi;Pji ¼ 2hPj;Pki ¼ 2hPk;Pii ¼ 1, we have sPi
� sPj
¼ sPj

� sPk

¼ sPk
� sPi
¼ 0 and sPi

� s�Pj
¼ sPj

� s�Pk
¼ sPk

� s�Pi
¼ 1 from Lemma

3.1. Since h ; i is symmetric, we obtain sPi
� s�Pj

¼ s�Pj
� sPk
¼ sPk

� s�Pi

¼ s�Pi
� sPj
¼ sPj

� s�Pk
¼ s�Pk

� sPi
¼ 1. This means that cfQðsijkÞ ¼ 1.

(ii) If

Gði; j; kÞ ¼
3 �1 �1
�1 3 �1
�1 �1 3

2
64

3
75;

i.e., 2hPi;Pji¼ 2hPj;Pki ¼ 2hPk;Pii¼ �1, we have sPi
� sPj
¼ sPj

� sPk

¼ sPk
� sPi
¼ 1 and sPi

� s�Pj
¼ sPj

� s�Pk
¼ sPk

� s�Pi
¼ 0 from Lemma

3.1. Hence we obtain sPi
� sPj
¼ sPj

� sPk
¼ sPk

� sPi
¼ 1 and s�Pi

� s�Pj

¼ s�Pj
� s�Pk

¼ s�Pk
� s�Pi

¼ 1, i.e., cfQðsijkÞ ¼ 2. r

The figures below explain configurations of ðqzo � fQ; zoÞ
�1ðsijknQÞ in

case (i), (ii) from the proof of Lemma 3.2. Note that the preimages of

points on Q are ignored. Also, as zo BsijknQ, we infer that cfQðsijkÞ is

equal to the number of connected components of ðqzo � fQ; zoÞ
�1ðsijknQÞ.

Hence, by observing the matrices in the two classes above, we have the

following lemmas:

Lemma 3.3. Let mijk be the number of upper-half entries of Gði; j; kÞ taking
values equal to �1. Under the above setting,

( i ) cfQðsijkÞ ¼ 1 if and only if mijk is even,

(ii) cfQðsijkÞ ¼ 2 if and only if mijk is odd.

We can restate the above Lemma in terms of determinants. Let I3 be the

identity matrix of size 3� 3.

Lemma 3.4. (i) cfQðsijkÞ ¼ 1 if and only if detðGði; j; kÞ � 3I3Þ ¼ 2,

(ii) cfQðsijkÞ ¼ 2 if and only if detðGði; j; kÞ � 3I3Þ ¼ �2.
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3.2. The topology of plane quartic and its four bitangents via sub-arrangement.

Let Q be a smooth plane quartic as in § 3.1 and L1; . . . ;L28 be 28 bitangents to

Q. Choose a subset I � f1; . . . ; 28g such that aI ¼ 4 and put LI :¼
P

i A I Li.

As in § 3.1, we obtain the 4� 4 matrix GI which is defined as twice of the

Gramm matrix defined by the height pairing of Pi’s ði A IÞ.
In order to consider the embedded topology of QþLI , we use the con-

nected numbers of subarrangements SubsðQ;LI Þ. Let cI be the map defined

in § 2.2 and put

mI :¼afupper-half entries of GI equal to �1g

Since aSubsðQ;LI Þ ¼ 4, we have ac�1I ð1Þ þac�1I ð2Þ ¼ 4. Hence, there are 5

possible pairs

ðac�1I ð1Þ;ac�1I ð2ÞÞ ¼ ð0; 4Þ; ð1; 3Þ; ð2; 2Þ; ð3; 1Þ; ð4; 0Þ:

By Proposition 2.2, it seems that a Zariski 5-ple may exist. However, the

following Lemma shows that this is not true.

Lemma 3.5. Under the above setting, ðac�1I ð1Þ;ac�1I ð2ÞÞ ¼ ð0; 4Þ; ð2; 2Þ;
ð4; 0Þ.

Proof. We claim that there exists a non-negative integer M such that

2mI ¼ 2M þac�1I ð2Þ:

In order to prove our claim, we consider the sum

X
fi1; i2; i3g�I

mi1i2i3 ;

Fig. 1. Case (i), where cfQ ðsijkÞ ¼ 1, and case (ii), where cfQ ðsijkÞ ¼ 2.
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where mi1i2i3 is defined as in Lemma 3.3. Let us discribe this sum in two

ways.

( I ) Put si1i2i3 :¼ Li1 þ Li2 þ Li3 . By Lemma 3.3, we have

cfQðsi1i2i3Þ ¼ 1 if and only if mi1i2i3 ¼ 0; 2;

cfQðsi1i2i3Þ ¼ 2 if and only if mi1i2i3 ¼ 1; 3:

We set MN :¼afsi1i2i3 jmi1i2i3 ¼ Ng ðN ¼ 0; 1; 2; 3Þ. Then, we haveX
fi1;i2;i3g�I

mi1i2i3 ¼
X

cfQ ðsi1 i2 i3
Þ¼1

mi1i2i3 þ
X

cfQ ðsi1 i2 i3
Þ¼2

mi1i2i3

¼ 0 �M0 þ 2 �M2 þ 1 �M1 þ 3 �M3

¼ 2ðM2 þM3Þ þM1 þM3

¼ 2ðM2 þM3Þ þac�1I ð2Þ:

Define M to be M2 þM3.

(II) When mI > 0, fix an upper-half entry gklðfk; lg � IÞ with value �1.
Then, by the definitions of the matrices GI and Gði1; i2; i3Þ, we have

Gði1; i2; i3Þ contains gkl as its entry if and only if k; l A fi1; i2; i3g.

We may put k ¼ i1, l ¼ i2 without loss of generality. Then we have

afGði1; i2; i3Þ jGði1; i2; i3Þ contains gkl as its entryg

¼affi1; i2; i3g � I j k ¼ i1; l ¼ i2g

¼ 2:

Hence, by the definitions of mI and mi1i2i3 , we obtain

X
fi1; i2; i3g�I

mi1i2i3 ¼ 2mI :

If mI ¼ 0,
P
fi1; i2; i3g�I mi1i2i3 is also equal to zero. Thus, the above

equation holds when mI ¼ 0.

Hence, ac�1I ð2Þ must be an even number, which shows our statement. r

4. Examples

Let Q be the Klein quartic given by the a‰ne equation:

Fðt; xÞ :¼ x3 þ t3xþ t:
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Then the generic fiber EQ; zo of jQ; zo is y2 ¼ F ðt; xÞ. From [14, Section 4], the

28 bitangents of Q are given by the following equations:

L0; j : x0; jðtÞ ¼ �z j t� z3j; L1; j : x1; jðtÞ ¼ �z je21 t� z3je�23 ;

L2; j : x2; jðtÞ ¼ �z je22 t� z3je�21 ; L3; j : x3; jðtÞ ¼ �z je23 t� z3je�22 ;

where j ¼ 0; . . . ; 6, z ¼ eð2piÞ=7, e1 ¼ zþ z�1, e2 ¼ z2 þ z�2, e3 ¼ z4 þ z�4.

Put

L1 :¼ L0;0; L2 :¼ L1;0; L3 :¼ L1;1; L4 :¼ L3;3;

L5 :¼ L1;6; L6 :¼ L3;4; L7 :¼ L2;5:

and rational points of EQ; zo defined by L1; . . . ;L7;

P1 :¼ ðx0;0ðtÞ; y1ðtÞÞ; P2 :¼ ðx1;0ðtÞ; y2ðtÞÞ; P3 :¼ ðx1;1ðtÞ; y3ðtÞÞ;

P4 :¼ ðx3;3ðtÞ; y4ðtÞÞ; P5 :¼ ðx1;6ðtÞ; y5ðtÞÞ; P6 :¼ ðx3;4ðtÞ; y6ðtÞÞ;

P7 :¼ ðx2;5ðtÞ; y7ðtÞÞ:

Here,

y1ðtÞ ¼
ffiffiffiffiffiffiffi
�1
p

ðt2 þ tþ 1Þ; y2ðtÞ ¼
ffiffiffiffiffiffiffi
�1
p

e1ðt2 þ a1ðzÞtþ b1ðzÞÞ;

y3ðtÞ ¼
ffiffiffiffiffiffiffi
�1
p

z4e1ðt2 þ z2a1ðzÞtþ z4b1ðzÞÞ;

y4ðtÞ ¼
ffiffiffiffiffiffiffi
�1
p

z5e3ðt2 þ a3ðzÞtþ b3ðzÞÞ;

y5ðtÞ ¼
ffiffiffiffiffiffiffi
�1
p

z3e1ðt2 þ z5a1ðzÞtþ z3b1ðzÞÞ;

y6ðtÞ ¼
ffiffiffiffiffiffiffi
�1
p

z2e3ðt2 þ z2a3ðzÞtþ z4b3ðzÞÞ;

y7ðtÞ ¼
ffiffiffiffiffiffiffi
�1
p

z6e2ðt2 þ ðz2 þ 2þ 2z6 þ z4 þ 4z3Þtþ z5 þ 3z3 þ 3z2 þ 1þ 3z6Þ;

where

a1ðzÞ ¼ 2z5 þ z4 þ z3 þ 2z2 þ 4; b1ðzÞ ¼ 3z5 þ z4 þ z3 þ 3z2 þ 3;

a3ðzÞ ¼ 2z5 þ z4 þ zþ 2þ 4z6; b3ðzÞ ¼ 3z4 þ z3 þ 1þ 3z6 þ 3z5:

Note that for L1; . . . ;L7, no three lines are concurrent and QþLI ðI �
f1; . . . ; 7gÞ all have the same combinatorics for fixed aI .

	 A Zariski pair for Q and its three bitangents

We put

B1 :¼ Qþ L1 þ L2 þ L3; B2 :¼ Qþ L1 þ L2 þ L4:
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For P1 and P2, consider sections sP1
and sP2

as curves in the a‰ne part

of SQ; zo given by sP1
:¼ ðx0;0ðtÞ; y1ðtÞÞ and sP2

:¼ ðx1;0ðtÞ; y2ðtÞÞ with

parameter t. Then x0;0ðtÞ ¼ x1;0ðtÞ and y1ðtÞ ¼ y2ðtÞ has a unique

solution t ¼ zþ z�1, which implies sP1
� sP2
¼ 1. In the same way, we

obtain sP2
� sP3
¼ sP3

� sP1
¼ sP1

� sP4
¼ 1 and sP2

� sP4
¼ 0. Hence, we

have

Gð1; 2; 3Þ ¼
3 �1 �1
�1 3 �1
�1 �1 3

2
64

3
75; Gð1; 2; 4Þ ¼

3 �1 �1
�1 3 1

�1 1 3

2
64

3
75:

By Lemma 3.3, we have cfQðs123Þ ¼ 2 and cfQðs124Þ ¼ 1, then ðB1;B2Þ
is a Zariski pair.

	 A Zariski triple for Q and its four bitangents

We set I1 :¼ f1; 2; 3; 5g, I2 :¼ f1; 2; 3; 6g, I3 :¼ f1; 2; 4; 7g and put

Bk :¼ QþLIk ðk ¼ 1; 2; 3Þ:

As above, we have Gð1; 2; 3Þ ¼ Gð1; 2; 5Þ ¼ Gð1; 3; 5Þ ¼ Gð2; 3; 5Þ,
Gð1; 2; 4Þ ¼ Gð1; 2; 7Þ ¼ Gð1; 4; 7Þ ¼ Gð1; 2; 6Þ ¼ Gð1; 3; 6Þ and

Gð2; 3; 6Þ ¼
3 �1 1

�1 3 1

1 1 3

2
64

3
75; Gð2; 4; 7Þ ¼

3 1 1

1 3 1

1 1 3

2
64

3
75:

Hence, we obtain

ðac�1I1
ð1Þ;ac�1I1

ð2ÞÞ ¼ ð4; 0Þ; ðac�1I2
ð1Þ;ac�1I2

ð2ÞÞ ¼ ð2; 2Þ;

ðac�1I3
ð1Þ;ac�1I3

ð2ÞÞ ¼ ð0; 4Þ:

By Proposition 2.2, ðB1;B2;B3Þ is a Zariski triple.

The existence of the above examples gives a proof to Theorem 1.1.
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