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ABSTRACT. For a class of positive homogeneously presented cancellative monoids
whose heights are greater than or equal to 2, we will present several explicit calculations
of the skew growth functions for them. By the inversion formula, the spherical growth
functions for them can be determined. For most of them, the direct calculations are
not known. The datum of certain lemmas for proving the cancellativity of the monoids
are indispensable to the calculations of the skew growth functions. By improving the
technique to show the lemmas, we succeed in the calculations.

1. Introduction

Let M be a positive homogeneously finitely presented monoid {L|R),,,
that satisfies the cancellation condition (i.e. axb = ayb implies x = y). Due to
the homogeneity of the defining relations in the monoid M, we naturally define
a map deg: M — Z-( defined by assigning to each equivalence class of words
the length of the words. In [S1], by considering the set Tmcm(M) of all
towers T = (ly, J1,J2,...,J,) in M, the author defined the skew growth function
(see §3 for details) as

Nitaeg(t) =14 Y (=1Psthoh N7 ydesld),
T e Tmem(M) Aemem(J,)

In this article, for four kinds of positive homogeneously presented cancellative
monoids Gy , G, H,  and Mabe,n, We will present several explicit calcula-
tions of the skew growth functions for them. The monoid Gf{i . Is studied in
[I1]. The presentation of it is associated with a Zariski-van Kampen presen-
tation of the fundamental group of the complement of a certain divisor in C>.
The difining equation of the divisor is z(—2y* +4x3z + 18xpz +27z%). The
monoids G, H and My, are constructed artificially, for which the towers
of them do not stop on the first stage J;. The presentations of the monoids

G;ﬁ, G, H} and Mype , are the following

m?> m
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cbb = bba,
B, = <a,b,c ab = bc, > ,

ac=ca 1,
cbn’l — b"”cl7

Gl = <a,b,c ab = bc, > (m=3,4,...),
ac = ca o
b(ab)"ba = cb(ab)"b,

H, =<a7b,c ab = bc, (m=1,2,...),
ac = ca o

am — bn’l,
Mapel,m = <a,b b — ba >ma (m=2,3,...).

For a class of positive homogeneously presented cancellative monoids whose
heights are greater than or equal to 2, calculations of the skew growth functions
have not been known yet. For the calculations, the datum of certain lemmas
for proving the cancellativity of the monoids are indispensable. The results of
calculations of the skew growth functions are the following

(1-9
NGgh.,deg(t) = 1—(+22

NGJ,deg(t) = (1 - l)(fm+2 + P 2t + 1)7
Nit aeg(t) = (1= 1) (25 4+ 2704 4 2753 — 21+ 1),
(1-1)°

NMubel.m-,deg(t) = 1 _ Z’n N

The spherical growth function for a monoid M is defined as

Pusaeg(t) =Y 1981,
ueM

In [S1], K. Saito has shown the inversion formula for M with respect to the
map deg: M — Zs

PM,deg(t) 'NM.deg(t) =1

Hence, by the inversion formula, we can calculate the spherical growth function
P deg(t) for the monoids G, G, H, and Mapel -

Let us explain more details of the contents. In analogy with the spherical
growth function for a finitely generated group, the spherical growth function

for a monoid is defined. That has been studied by several authors ((A-N] [B]
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[Bro] [Del] [I1] [S2, S3, S4, S5] [Xu]). If M =<L|R),, satisfies the condition
Z that any subset J of I (:= the image of the set L in M) admits either the
least right common multiple 4; or no common multiple in M, then the
inversion function le,[,deg(t)_l is given in a form of polynomial. Since a
positive homogeneously presented cancellative monoid M = {L|R),,, does not
always satisfy the condition ., if we try to generalize the formula, the
consideration to obtain the above formula is invalid. To resolve this obstrac-
tion, for a subset J of Iy we will examine the set mecm(J) of minimal common
right multiples of elements of J. However, the datum {mem(J)},, is still not
sufficient to recover the inversion formula, since a subset J' of mem(J) in
general may have common right multiples. Thus we need to consider the set
mem(J') for a subset J' of mem(J). Then, we may again need to consider
mem(J”) for a subset J” of mem(J'), and so on. Repeating this process, we
are naturally led to consider a notion of tower: a finite sequence Ji,Js,...,J,
of subsets of M such that J; C Iy,J» C mem(J),...,J, C mem(J,—;). In [S1],
K. Saito has succeeded in generalizing the inversion formula for a rather wider
class of monoids (in this article, we explain it in a restricted form).

For the set Tmem(M) of all towers T = (Iy,J1,J2,...,J,) in M, we
put

h(M,deg) := max{n|T = (I, )1, J>,...,J,) € Tmem(M)}

and call it the height of the monoid M. The inversion formula covers all the
cases 0 < h(M,deg) < co. For a non-abelian monoid M = {L|R),, whose
h(M,deg) is equal to oo, one may think that calculations of the skew growth
functions are not practicable. However, in §5, we will carry out the non-trivial
calculation for the monoid Gﬁ'i . partially because for any tower
T = (lp,J1,J2,...,J,) the set mem(J;) can be calculated explicitly for each
J; due to Lemma 3. For the same reason, for the monoids G} and H,| whose
h(M,deg) is equal to 2 and the abelian monoid Mgy ,» Whose h(M,deg) is
equal to oo, we can calculate the skew growth functions in §5.

As far as we know, for non-abelian monoids that do not satisfy the
condition ., there are few examples for which the cancellativity of them has
been shown, since the pre-existing technique to show the cancellativity has only
limited applicability ([G] [B-S] [Dehl] [Deh2]). For calculations of the skew
growth functions, improvement of the technique to show the cancellativity is
expected. In [Dehl], [Deh2], if presentation of a positive homogeneously
presented monoid satisfies some condition, called completeness, the cancella-
tivity of it can be trivially checked. However, in general, the presentation of a
monoid is not complete. When the presentation is not complete, to obtain a
complete presentaion, some procedure, called completion, is carried out. From
our experience, for most of non-abelian monoids that do not satisfy the
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condition ¥, these procedures do not finish in finite steps. For monoids of
this kind, nothing is discussed in [Dehl], [Deh2]. Thus we attempt improving
the technique for this class of monoids. On the other hand, the presentations
of the examples Gy, G, and H,| are not complete and the procedures do not
finish in finite steps (Remark 5). Nevertheless, in §4, we show the cancella-
tivity of them successfully by improving the technique. Other successful
examples are contained in [I1], [I2], [S-I].

In §6 we will deal with two monoids My and G*(4;) whose towers do
not stop on the first stage J;. The skew growth functions for them can be
calculated with comparative ease.

2. Positive homogeneous presentation

In this section, we first recall from [S-I], [B-S] some basic definitions
and notations. Secondly, for a positive homogeneously finitely presented

group
G = (LIR),

we associate a monoid defined by it. We give some basic definitions in a
positive homogeneously presented monoid. Lastly, we define two operations
on the set of subsets of a monoid.

First, we recall from [S-I] basic definitions on a monoid M.

DerINITION 1. 1. A monoid M is called cancellative, if a relation
AXB = AYB for A,B,X,Y € M implies X =Y.
2. For two elements u, v in M, we denote

ul,v

if there exists an element x in M such that v=ux. We say that u divides v
from the left, or, v is a right-multiple of u.
3. We say that M is conical, if 1 is the only invertible element in M.

Next, we recall from [B-S] some terminologies and concepts. Let L be a
finite set. We denote by F(L) the free group generated by L, and by L* the
free monoid generated by L inside F(L). We call the elements of F(L) words
and the elements of L* positive words. The empty word ¢ is the identity
element of L*. Let G = (L|R) be a positive homogeneously presented group
(i.e. the set R of relations consists of those of the form R; = S; where R; and
S; are positive words of the same length), where R is the set of relations. We
often use the same symbols for the images of the letters and words under the
quotient homomorphism F(L) — G and the equivalence relation on elements A4
and B in G is denoted by 4 = B.
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Next, we recall from [S-1I], [I1] some basic concepts on positive homoge-
neously presented monoid.

DEFINITION 2. Let G = {L|R) be a positive homogeneously finitely pre-
sented group, where L is the set of generators (called alphabet) and R is the set
of relations. Then we associate a monoid G* = (L|R),,, defined as the quotient
of the free monoid L* generated by L by the equivalence relation defined as
follows:

1) two words U and V in L* are called elementarily equivalent if either
U=V in L* or V is obtained from U by substituting a substring R; of U by
S; where R; = S; is a relation of R (S; = R; is also a relation if R; = S; is a
relation),

i) two words U and V in L* are called equivalent, denoted by U =V,
if there exists a sequence Wy, Wi, ..., Wy, of words in L* for n € Zsq such that
U=Wy, V=W, and W; is elementarily equivalent to W;_| for i=1,... n

Due to the homogeneity of the relations, we define a homomorphism:

deg: Gt — Z
by assigning to each equivalence class of words the length of the words.

REMARK 1. For a positive homogeneously presented group G = {L|R), the
associated monoid G* = (L|R),,, is conical.

REMARK 2. In [S1], for a monoid M, the quotient set M/~ is considered,
where the equivalence relation ~ on M is defined by putting u ~ v Sger.
ul,v & v|;u. Due to the conicity, if M is a positive homogeneously presented
monoid, then we see that M/~ = M.

Lastly, we consider two operations on the set of subsets of a monoid M.
For a subset J of M, we put

cm,(J) :={ue M| j|u, for any jeJ},
min,(J) := {u e J|JveJ such that vju = v=u},

and their composition: the set of minimal common multiples of the set J
by

mem(J) := min,(cm,(J)).

3. Generating functions Py; goe and Ny geg
In this section, for a positive homogeneous presented cancellative monoid

M = {L|R)

mo?’
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we define a spherical growth function Py 4, and a skew growth function
N deg- Next, we recall from [S1] the inversion formula for the spherical
growth function of M.

First, we introduce a concept of towers of minimal common multiples
in M.

DEerFINITION 3. A tower of M of height n€ Zxy is a sequence
T := (10,.]1,]2,...,],1)

of subsets of M satisfying the followings.

1) Iy := the image of the set L in M.

i) mem(Jy) # & and we put I, == mem(Jy) for k=1,...,n

i) Jip C Loy such that 1 < #Jpy < o for k=1,...,n

Here, we call Iy, Ji and I, the ground, the kth stage and the set of
minimal common multiples on the kth stage of the tower T, respectively. In
particular, the set of minimal common multiples on the top stage is denoted by
|T| = I,

The set of all towers of M shall be denoted by Tmem(M). We put

h(M,deg) := max{the height of T € Tmcm(M)}
and call it the height of the monoid M.

REMARK 3. 1) It is clear that M is a free monoid if and only if
h(M,deg) = 0.

i) All of the monoids discussed in [A-N], [B-S], [S2], [S3] have
h(M,deg) < 1.

iii) For the following cancellative monoid Gy , we have h(Gy_ ,deg) = oo
(see Proposition 6 in §5).

iv) For the two cancellative monoids G, and H,; (m=1,2,...), we have
h(G,;,deg) =2 (see Proposition 8 in §5) and h(H,' deg) =2 (see Proposition
Il in §5).

v) For the abelian cancellative monoid Mype,, (m=2,3,...), we have
h(Mybel, m,deg) = oo (see Lemma 6 in §5).

Secondly, we define a spherical growth function Py ¢c, and a skew growth
function Njs 4ee. In the previous section, we have fixed a degree map
deg: M — Z-y. Then, we define the spherical growth function of the monoid
(M, deg) by

Puresi= 3 140
ue M



The skew growth functions 295

We define the skew growth function of the monoid (M,deg) by

Nataeg(t) :=14 Y (=1)Po#hmnrh N deetd), (3.1)
T e Tmem(M) Ae|T|

REMARK 4. In the definition (3.1), we can write down directly the coef-
ficient of the term t. Namely, we write

Niraeg(t) = 1= #(I)t+ Y (=Pl 3 pdesl),
height of T>1 Ae|T|

Therefore, if M is a free monoid of rank n, then we have Ny qeg(t) =1 —nt.

Lastly, we recall from [S1] the inversion formula for the spherical growth
function of the monoid (M,deg).

THEOREM 1. We have the inversion formula

PM.,deg(t) : NM,deg(l) = 1

4. Cancellativity of G, and H,&

m

In this section, for a preparation for calculations of the skew growth
functions for the monoids G,; and H,' in §5, we prove the cancellativity of
them.

4.1. Cancellativity of G . In this subsection, we show the cancellativity of
the monoid G

m:*

THEOREM 2. The monoid G is a cancellative monoid.
Proor. First, we remark the following.

PROPOSITION 1. The left cancellativity on G implies the right cancella-
tivity.

Proor. Consider a map ¢: G} — G, Wi (W) :=a(rev(W)), where
g is a permutation (f,f ') and rev(W) is the reverse of the word W = xix5 ... X
(x; is a letter) given by the word xj...x»x;. In view of the defining relation
of G}, ¢ is well-defined and is an anti-isomorphism. If fo = yu, then
o(fo) = p(ya), ie., p()p(f) = p(a)p(y). By using the left cancellativity, we
obtain ¢(f) = ¢(y) and, hence, = .

The following is sufficient to show the left cancellativity on the monoid
G+

m*
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PROPOSITION 2. Let Y be a positive word in G, of length r € Z>o and let
X" be a positive word in G, of length r —he{r—m+1,....r}.

(i) If vX© =Y for some ve{a,b,c}, then X© =Y.

(i) If aX© =bY, then X©) = bZ and Y = c¢Z for some positive word Z.

(iii) If aX© = cY, then X©) = ¢Z and Y = aZ for some positive word Z.

(iv-0) If bX©) = Y, then there exist an integer k (0 <k <r—m) and a
positive word Z such that X© = c*b"'a-Z and Y = a*b" - Z.

(iv-1-a) There do not exist words X' and Y that satisfy an equality
ba- XV = cvY.

(iv-1-b) If bb- X =Y, then XV = b"2a-Z and Y = b™ - Z for some
positive word Z.

(iv-1-¢) If be- XU =cY, then there exists an integer k (0 <k <
r—m—1) and a positive word Z such that XV = ckb"'a-Z and Y =
a<-'pm. Z.

If m>4, then, for 2 <h<m—2, we need prepare the following propo-
sitions (iv-h-a) (iv-h-b) and (iv-h-c).

(iv-h-a) There do not exist positive words X" and Y that satisfy an
equality b"a- X" = ¢Y.

(iv-h-b) If b"V - X" =Y, then X" =b""'q.Z and Y =b™-Z for
some positive word Z.

(iv-h-c) There do not exist positive words X") and Y that satisfy an
equality b"c- X" = cY.

(iv-m — D-a) If b"'a- X"V =cY, then X"V =ba-Z and Y =
b"c - Z for some positive word Z.

(iv-(m — 1)-b) If b - X"V =Y, then X"V =aZ and Y = b" - Z for
some positive word Z.

(iv-(m — 1)-¢) There do not exist positive words X"~V and Y that satisfy
an equality b 'c- XD = ¢Y.

Proor. The statement in Proposition 2 for a positive word Y of word-
length r and X of word-length r —he {r—m-+1,...,r} will be referred to
as H, ;. We will show the general theorem by induction®. Tt is easy to show
that, for r =0,1, H, , is true. If a positive word U, is transformed into U,
by using ¢ single applications of the defining relations of G, then the whole
transformation will be said to be of chain-length t. For the induction hypoth-
esis, we assume

(A) Hy, is true for s =0,...,r and arbitrary / for transformations of all

chain-lengths,

'For the proof, we refer to the technique of the triple induction (see proof of Proposition 4
in [12]).
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and

(B) Hy41, is true for 0 <h <m—1 for all chain-lengths < .
We will show the claim H,;;, for chain-lengths 7+ 1. For the sake of
simplicity, we devide the proof into two steps.

Step 1. We shall prove the claim H,.;, for h=0. Let X, Y be of
word-length r+ 1, and let

nX =W = =v W =v0Y

be a sequence of single transformations of -+ 1 steps, where vy,...,v,47 €
{a,b,c} and W,..., W,y are positive words of length »+ 1. By the assump-
tion 7 > 1, for any index 7€ {2,...,7+ 1} we can decompose the sequence into
two steps

nX = oW, =v0Y,

in which each step satisfies the induction hypothesis (B).

If there exists 79 such that v, is equal to either to v; or v,,, then by the
induction hypothesis, W, is equivalent either to X or to Y. Hence, we obtain
the statement for the vy X = v, Y. Thus, we assume from now on v, # v; and
U #F v for 1 <z <1+ 1.

We suppose that v; = v,y5. If there exists 7o such that {v; = v, v, } #
{b,c}, then each of the equivalences says the existence of «,f € {a,b,c} and
positive words Z;, Z, such that X =oaZ,, W, =pZ, =pZ, and Y = aZ,.
Applying the induction hypothesis (A) to fZ, = fZ,, we get Z; = Z,. Hence,
we obtain the statement X = aZ; = aZ, = Y. Thus, we exclude these cases
from our considerations. Next, we consider the case where (v; = v/0,v,) =
(b,c) for 1 <7<t+1. Namely, we have v; =---=wv,.y =c. Hence, we
consider the following case

bX = cWi = = Wi = bY.

Applying the induction hypothesis (B) to each step, we see that there exist
positive words Z3 and Z4 such that

X=b""a -7y, Wy =b"Z,
Wy = b" - Zy, Y =b""a- Zy.
Since an equality W; = W, holds, we see that
b" - Z3s=b"-Zy.

By the induction hypothesis, we have X = Y.
In the case of (v; = v;42,0;) = (¢,b) for 1 <t <t+1, we can prove the
statement in a similar manner.
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Suppose v; # v.,. We consider the following three cases.

Case 1: (v1,0;,042) = (a,b,c).
Because of the above consideration, we consider the case where t =17+ 1,
namely

aX = bW,+1 =cY.

Applying the induction hypothesis to each step, we see that there exist positive
words Z; and Z, such that

X =bZ7, Wi = ¢z,
Wt+1 = bmila . Zz, Y = bm . Z2.

Thus, we see that ¢-Z; = b" 'a-Z,. Applying the induction hypothesis (A)
to this equality, we see that there exists a positive word Z3 such that

Z1 ;me-Z3, Zz;ba-Z3.

Hence, we have X = ¢b™t!.-Z3; and Y = ab™t' - Zs.
Case 2:  (v1,0r,042) = (a,c¢,b).
We consider the case where 7 = ¢+ 1, namely

ClX = CWH,] = bY

Applying the induction hypothesis to each step, we see that there exist positive
words Z; and Z, such that

X =cZy, Wi = aZzy,
Wi =b" - Z, Y =b""a- 2.

Thus, we see that aZ; = b" - Z,. Applying the induction hypothesis (A) to
this equality, we see that there exists a positive word Z3 such that

21 ;bm+1~Z3, Zz;ba~Z3.

Hence, we have X =b-b"c-Z3 and Y =c-b"c- Zs.
Case 3: (v1,0r,042) = (b,a,c).
Then, we consider the following case

bX = aW, =cY.

Applying the induction hypothesis to each step, we see that there exist positive
words Z; and Z, such that

X;CZ], Wr;bzl,
W1 = CZQ, Y = aZz.
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Moreover, we see that there exist a positive word Z3 and an integer k € Zs
such that

Z ;Ckbm_la'Z3, Z ;akbm-Z3.
Thus, we have
X;Ck+lbm71a'Z3, Y;ak+lbm-Z3.

Step 2. We shall prove the claim H, ., for 0 <A <m—1. We will
show the general claim H,;;, by induction on 4. The case where & =0 is
proved in Step 1. First, we show the case where # = 1. Let X1 be of word-
length r and Y of word-length r+ 1. We consider a sequence of single trans-
formations of ¢+ 1 steps

y.oxW=...=cy,

where V is a positive word of length 2. We discuss the following three
cases.

Case 1: V =ba.
We consider the following case

ba-XW =...=cY. (4.1)

By the result of Step 1, we see that there exists a positive word Z; and an
integer k € Z>( such that

aXW = ckp-la. 7, Y =d“b™ . 7).

Applying the induction hypothesis (A), we see that there exists a positive word
Z, such that

XM =k z,, b" a-Z, = aZ,.
Moreover, we see that there exists a positive word Z3 such that
b"a-Zy = cZy,  Zr=bZ;.

By the induction hypothesis, we have a contradiction. Hence, there does not
exist positive words X! and Y that satisfy the equality (4.1).

Case 2: V =bb.
We consider the following case

bb- XV =Vy Wy=- =V Wy =cY,

where V5 and V,,; are positive words. It is enough to discuss the case where
(Va, Vis1) = (beb™ ac).  Applying the induction hypothesis (A) to the equality

beb™ - Wy = ac- Wiy, (4.2)
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we see that there exists a positive word Z; such that ¢W,,; = bZ,. Applying
the induction hypothesis, we see that there exists a positive word Z, and an
integer k € Z>( such that

Wit =d"b™ - Z,, Zy =ckvmla- Z,. (4.3)
Applying (4.3) to the equality (4.2), we have
beb™ - Wy = ac - a*b™ - Z,.
Moreover, we see
"Wy = kb la- 7, (4.4)

We consider the following two cases.
Case 2-1: k=0.
There exists a positive word Z3 such that

W, = ¢Zs, Z, = bZs.
Thus, we have
XD =pm g cZy =b"%a ba- Z;,
Y =ab"b-Z3 = b" - baZ;.

Case 2-2: k=>1.
Applying the induction hypothesis to the equality (4.4), we see that there exists
a positive word Z3 such that

Wy =d* - Zs.

Thus, we consider the equality ™ - Z3 = b 'a- Z,. We see that there exists a
positive word Z4 such that

7y =bZy,  Zy=cZa
Thus, we have
XU =pmlg.dke- Zy = b 2a - ba*t' 75,
Y = ad*b™b - Zy = b™ - ba* "' Z;.

Case 3: V = bc.
Then, we consider the following case

bC~X(1);'-~;CY.
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By the induction hypothesis, we see that there exist a positive word Z; and an
integer k € Z-( such that

X = ckpm-ig. Z, Y =d*p™- 7).
We consider the following two cases.
Case 3-1: k=0.
By the induction hypothesis, we see that there exists a positive word Z; such
that
XY =p"c.Z,, Zy=ba- 2.
Thus, we have

X =pmlg.b7,, Y =b"ba-Z; = ab™ - bZ,.

Case 3-2: k=>1.
Then, we have

xW = ;lpm=ly. 7, Y =d™ - Z,.

Second, when m > 4, we show the claim H,,; ; (2 </ <m — 2) by induc-
tion on h. We assume h=1,2,...,j (j<m—3). The case where h=1
has been proved. Let XU*) be of word-length » — j and Y of word-length
r+1. We consider a sequence of single transformations of #+ 1 steps

yoxUth — . = cY, (4.5)

where V' is a positive word of length j+2. We discuss the following three
cases.

Case 1: V =bb/a.
Applying the induction hypothesis, we see that there exists a positive word Z;
such that

aX Ut = pm-i-lg. 7, Y =b". 7.
By the induction hypothesis, we see that there exists a positive word Z, such
that
XUtD = bz, " 24 Z) = c2s.
By the induction hypothesis, we have a contradiction. Hence, there do not
exist positive words XU+ and Y that satisfy the equality (4.5).
Case 2: V = bb/*!,
Applying the induction hypothesis, we see that there exists a positive word Z;
such that

bX(j+1> = bm*jfla . Z], Y =p". 7.

Thus, we have XUtD = pm-i-24. 7,
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Case 3: V =bb/c.
Applying the induction hypothesis, we see that there exists a positive word Z;
such that

cXUY = pm=i-ly. 7, Y =b"-Z;.

By the induction hypothesis, we have a contradiction. Hence, there do not
exist positive words XU+ and Y that satisfy the equality (4.5).

Lastly, we show the claim H,.j, 1. Let X" D be of word-length
r—m+2 and Y of word-length r+ 1. We consider a sequence of single
transformations of 7+ 1 steps

y.oxml .. =y, (4.6)

where V' is a positive word of length m. We discuss the following three cases.
Case 1: V =b""l4.
By the above result, we see that there exists a positive word Z; such that

aX" Y = pa- 7, Y =b"-Z,.

By the induction hypothesis, we see that there exists a positive word Z, such
that

X("Fl) = ba - Z, Z =cZ>.

Thus, we have Y = b"c- Z,;.
Case 2: V =b""1p.
By the above result, we see that there exists a positive word Z; such that

bX" Y =pa- 7, Y =b".Z,.

Thus, we have X"V = qZ,.
Case 3: V =b""lc.
By the above result, we see that there exists a positive word Z; such that

X"V = pa- 7, Y =b"-Z,.

We have a contradiction. Hence, there do not exist positive words X 1) and
Y that satisfy the equality (4.6).

This completes the proof of Theorem 2.

4.2. Cancellativity of H, . In this subsection, we show the cancellativity of
the monoid H,'.

THEOREM 3. The monoid H,' is a cancellative monoid.

Proor. First, we remark the following.
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PROPOSITION 3. The left cancellativity on H implies the right cancella-
tivity.

Proor. Consider a map ¢ : H) — H, W — o(W) := a(rev(W)), where
o is a permutation (fbb '©). By a similar arguments in the proof in Proposition
1, we can show the statement.

To prove the cancellativity of the monoid H, it suffices to show the

m?>
following proposition.

PROPOSITION 4. Let Y be a positive word in H,} of length r € Z> and let
X" be a positive word in H of length r —he{2m,... r}.

(i) If vX© =Y for some ve{a,b,c}, then X© =Y.

(i) IfaX© =bY, then X =bZ and Y = c¢Z for some positive word Z.

(iii) If aX© =cY, then X =cZ and Y =aZ for some positive
word Z.

(iv) IfbX O = cY, then there exists an integer k (0 < k <r —2m —2) and
a positive word Z such that X = c¢*(ab)"ba-Z and Y = a*b(ab)"'b - Z.

v) Ifbb- XU =Y, then XV = ¢(ab)™ 'ba-Z and Y = b(ab)"b - Z for
some positive word Z.

For 2 < h <r—2m, we prepare the following propositions.

(vi-h) If " 'bb-XW =bY, then XW =c(ab)"'b-Z and Y =
(ab)"ba"~" - Z for some positive word Z.

Proor. The statement in Proposition 4 for a positive word Y of word-
length » and X of word-length r — i e {r —2m,...,r} will be referred to as
H, . We will show the general claim by induction. It is easy to show that,
for r=0,1, H,, is true. For the induction hypothesis, we assume

(A) Hg, is true for s =0,...,r and arbitrary 4 for transformations of all
chain-lengths,

and

(B) Hyt1,5 is true for 0 <h <max{0,r+1—2m} for all chain-lengths
<.

We will show the claim H,;;; for chain-lengths #+ 1. For the sake of
simplicity, we devide the proof into two steps.

Step 1. We shall prove the claim H,.; , for A =0. Let X, Y be of word-
length r+ 1, and let

nX =W = =W = v

be a sequence of single transformations of ¢+ 1 steps, where vy,...,v,42 €
{a,b,c} and W,..., W,y are positive words of length »+ 1. By the assump-
tion ¢ > 1, for any index 7 € {2,...,1+ 1} we can decompose the sequence into
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two steps
nX =v. W, =v427Y,

in which each step satisfies the induction hypothesis (B).

If there exists 7y such that v,, is equal to either to v; or v,», then by the
induction hypothesis, W, is equivalent either to X or to Y. Hence, we obtain
the statement for the vi X = v, Y. Thus, we assume from now on v, # v; and
v F v for 1<t <t+1.

Suppose v; = v;40. If there exists 79 such that {v; = v, 05} # {b,c},
then each of the equivalences says the existence of o, ff € {a,b,c} and positive
words Z, Z, such that X = aZ,, W, = fZ, = fZ, and Y = aZ,. Applying
the induction hypothesis (A) to fZ, = fZ,, we get Z; = Z,. Hence, we obtain
the statement X = aZ; =aZ, = Y. Thus, we exclude these cases from our
considerations. Next, we consider the case where (v} = v/2,v,) = (b,¢) for
l<t<t+1. Namely we have v, =---=uv,1 =c. Hence, we consider the
following case

bX;CWl =--- ;CWHl ;bY.

Applying the induction hypothesis (B) to each step, we see that there exist
positive words Z3 and Z4 such that

X = (ab)mba . Z3, W1 = b(ab)mb . Z3,
Wit = b(ab)"b - Zy, Y = (ab)"'ba - Zy.

Since the equality W, = W,,; holds, we see that X = Y.

In the case of (v; = vs42,0;) = (¢,b) for 1 <7 <1+ 1, we can prove the
statement in a similar manner.

Suppose v # v,4o. It suffices to consider the following two cases.

Case 1: (v1,0;,0i42) = (a,b,¢).
Because of the above consideration, we consider the case where 7 =17+ 1,
namely

aX = bW,+1 =cY.

Applying the induction hypothesis to each step, we see that there exist positive
words Z; and Z, such that

X =b7,, Wi = ¢Zi,
WI-H = (ab)mba . Zz, Y = b(ab)mb . Zg.

Thus, we see that ¢Z, = (ab)"ba- Z,. Applying the induction hypothesis (A)
to this equality, we see that there exists a positive word Z3 such that

Z] = a23, b(ab)m_lba . Zz = CZ3.
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Hence, we have bbc(ab)" *ba - Z, = ¢Z3. Applying the induction hypothesis
(A) to this equality, there exists a positive word Z; such that
c(ab)"?ba - Zy = c(ab)™ 'ba - Zy, Z3 = b(ab)"b - Z4.

Hence, we have ba-Z, = abba-Z,. Moreover, we see that there exists a
positive word Zs such that

Z, = cha- Zs, Zy = cZs.
Thus, we have
X = bab(ab)"bc - Zs = ¢ - b(ab)"bch - Zs,
Y = b(ab)"'bcba - Zs = a - b(ab)"beb - Zs.

Case 2:  (v1,0r,042) = (a,c¢,b).
We consider the case where v = ¢+ 1, namely

ClX = CW;+] = bY

Applying the induction hypothesis to each step, we see that there exist positive
words Z; and Z, such that

X =cZ, Wi = azy,
Wi = b(ab)"b - Z,, Y = (ab)"ba - Z,.

Thus, we see that aZ; = b(ab)"b - Z,. Applying the induction hypothesis (A)
to this equality, we see that there exists a positive word Z3 such that

Zl = bZ3, (ab)mb . 22 = CZ3.
Hence, there exists a positive word Z4 such that
b(ab)"Flb . Zz = CZ4, Z3 = aZ4.

We have bbc(ab)"*b - Z, = ¢Zs. Applying the induction hypothesis (A) to
this equality, we see that there exists a positive word Zs such that

c(ab)" b - Zy = c(ab)" 'ba - Zs,  Z4=b(ab)"b - Zs.
Hence, we have Z, = cha - Zs. Thus, we obtain
X = chab(ab)"b - Z5s = b(ab)"'bach - Zs,
Y = (ab)"bacha - Zs = c(ab)"'bach - Zs.

Step 2. We shall prove the claim H, ., for ] <h<r+1-2m. We will
show the general claim H,, ;. First, we show the case where # =1. Then,
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we consider the following case
bh- X = ... =Y.

By the result of Step 1, we see that there exists a positive word Z; and an
integer k € Z~( such that

bxX "V = ck(ab)"ba - Z,, Y = a*b(ab)"b - Z,.

Thus, we have bX (D) = ac*b(ab)" 'ba - Z,. Applying the induction hypothesis
(A), we see that there exists a positive word Z, such that

X0 = ¢z, bZ, = c*b(ab)™ 'ba - Z, = c*bbc(ab)™ *ba - Z;.

We consider the case where k > 1. By the induction hypothesis, we see that
there exists a positive word Z3 such that

Zy = (ab)"ba* - Z3, clab)" *ba - Z; = c(ab)™'b - Z;.

Hence we have ba - Z; = abb - Z5 and therefore we have aZ; = ¢b- Z3. By the
induction hypothesis, there exists a positive word Z4 such that

Zy=cb-Zy, 75 = cZy.
Thus, we have
XU = ¢(ab)"bd*c - Zy = c(ab)™ ' ba - cbd® - Z,,
Y = a*b(ab)"bch - Zy = b(ab)"b - cha - Z,.

Next, we consider the case where 2 <k <r+1-—2m. We consider the
following case

M. x ™ =...=phY. (4'7)

By the result of Step 1, we see that there exists a positive word Z; and an
integer k| € Z~( such that

"=2bb - XD = akb(ab)"b - 24, Y = cf(ab)"ba - Z,.

By repeating the same process 7 — 1 times, there exist integers k»,...,k; 1 €
Z~ and a positive word Z;_; such that
bb- X" = gkt p(ab)"'b - Z)_.

Then, we have b- X" = k1. (ab)"b- Z), | = ackr ~b(ab)m_1b -Zn_1. By
the induction hypothesis, there exists a positive word Z, such that

X" = ¢z, chnt -b(ab)m*lb -Zp1 = b7z,
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Hence, we have bZ), = c*! -bbc(ab)'"fzb - Zj_1. By the induction hypothesis,
there exists a positive word Z, such that

C(ab)mizb Zpo1 = C(ab)milb . Z(), Z, = (ab) mbak/lfl -Zy.

Thus, we have bZ,_ | =abb-Z,. We obtain Z,_| =cb-Zy, and hence we
have

XN = ¢(ab)"ba*1 - Zy = c(ab)™ 'b - cba® - - Z,.
Applying this result to (4.7), we have
bY =" 'bb - c(ab)™ b - cba®-1 - Zy = b(ab)"ba""" - cha* - Z,.
Therefore we have Y = (ab)"ba"~" - cha*-1 - Z,.

This completes the proof of Theorem 3.
We have a remark on the presentation of the two monoids G,) and
H).

m

REMARK 5. Since the presentation of the monoid G, (resp. H, ) is not
complete, the sufficient criterion for the cancellativity given in [Dehl], [Deh2] is
not satisfied for the monoid H, (resp. H ). Moreover, some procedures, called

completion ([Dehl], [Deh2]), do not stop in finite steps in both cases. Thus, the
cancellativity of them cannot be checked by the method in [Dehl], [Deh2].

5. Calculations of the skew growth functions

In this section, we will calculate the skew growth functions for the monoids
Gﬁ“ﬁ, G!, Ht and Mgypen. The datum for proving the cancellativity of the

m?>

monoids are indispensable to the calculations of the skew growth functions.

5.1. The skew growth function Ng: . deg(?). In this subsection, we present an
explicit calculation of the skew growth function for the monoid Gg'ii. In [I1],
we have made a success in calculating the spherical growth function PGB’N,deg([)

by using the normal form for the monoid G{{i . By the inversion formula, we

can calculate the skew growth function NG;_’deg(t). Nevertheless, we present

an explicit calculation, because, in spite of the fact that the monoid is non-

abelian and the height of it is infinite, we succeed in the non-trivial calculation.
First of all, we recall a fact from [Il, Section 7].

LemMmA 1. Let X and Y be positive words in G]‘;ﬁ of length r € Zs.
(i) If vX =vY for some ve{a,b,c}, then X =Y.

(i) If aX =bY, then X =bZ and Y = cZ for some positive word Z.
(iti) If aX =Y, then X =cZ and Y = aZ for some positive word Z.
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(iv) If bX = cY, then there exist an integer k € Z> and a positive word Z
such that X = c*ba-Z and Y = a*bb - Z.

Thanks to Lemma 1, we have proved the cancellativity in [S-I]. More-
over, we can prove the following Lemma.

Lemma 2. If an equality bb-X = cY in Gy holds, then X =aZ and
Y =bb-Z for some positive word Z.

Proor. Due to Lemma 1, we see that there exists an integer k € Z( and
a positive word Zj such that

bX = c*ba - 7y, Y = a*bb - Zy. (5.1)

We consider the case kK > 1. Due to Lemma 1, we see that there exist an
integer i; € Z>o and a positive word Z; such that

X =c"ba- 7, a7y =a"bb - 7.
Moreover, we see that there exists a positive word Zél) such that

Zo=c"-z", ¢ ba-Z) = bb- 7,

Repeating the same process k-times, there exist integers i,...,i € Zso and
positive words Zék) and Z; such that
Zy = ¢tttz by 78— pb . 7

Moreover, we see that there exists a positive word Z’ such that
zW =bz', Zy=cZ'
Applying this result to (5.1), we have
bX = cKbach Ttk L 7! = paet it gk L 7
Y = akbbeititticy L 7l = ph . eirtiteticpgk 0
Thus, we have X = a - chtottipgk . 7/,
As a consequence of Lemma 2, we obtain the followings.

COROLLARY 1. If an equality bb-X = c'- Y in G}‘{ﬁ holds for some positive
integer 1, then X =a'-Z and Y = bb-Z for some positive word Z.

Due to Corollary 1, we can solve the following equation.

PROPOSITION 5. If an equality ¢'b- X = ¢/b-Y in G§_ holds for 0 <i < j,
then there exists an integer k € Zsy and a positive word Z such that

X =cfba’™ - 7, Y =c*b-Z.
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Proor. Due to the cancellativity, ¢'b- X = ¢/b- Y if and only if bX =
¢/'b- Y. Thanks to Lemma 1, we see that there exist an integer k € Zs( and
a positive word Z; such that

X = c*ba- 7, Y = dfbb - 7.
Moreover, we see that there exists Y’
Y=cv, 7Y =bb-Z,.
Due to Corollary 1, there exists a positive word Z; such that
bY' =bb-Z,, Zy=a"'"' 2,
Thus, we have
X =cba™ 2, Y =2,
As a corollary of Proposition 5, we show the following lemma.
LemMmA 3. For 0 < k) <Ky <--- <K,
mem({c¥1b, b, ..., c"rb}) = {c"b - kb |k =0,1,...}
By using Lemma 3, we easily show the following.
PROPOSITION 6. We have h(Gy ,deg) = oo.
Proor. Due to Lemma 1, we show
mem({b,c}) = {cb-c*b|k=0,1,...}.
Due to Lemma 1, for 0 <x; <xy <--- <, we have
mem({ch - ¢*'b,ch - b, ... ch- b)) = {cb- b - bk =0,1,...}.
By using Lemma 3 repeatedly, we show /(Gyg ,deg) = 0.

By using Lemma 3, we calculate the skew growth function. We have to
consider four cases where J, = {a,b},{a,c},{b,c} or {a,b,c}. We denote by
Tmem(Gy , J1) the set of all the towers starting from a fixed J;. If J; = {a,b}
or {a,c}, due to Lemma 1, then mem({a,b}) and mem({a, c}) consist of only
one element, respectively. Next, we consider the case where J; = {b,c}. For
a fixed tower T, if there exists an element A € |7T| such that deg(4) =1+2,
then, from Lemma 3, we see the uniqueness. For any fixed /e Z.,, we
calculate the coefficient of the term #/*? which is denoted by a;, by counting all
the signs (—1)*T /="t iy the definition (3.1) associated with the towers
T = (Iy,J1,J2,...,J,) for which deg(4) can take a value / 4+ 2. To calculate
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the coefficient a;, we consider the set
FGQ_ = {T e Tmem(Gy_,J1) |4 €|T| such that deg(4) =1+ 2}.

By using Lemma 3 repeatedly, we show

max{the height of T e %3_} = |({+1)/2].
For ue{l,...,|(I+1)/2]|}, we define the set

%ﬁ;i,u ={Te 5&%‘ |the height of T = u}.

Hereafter, we write simply 7' (resp. 7) for %ﬁ (resp. %@ .- Thus, we
.- Bjj i’
have the decomposition:

u

7'=| |7 (5.2)

Claim 1. For any u, we show the following equality

(_l)uillfucufl — Z (_1)#J1+-~+#Ju7u+l.

Ted,!

Proor. For the case of u = 1, the equality holds. For the case of u =2,
we calculate the sum ZTG%/(—I)#JFI. By indices 0 < x| < k3 < --- < k), the
set J, is generally written by {cb - ¢*'b,ch - ¢*2b,...,cb-c**b}. Due to Lemma
3, we show that the maximum index x, can range from 1 to / — 2. For a fixed
index x, =xe{l,...,1 -2}, we easily show

o= =1

TGZI,K,,:K

Therefore, we show that the sum ETG%I(—l)#JZ_I =—(-2)=—12Cy.

We show the case for 3 <u<|(/+1)/2] by induction on u. We
assume the case where u = j. For the case of u = j+ 1, we focus our atten-
tion to the set J,. Since the set J, can be written as {cb - c¢*'b,cb - c*b,...,
cb - b}, due to Lemma 3, we show that the maximum index x, can range
from 1 to / —2j. By the induction hypothesis, it suffices to show the following
equality

1-2j
> 1-ik-1Giot = 151G
k=1

Therefore, we have shown the case u = j+ 1. This completes the proof.
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By the decomposition (5.2), we show the following equality.
Claim 2. a) = Zk(igl)/zj(—l)kl,k,lck.

Then, we easily show the following.
Claim 3. @ »—a; 1 +a =0.

Proor. Since an equality ,.1Cy —,Cr = ,Cx_1 holds, we can show our
statement.

We easily show a; = a, = 1. Hence, the sequence {a;},, has a period 6.
Lastly, we consider the case where J; ={a,b,c¢}. For any fixed /e Z,,
we calculate the coefficient of the term ¢+ which is denoted by b;. Since
mem({a,b,c}) = {cb-c*b|k =1,2,...}, we can reuse Lemma 3. In a similar
manner, we have the following conclusion.

Claim 4. b;» — b1 +b;=0.

Since by = b, =1, we also show that the sequence {b;},-, has a period 6.
After all, we can calculate the skew growth function for the monoid G;ﬁ:
A 14 (1-0*

N 1) =1-3¢+2¢ - = .
GBﬁ*deg() + +1—t+t2 l—t4+22 1—1+2

5.2. The skew growth function Ng: 4. (). In this subsection, we present an
explicit calculation of the skew growth function for the monoid G, .
First of all, we show the following proposition.

PROPOSITION 7. If an equation ¢'b"~'-X = c¢/b™ 1. Y in G holds for
0 <i< j, then there exists a positive word Z such that

X=ba"" 7z and Y =bZ.

PrOOF. Since we have shown the cancellativity in §4, c'b” . X =
¢/b™ 1. Y if and only if »”'- X = ¢/7ib"~!1. Y. Thanks to Proposition 2
(iv-(m — 2)-b), we see that there exists a positive word Z such that

X=ba"" Z, Y =bZ.
As a corollary of Proposition 7, we show the following lemma.
Lemma 4. For 0 <Ky <o <--- <k,
mem({c*th™ 1 e2pmTl L erhm YY) = (e h™)
Thus, we obtain the following proposition.
ProposITION 8. A(G)!, deg) = 2.

By using Lemma 4, we calculate the skew growth function. We have to
consider four cases where J; = {a,b},{a,c},{b,c} or {a,b,c}. We denote by
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Tmem(G;t,J;) the set of all the towers starting from a fixed J,. If J; = {a, b}
or {a,c}, due to Proposition 2, then mem({a,b}) and mem({a,c}) consist of
only one element, respectively. Next, we consider the case where J; = {b, c}.
For any fixed / € Z-, we calculate the coefficient of the term "/ which is
denoted by ¢;. To calculate the coefficient ¢;, we consider the set

,TG% :={T € Tmem(G,",J1) |4 € |T| such that deg(4) =m + I}.
For ue{l,2}, we define the set

a1
G u

={Te ’7Gi‘, | the height of T = u}.

Since mem({b,c}) = {cb-c*p" |k =0,1,...}, we easily show ¢; =c; = 1.
Moreover, we show the following.

ProposITION 9. ¢;=0 (I =3,4,...).

Proor. From the consideration in Claim 1 of Example 1, for u =2, we
also show

Z (_1)#J|+--»+#Ju7u+l - 1.

TeT!
A
Glu

Thus, we have ¢; =0 (I =3,4,...).

Lastly, we consider the case where J; = {a,b,c}. For any fixed /€ Z.,,
we calculate the coefficient of the term r”**! which is denoted by d;. In
a similar way, we show dj =d, =1 and d;=0 (I =3,4,...). After all, we
calculate the skew growth function for the monoid G:

NG,;,deg([) —1— 3t—|—2[2 + ([m+1 4 tm+2) _ (tm+2 4 [m+3)
_ (1 _ t)(thrZ + tm+l — 2+ 1)

REMARK 6. By the inversion formula, we are able to calculate the spherical
growth function P+ () through the skew growth function Ng: qe(1).  We can
not find the direct calculation of the spherical growth function Pg: 4e,(1) in the
existence literatures.

5.3. The skew growth function Ny 4.,(7). In this subsection, we present an
explicit calculation of the skew growth function for the monoid H,}.
First of all, we show the following proposition.

PrOPOSITION 10. If an equality ¢'b(ab)™ 'ba- X = ¢/b(ab)™ 'ba- Y in
H, holds for 0 <i < j, then there exists a positive word Z such that

X =cba’™" - Z, Y=cb-Z.
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Proor. Since we have shown the cancellativity of H}! in §4, we show
¢ib(ab)" 'ba- X = ¢/b(ab)" 'ba- Y < b(ab)" 'ba-X = ¢/ib(ab)" 'ba- Y.
Thanks to Proposition 4 (vi-h), we see that there exists a positive word Z;
such that

(ab)" 'ba- X = (ab)"ba’™"- Z),  c(ab)" *ba-Y = c(ab)"'b - Z,.
Therefore, we see that there exists a positive word Z, such that

X = cha’™" - 75, Y=cb-2Z,.
As a corollary of Proposition 10, we show the following lemma.

LemMMA 5. For 0 <k) <Ky <--- <Kp,
mem({c*'b(ab)™ " ba, ¢’ b(ab)™ ' ba, ..., " b(ab)" " ba})
= {**b(ab)" " bacb}
Thus, we obtain the following proposition.

ProposiTiON 11. A(H ' deg) = 2.

Thanks to Lemma 5, we can calculate the skew growth function. We
have to consider four cases where J; = {a,b},{a,c},{b,c} or {a,b,c}. We
denote by Tmem(H,", J;) the set of all the towers starting from a fixed J;. If
J1 = {a,b} or {a,c}, due to Proposition 4, then mem({a,b}) and mem({a, c})
consist of only one element, respectively. Next, we consider the case where
Ji ={b,c}. For any fixed /€ Z., we calculate the coefficient of the term
"3+ which is denoted by e;. In order to calculate the coefficient ¢;, we
consider the set

F} .= {T e Tmem(H,},J;)| 4 € |T| such that deg(4) =2m + 3 +1}.

m

For ue {1,2}, we define the set

Tyl = A{T € 7\, | the height of T = u}.

Since mem({b,c}) = {bc*(ab)"ba|k =0,1,...}, we easily show e =e, =
e3 = 1. Moreover, we show the following.

ProposITION 12. ¢, =0 (I =4,5,...).

Proof. From the consideration in Claim 1 of Example 1, for u =2, we
also show

Z (71)#11+-~+#Ju*u+1 - 1.

Thus, we have ¢, =0 (I =4,5,...).
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Lastly, we consider the case where J; = {a,b,c}. For any fixed /€ Z,,
we calculate the coefficient of the term r>"*4*/ which is denoted by f;. In a
similar way, we show fi=f,=f;=1and f;=0 (/I =4,5,...). After all, we
calculate the skew growth function for the monoid H,':

NHj,,deg([) =1—3t+ 2[2 + ([2m+3 + t2m+4 + t2m+5) _ (t2m+4 + t2m+5 4 t2m+6)
_ (1 _ t)(t2m+5 + 12m+4 + t2m+3 2+ 1)

REMARK 7. By the inversion formula, we are able to calculate the growth
Sunction Py q0(t) through the skew growth function Ny qe,(t). We can not
find the direct calculation of the spherical growth function Py qee(t) in the
literatures.

5.4. The skew growth function Ny, , dee(). In this subsection, we calculate
the skew growth function for the monoid Mgl -
First of all, we easily show the following proposition.

PropOSITION 13. Let X and Y be positive words in Mypem of length
re ZZ().

(i) If vX =vY for some ve{a,b}, then X =Y.

(i) If aX = bY, then either X =a™'-Z, and Y =b""'-Z, for some
positive word Z, or X =bZ, and Y = aZ, for some positive word Z,.

LEMMA 6. There exists a unique tower T, = (lp,J1,Ja,...,Jy) of height
n € Z-y with the ground set Iy = {a,b} such that

Ty = {a" D g mpY (=1, (n+1)/2)),
Jop = {akm7a(k—l)m+1b} (k=1,...,|n/2]).

Proor. We easily show J; = {a,b} and J, = {a™,ab}. Thanks to Prop-
osition 13, we show our statement by induction on k.

Therefore, we immediately show 7(Mypel n,deg) = co. Moreover, from
the definition (3.1), we can calculate the skew growth function

(1-0°

NMabeldeeg([) = (1 - 2t+ 12)(1 + lm + tzm + . ) - 1 —m ’

6. Appendix

In this section, we deal with two monoids My and G*(4;) whose towers
do not stop on the first stage J;. The skew growth functions for them can be
calculated with comparative ease.
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ExampLE 1. In [Deh2], the author investigated a certain monoid that we
rename to M,. The presentation is the following

ab = bc = ca,
My = <a,b,c,d badbad,> .

caa = dbb

mo

By referring to Higman-Garside’s method (see [G], [B-S]), we easily show the
following proposition.

PropoSITION 14, Let X and Y be positive words in My of length
re ZZO‘

(i) If vX =Y for some ve{a,b,c,d}, then X =Y.

(i) If aX = bY, then either X = bZ, and Y = cZ, for some positive word
Zy or X =dZ, and Y = aZ, for some positive word Z».

(iti) If aX =Y, then X =bZ and Y = aZ for some positive word Z.

(iv) If aX =dY, then X =dZ and Y = bZ for some positive word Z.

(V) If bX =cY, then X =cZ and Y = aZ for some positive word Z.

(vi) If bX =dY, then X =aZ and Y = bZ for some positive word Z.

(vii) If cX=dY, then X =aa-Z and Y =bb-Z for some positive

Thanks to Proposition 14, we see that the monoid My is a left cancellative
monoid. In the monoid My, we have an anti-homomorphism ¢ : My — My,
W — (W) :=a(rev(W)), where ¢ is a permutation (1‘,’5;(‘,’) and rev(W) is
the reverse of the word W =x1xp...x; (x; is a letter) 'given by the word
Xi...Xpx;. By a similar argument in §5.1, we can show that the monoid
M, is a cancellative monoid. Due to Proposition 14, we can calculate the
skew growth function. We have to consider the case where J; = {a,b}.
We have mem({a,b}) = {ab,ad} and mcm({ab,ad}) = {aba}, and therefore
h(My,deg) =2. From the definition (3.1), we can calculate the skew growth
function for the monoid M, as follows:

Nt deg(t) =1 —dt+42 — £ = (1 —0)(1 =3t +1%).

ExampLE 2. For the figure-eight knot, a Wirtinger presentation of the
knot group G(4;) can be shown to be

G(4)) = <a,b,c,d

ca = dc, bd = da,
ac=ba,db=bc |

For this presentation, we associate the monoid defined by it, which is denoted
by G*t(4). By referring to Higman-Garside’s method (see [G], [B-S]), we
easily show the following proposition.
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ProPoSITION 15. Let X and Y be positive words in Gt(4) of length
re 220-

(i) If vX =vY for some ve{a,b,c,d}, then X =Y.

(i) If aX =bY, then X =cZ and Y = aZ for some positive word Z.

(i) There do not exist positive words X and Y that satisfy an equation
aX =cY.

(iv) There do not exist positive words X and Y that satisfy an equation
aX =dY.

(v) There do not exist positive words X and Y that satisfy an equation
bX = cY.

(vi) If bX = dY, then either X = dZ, and Y = aZ, for some positive word
Zy or X =c¢Zy and Y = bZ, for some positive word Z,.

(vii) If ¢cX =dY, then X =aZ and Y = ¢Z for some positive word Z.

Thanks to Proposition 15, we see that the monoid G*(4)) is a left
cancellative monoid. In the monoid G*(4,), we have an anti-homomorphism
p:GT(4) = Gt (4), W p(W):=a(rev(W)), where ¢ is a permutation
(;:f;j) and revo(W) is the reverse of the word W = x1xs...x; (x; is a letter)
giveﬁ by the word xj...xpx;. By a similar argument in §5.1, we can show
that the monoid G*(4;) is a cancellative monoid. Due to Proposition 15, we
easily have 2(G*(4;),deg) =2. From the definition (3.1), we can calculate the

skew growth function for the monoid G*(4;) as follows:

NG dea(t) =1 =4t +482 — 8 = (1 —1)(1 = 3¢+ 12).
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