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Abstract. For a class of positive homogeneously presented cancellative monoids

whose heights are greater than or equal to 2, we will present several explicit calculations

of the skew growth functions for them. By the inversion formula, the spherical growth

functions for them can be determined. For most of them, the direct calculations are

not known. The datum of certain lemmas for proving the cancellativity of the monoids

are indispensable to the calculations of the skew growth functions. By improving the

technique to show the lemmas, we succeed in the calculations.

1. Introduction

Let M be a positive homogeneously finitely presented monoid hLjRimo

that satisfies the cancellation condition (i.e. axb ¼ ayb implies x ¼ y). Due to

the homogeneity of the defining relations in the monoid M, we naturally define

a map deg : M ! Zb0 defined by assigning to each equivalence class of words

the length of the words. In [S1], by considering the set TmcmðMÞ of all

towers T ¼ ðI0; J1; J2; . . . ; JnÞ in M, the author defined the skew growth function

(see § 3 for details) as

NM;degðtÞ :¼ 1þ
X

T ATmcmðMÞ
ð�1ÞaJ1þ���þaJn�nþ1

X
D AmcmðJnÞ

tdegðDÞ:

In this article, for four kinds of positive homogeneously presented cancellative

monoids Gþ
Bii
, Gþ

m , Hþ
m and Mabel;m, we will present several explicit calcula-

tions of the skew growth functions for them. The monoid Gþ
Bii

is studied in

[I1]. The presentation of it is associated with a Zariski-van Kampen presen-

tation of the fundamental group of the complement of a certain divisor in C3.

The difining equation of the divisor is zð�2y3 þ 4x3zþ 18xyzþ 27z2Þ. The

monoids Gþ
m , H

þ
m and Mabel;m are constructed artificially, for which the towers

of them do not stop on the first stage J1. The presentations of the monoids

Gþ
Bii
, Gþ

m , Hþ
m and Mabel;m are the following
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Gþ
Bii

:¼ a; b; c

cbb ¼ bba;

ab ¼ bc;

ac ¼ ca

������
* +

mo

;

Gþ
m :¼ a; b; c

cbm ¼ bma;

ab ¼ bc;

ac ¼ ca

������
* +

mo

ðm ¼ 3; 4; . . .Þ;

Hþ
m :¼ a; b; c

bðabÞmba ¼ cbðabÞmb;
ab ¼ bc;

ac ¼ ca

������
* +

mo

ðm ¼ 1; 2; . . .Þ;

Mabel;m :¼ a; b
am ¼ bm;

ab ¼ ba

����
� �

mo

ðm ¼ 2; 3; . . .Þ:

For a class of positive homogeneously presented cancellative monoids whose

heights are greater than or equal to 2, calculations of the skew growth functions

have not been known yet. For the calculations, the datum of certain lemmas

for proving the cancellativity of the monoids are indispensable. The results of

calculations of the skew growth functions are the following

NGþ
Bii

;degðtÞ ¼
ð1� tÞ4

1� tþ t2
;

NGþ
m ;degðtÞ ¼ ð1� tÞðtmþ2 þ tmþ1 � 2tþ 1Þ;

NHþ
m ;degðtÞ ¼ ð1� tÞðt2mþ5 þ t2mþ4 þ t2mþ3 � 2tþ 1Þ;

NMabel;m;degðtÞ ¼
ð1� tÞ2

1� tm
:

The spherical growth function for a monoid M is defined as

PM;degðtÞ :¼
X
u AM

tdegðuÞ:

In [S1], K. Saito has shown the inversion formula for M with respect to the

map deg : M ! Zb0

PM;degðtÞ �NM;degðtÞ ¼ 1:

Hence, by the inversion formula, we can calculate the spherical growth function

PM;degðtÞ for the monoids Gþ
Bii
, Gþ

m , Hþ
m and Mabel;m.

Let us explain more details of the contents. In analogy with the spherical

growth function for a finitely generated group, the spherical growth function

for a monoid is defined. That has been studied by several authors ([A-N] [B]
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[Bro] [Del] [I1] [S2, S3, S4, S5] [Xu]). If M ¼ hLjRimo satisfies the condition

L that any subset J of I0 (:¼ the image of the set L in M) admits either the

least right common multiple DJ or no common multiple in M, then the

inversion function PM;degðtÞ�1 is given in a form of polynomial. Since a

positive homogeneously presented cancellative monoid M ¼ hLjRimo does not

always satisfy the condition L, if we try to generalize the formula, the

consideration to obtain the above formula is invalid. To resolve this obstrac-

tion, for a subset J of I0 we will examine the set mcmðJÞ of minimal common

right multiples of elements of J. However, the datum fmcmðJÞgJ�I0
is still not

su‰cient to recover the inversion formula, since a subset J 0 of mcmðJÞ in

general may have common right multiples. Thus we need to consider the set

mcmðJ 0Þ for a subset J 0 of mcmðJÞ. Then, we may again need to consider

mcmðJ 00Þ for a subset J 00 of mcmðJ 0Þ, and so on. Repeating this process, we

are naturally led to consider a notion of tower: a finite sequence J1; J2; . . . ; Jn
of subsets of M such that J1 � I0; J2 � mcmðJ1Þ; . . . ; Jn � mcmðJn�1Þ. In [S1],

K. Saito has succeeded in generalizing the inversion formula for a rather wider

class of monoids (in this article, we explain it in a restricted form).

For the set TmcmðMÞ of all towers T ¼ ðI0; J1; J2; . . . ; JnÞ in M, we

put

hðM; degÞ :¼ maxfn jT ¼ ðI0; J1; J2; . . . ; JnÞ A TmcmðMÞg

and call it the height of the monoid M. The inversion formula covers all the

cases 0a hðM; degÞay. For a non-abelian monoid M ¼ hLjRimo whose

hðM; degÞ is equal to y, one may think that calculations of the skew growth

functions are not practicable. However, in § 5, we will carry out the non-trivial

calculation for the monoid Gþ
Bii
, partially because for any tower

T ¼ ðI0; J1; J2; . . . ; JnÞ the set mcmðJiÞ can be calculated explicitly for each

Ji due to Lemma 3. For the same reason, for the monoids Gþ
m and Hþ

m whose

hðM; degÞ is equal to 2 and the abelian monoid Mabel;m whose hðM; degÞ is

equal to y, we can calculate the skew growth functions in § 5.

As far as we know, for non-abelian monoids that do not satisfy the

condition L, there are few examples for which the cancellativity of them has

been shown, since the pre-existing technique to show the cancellativity has only

limited applicability ([G] [B-S] [Deh1] [Deh2]). For calculations of the skew

growth functions, improvement of the technique to show the cancellativity is

expected. In [Deh1], [Deh2], if presentation of a positive homogeneously

presented monoid satisfies some condition, called completeness, the cancella-

tivity of it can be trivially checked. However, in general, the presentation of a

monoid is not complete. When the presentation is not complete, to obtain a

complete presentaion, some procedure, called completion, is carried out. From

our experience, for most of non-abelian monoids that do not satisfy the
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condition L, these procedures do not finish in finite steps. For monoids of

this kind, nothing is discussed in [Deh1], [Deh2]. Thus we attempt improving

the technique for this class of monoids. On the other hand, the presentations

of the examples Gþ
Bii
, Gþ

m and Hþ
m are not complete and the procedures do not

finish in finite steps (Remark 5). Nevertheless, in § 4, we show the cancella-

tivity of them successfully by improving the technique. Other successful

examples are contained in [I1], [I2], [S-I].

In § 6 we will deal with two monoids M4 and Gþð41Þ whose towers do

not stop on the first stage J1. The skew growth functions for them can be

calculated with comparative ease.

2. Positive homogeneous presentation

In this section, we first recall from [S-I], [B-S] some basic definitions

and notations. Secondly, for a positive homogeneously finitely presented

group

G ¼ hLjRi;

we associate a monoid defined by it. We give some basic definitions in a

positive homogeneously presented monoid. Lastly, we define two operations

on the set of subsets of a monoid.

First, we recall from [S-I] basic definitions on a monoid M.

Definition 1. 1. A monoid M is called cancellative, if a relation

AXB ¼ AYB for A;B;X ;Y A M implies X ¼ Y.

2. For two elements u, v in M, we denote

ujlv

if there exists an element x in M such that v ¼ ux. We say that u divides v

from the left, or, v is a right-multiple of u.

3. We say that M is conical, if 1 is the only invertible element in M.

Next, we recall from [B-S] some terminologies and concepts. Let L be a

finite set. We denote by F ðLÞ the free group generated by L, and by L� the

free monoid generated by L inside F ðLÞ. We call the elements of FðLÞ words

and the elements of L� positive words. The empty word e is the identity

element of L�. Let G ¼ hLjRi be a positive homogeneously presented group

(i.e. the set R of relations consists of those of the form Ri ¼ Si where Ri and

Si are positive words of the same length), where R is the set of relations. We

often use the same symbols for the images of the letters and words under the

quotient homomorphism FðLÞ ! G and the equivalence relation on elements A

and B in G is denoted by A ¼ B.
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Next, we recall from [S-I], [I1] some basic concepts on positive homoge-

neously presented monoid.

Definition 2. Let G ¼ hLjRi be a positive homogeneously finitely pre-

sented group, where L is the set of generators (called alphabet) and R is the set

of relations. Then we associate a monoid Gþ ¼ hLjRimo defined as the quotient

of the free monoid L� generated by L by the equivalence relation defined as

follows:

i) two words U and V in L� are called elementarily equivalent if either

U ¼ V in L� or V is obtained from U by substituting a substring Ri of U by

Si where Ri ¼ Si is a relation of R (Si ¼ Ri is also a relation if Ri ¼ Si is a

relation),

ii) two words U and V in L� are called equivalent, denoted by U HV,

if there exists a sequence W0;W1; . . . ;Wn of words in L� for n A Zb0 such that

U ¼ W0, V ¼ Wn and Wi is elementarily equivalent to Wi�1 for i ¼ 1; . . . ; n.

Due to the homogeneity of the relations, we define a homomorphism:

deg : Gþ ! Zb0

by assigning to each equivalence class of words the length of the words.

Remark 1. For a positive homogeneously presented group G ¼ hLjRi, the
associated monoid Gþ ¼ hLjRimo is conical.

Remark 2. In [S1], for a monoid M, the quotient set M=@ is considered,

where the equivalence relation @ on M is defined by putting u@ v ,def :

ujlv & vjlu. Due to the conicity, if M is a positive homogeneously presented

monoid, then we see that M=@¼ M.

Lastly, we consider two operations on the set of subsets of a monoid M.

For a subset J of M, we put

cmrðJÞ :¼ fu A M j jjlu; for any j A Jg;

minrðJÞ :¼ fu A J j bv A J such that vjlu ) v ¼ ug;

and their composition: the set of minimal common multiples of the set J

by

mcmðJÞ :¼ minrðcmrðJÞÞ:

3. Generating functions PM;deg and NM;deg

In this section, for a positive homogeneous presented cancellative monoid

M ¼ hLjRimo;
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we define a spherical growth function PM;deg and a skew growth function

NM;deg. Next, we recall from [S1] the inversion formula for the spherical

growth function of M.

First, we introduce a concept of towers of minimal common multiples

in M.

Definition 3. A tower of M of height n A Zb0 is a sequence

T :¼ ðI0; J1; J2; . . . ; JnÞ

of subsets of M satisfying the followings.

i) I0 :¼ the image of the set L in M.

ii) mcmðJkÞ0q and we put Ik :¼ mcmðJkÞ for k ¼ 1; . . . ; n.

iii) Jk � Ik�1 such that 1 <aJk < y for k ¼ 1; . . . ; n.

Here, we call I0, Jk and Ik, the ground, the kth stage and the set of

minimal common multiples on the kth stage of the tower T, respectively. In

particular, the set of minimal common multiples on the top stage is denoted by

jT j :¼ In.

The set of all towers of M shall be denoted by TmcmðMÞ. We put

hðM; degÞ :¼ maxfthe height of T A TmcmðMÞg

and call it the height of the monoid M.

Remark 3. i) It is clear that M is a free monoid if and only if

hðM; degÞ ¼ 0.

ii) All of the monoids discussed in [A-N], [B-S], [S2], [S3] have

hðM; degÞa 1.

iii) For the following cancellative monoid Gþ
Bii
, we have hðGþ

Bii
; degÞ ¼ y

(see Proposition 6 in § 5).

iv) For the two cancellative monoids Gþ
m and Hþ

m ðm ¼ 1; 2; . . .Þ, we have

hðGþ
m ; degÞ ¼ 2 (see Proposition 8 in § 5) and hðHþ

m ; degÞ ¼ 2 (see Proposition

11 in § 5).

v) For the abelian cancellative monoid Mabel;m ðm ¼ 2; 3; . . .Þ, we have

hðMabel;m; degÞ ¼ y (see Lemma 6 in § 5).

Secondly, we define a spherical growth function PM;deg and a skew growth

function NM;deg. In the previous section, we have fixed a degree map

deg : M ! Zb0. Then, we define the spherical growth function of the monoid

ðM; degÞ by

PM;deg :¼
X
u AM

tdegðuÞ:
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We define the skew growth function of the monoid ðM; degÞ by

NM;degðtÞ :¼ 1þ
X

T ATmcmðMÞ
ð�1ÞaJ1þ���þaJn�nþ1

X
D A jT j

tdegðDÞ: ð3:1Þ

Remark 4. In the definition ð3:1Þ, we can write down directly the coef-

ficient of the term t. Namely, we write

NM;degðtÞ ¼ 1�aðI0Þtþ
X

height of Tb1

ð�1ÞaJ1þ���þaJn�nþ1
X
D A jT j

tdegðDÞ:

Therefore, if M is a free monoid of rank n, then we have NM;degðtÞ ¼ 1� nt.

Lastly, we recall from [S1] the inversion formula for the spherical growth

function of the monoid ðM; degÞ.

Theorem 1. We have the inversion formula

PM;degðtÞ �NM;degðtÞ ¼ 1:

4. Cancellativity of Gþ
m and Hþ

m

In this section, for a preparation for calculations of the skew growth

functions for the monoids Gþ
m and Hþ

m in § 5, we prove the cancellativity of

them.

4.1. Cancellativity of Gþ
m . In this subsection, we show the cancellativity of

the monoid Gþ
m .

Theorem 2. The monoid Gþ
m is a cancellative monoid.

Proof. First, we remark the following.

Proposition 1. The left cancellativity on Gþ
m implies the right cancella-

tivity.

Proof. Consider a map j : Gþ
m ! Gþ

m , W 7! jðWÞ :¼ sðrevðWÞÞ, where

s is a permutation ða;b; cc;b;a Þ and revðWÞ is the reverse of the word W ¼ x1x2 . . . xk
(xi is a letter) given by the word xk . . . x2x1. In view of the defining relation

of Gþ
m , j is well-defined and is an anti-isomorphism. If baH ga, then

jðbaÞH jðgaÞ, i.e., jðaÞjðbÞH jðaÞjðgÞ. By using the left cancellativity, we

obtain jðbÞH jðgÞ and, hence, bH g.

The following is su‰cient to show the left cancellativity on the monoid

Gþ
m .
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Proposition 2. Let Y be a positive word in Gþ
m of length r A Zb0 and let

X ðhÞ be a positive word in Gþ
m of length r� h A fr�mþ 1; . . . ; rg.

(i) If vX ð0Þ H vY for some v A fa; b; cg, then X ð0Þ HY.

(ii) If aX ð0Þ H bY, then X ð0Þ H bZ and Y H cZ for some positive word Z.

(iii) If aX ð0Þ H cY, then X ð0Þ H cZ and Y H aZ for some positive word Z.

(iv-0) If bX ð0Þ H cY, then there exist an integer k ð0a ka r�mÞ and a

positive word Z such that X ð0Þ H ckbm�1a � Z and Y H akbm � Z.

(iv-1-a) There do not exist words X ð1Þ and Y that satisfy an equality

ba � X ð1Þ H cY.

(iv-1-b) If bb � X ð1Þ H cY, then X ð1Þ H bm�2a � Z and Y H bm � Z for some

positive word Z.

(iv-1-c) If bc � X ð1Þ H cY, then there exists an integer k ð0a ka

r�m� 1Þ and a positive word Z such that X ð1Þ H ckbm�1a � Z and Y H
ak�1bm � Z.

If mb 4, then, for 2a ham� 2, we need prepare the following propo-

sitions (iv-h-a) (iv-h-b) and (iv-h-c).

(iv-h-a) There do not exist positive words X ðhÞ and Y that satisfy an

equality bha � X ðhÞ H cY.

(iv-h-b) If bhþ1 � X ðhÞ H cY, then X ðhÞ H bm�h�1a � Z and Y H bm � Z for

some positive word Z.

(iv-h-c) There do not exist positive words X ðhÞ and Y that satisfy an

equality bhc � X ðhÞ H cY.

(iv-(m� 1)-a) If bm�1a � X ðm�1Þ H cY, then X ðm�1Þ H ba � Z and Y H
bmc � Z for some positive word Z.

(iv-(m� 1)-b) If bm � X ðm�1Þ H cY, then X ðm�1Þ H aZ and Y H bm � Z for

some positive word Z.

(iv-(m� 1)-c) There do not exist positive words X ðm�1Þ and Y that satisfy

an equality bm�1c � X ðm�1Þ H cY.

Proof. The statement in Proposition 2 for a positive word Y of word-

length r and X ðhÞ of word-length r� h A fr�mþ 1; . . . ; rg will be referred to

as Hr;h. We will show the general theorem by induction1. It is easy to show

that, for r ¼ 0; 1, Hr;h is true. If a positive word U1 is transformed into U2

by using t single applications of the defining relations of Gþ
m , then the whole

transformation will be said to be of chain-length t. For the induction hypoth-

esis, we assume

(A) Hs;h is true for s ¼ 0; . . . ; r and arbitrary h for transformations of all

chain-lengths,

1For the proof, we refer to the technique of the triple induction (see proof of Proposition 4

in [I2]).
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and

(B) Hrþ1;h is true for 0a ham� 1 for all chain-lengthsa t.

We will show the claim Hrþ1;h for chain-lengths tþ 1. For the sake of

simplicity, we devide the proof into two steps.

Step 1. We shall prove the claim Hrþ1;h for h ¼ 0. Let X , Y be of

word-length rþ 1, and let

v1X H v2W2 H � � �H vtþ1Wtþ1 H vtþ2Y

be a sequence of single transformations of tþ 1 steps, where v1; . . . ; vtþ2 A
fa; b; cg and W2; . . . ;Wtþ1 are positive words of length rþ 1. By the assump-

tion t > 1, for any index t A f2; . . . ; tþ 1g we can decompose the sequence into

two steps

v1X H vtWt H vtþ2Y ;

in which each step satisfies the induction hypothesis (B).

If there exists t0 such that vt0 is equal to either to v1 or vtþ2, then by the

induction hypothesis, Wt0 is equivalent either to X or to Y . Hence, we obtain

the statement for the v1X H vtþ2Y . Thus, we assume from now on vt 0 v1 and

vt 0 vtþ2 for 1 < ta tþ 1.

We suppose that v1 ¼ vtþ2. If there exists t0 such that fv1 ¼ vtþ2; vt0g0
fb; cg, then each of the equivalences says the existence of a; b A fa; b; cg and

positive words Z1, Z2 such that X H aZ1, Wt0 H bZ1 H bZ2 and Y H aZ2.

Applying the induction hypothesis (A) to bZ1 H bZ2, we get Z1 HZ2. Hence,

we obtain the statement X H aZ1 H aZ2 HY . Thus, we exclude these cases

from our considerations. Next, we consider the case where ðv1 ¼ vtþ2; vtÞ ¼
ðb; cÞ for 1 < ta tþ 1. Namely, we have v2 ¼ � � � ¼ vtþ1 ¼ c. Hence, we

consider the following case

bX H cW1 H � � �H cWtþ1 H bY :

Applying the induction hypothesis (B) to each step, we see that there exist

positive words Z3 and Z4 such that

X H bm�1a � Z3; W1 H bm � Z3;

Wtþ1 H bm � Z4; Y H bm�1a � Z4:

Since an equality W1 HWtþ1 holds, we see that

bm � Z3 H bm � Z4:

By the induction hypothesis, we have X HY .

In the case of ðv1 ¼ vtþ2; vtÞ ¼ ðc; bÞ for 1 < ta tþ 1, we can prove the

statement in a similar manner.
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Suppose v1 0 vtþ2. We consider the following three cases.

Case 1: ðv1; vt; vtþ2Þ ¼ ða; b; cÞ.
Because of the above consideration, we consider the case where t ¼ tþ 1,

namely

aX H bWtþ1 H cY :

Applying the induction hypothesis to each step, we see that there exist positive

words Z1 and Z2 such that

X H bZ1; Wtþ1 H cZ1;

Wtþ1 H bm�1a � Z2; Y H bm � Z2:

Thus, we see that c � Z1 H bm�1a � Z2. Applying the induction hypothesis (A)

to this equality, we see that there exists a positive word Z3 such that

Z1 H bmc � Z3; Z2 H ba � Z3:

Hence, we have X H cbmþ1 � Z3 and Y H abmþ1 � Z3.

Case 2: ðv1; vt; vtþ2Þ ¼ ða; c; bÞ.
We consider the case where t ¼ tþ 1, namely

aX H cWtþ1 H bY :

Applying the induction hypothesis to each step, we see that there exist positive

words Z1 and Z2 such that

X H cZ1; Wtþ1 H aZ1;

Wtþ1 H bm � Z2; Y H bm�1a � Z2:

Thus, we see that aZ1 H bm � Z2. Applying the induction hypothesis (A) to

this equality, we see that there exists a positive word Z3 such that

Z1 H bmþ1 � Z3; Z2 H ba � Z3:

Hence, we have X H b � bmc � Z3 and Y H c � bmc � Z3.

Case 3: ðv1; vt; vtþ2Þ ¼ ðb; a; cÞ.
Then, we consider the following case

bX H aWt H cY :

Applying the induction hypothesis to each step, we see that there exist positive

words Z1 and Z2 such that

X H cZ1; Wt H bZ1;

Wt H cZ2; Y H aZ2:
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Moreover, we see that there exist a positive word Z3 and an integer k A Zb0

such that

Z1 H ckbm�1a � Z3; Z2 H akbm � Z3:

Thus, we have

X H ckþ1bm�1a � Z3; Y H akþ1bm � Z3:

Step 2. We shall prove the claim Hrþ1;h for 0a ham� 1. We will

show the general claim Hrþ1;h by induction on h. The case where h ¼ 0 is

proved in Step 1. First, we show the case where h ¼ 1. Let X ð1Þ be of word-

length r and Y of word-length rþ 1. We consider a sequence of single trans-

formations of tþ 1 steps

V � X ð1Þ
H � � �H cY ;

where V is a positive word of length 2. We discuss the following three

cases.

Case 1: V ¼ ba.

We consider the following case

ba � X ð1Þ
H � � �H cY : ð4:1Þ

By the result of Step 1, we see that there exists a positive word Z1 and an

integer k A Zb0 such that

aX ð1Þ
H ckbm�1a � Z1; Y H akbm � Z1:

Applying the induction hypothesis (A), we see that there exists a positive word

Z2 such that

X ð1Þ
H ck � Z2; bm�1a � Z1 H aZ2:

Moreover, we see that there exists a positive word Z3 such that

bm�2a � Z1 H cZ3; Z2 H bZ3:

By the induction hypothesis, we have a contradiction. Hence, there does not

exist positive words X ð1Þ and Y that satisfy the equality ð4:1Þ.
Case 2: V ¼ bb.

We consider the following case

bb � X ð1Þ
HV2 �W2 H � � �HVtþ1 �Wtþ1 H cY ;

where V2 and Vtþ1 are positive words. It is enough to discuss the case where

ðV2;Vtþ1Þ ¼ ðbcbm; acÞ. Applying the induction hypothesis (A) to the equality

bcbm �W2 H ac �Wtþ1; ð4:2Þ
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we see that there exists a positive word Z1 such that cWtþ1 H bZ1. Applying

the induction hypothesis, we see that there exists a positive word Z2 and an

integer k A Zb0 such that

Wtþ1 H akbm � Z2; Z1 H ckbm�1a � Z2: ð4:3Þ

Applying ð4:3Þ to the equality ð4:2Þ, we have

bcbm �W2 H ac � akbm � Z2:

Moreover, we see

bm �W2 H ckbm�1a � Z2: ð4:4Þ

We consider the following two cases.

Case 2-1: k ¼ 0.

There exists a positive word Z3 such that

W2 H cZ3; Z2 H bZ3:

Thus, we have

X ð1Þ
H bm�1a � cZ3 H bm�2a � ba � Z3;

Y H abmb � Z3 H bm � baZ3:

Case 2-2: kb 1.

Applying the induction hypothesis to the equality ð4:4Þ, we see that there exists

a positive word Z3 such that

W2 H ak � Z3:

Thus, we consider the equality bm � Z3 H bm�1a � Z2. We see that there exists a

positive word Z4 such that

Z2 H bZ4; Z3 H cZ4:

Thus, we have

X ð1Þ
H bm�1a � akc � Z3 H bm�2a � bakþ1Z3;

Y H aakbmb � Z3 H bm � bakþ1Z3:

Case 3: V ¼ bc.

Then, we consider the following case

bc � X ð1Þ
H � � �H cY :
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By the induction hypothesis, we see that there exist a positive word Z1 and an

integer k A Zb0 such that

cX ð1Þ
H ckbm�1a � Z1; Y H akbm � Z1:

We consider the following two cases.

Case 3-1: k ¼ 0.

By the induction hypothesis, we see that there exists a positive word Z2 such

that

X ð1Þ
H bmc � Z2; Z1 H ba � Z2:

Thus, we have

X ð1Þ
H bm�1a � bZ2; Y H bmba � Z2 H abm � bZ2:

Case 3-2: kb 1.

Then, we have

X ð1Þ
H ck�1bm�1a � Z1; Y H akbm � Z1:

Second, when mb 4, we show the claim Hrþ1;h ð2a ham� 2Þ by induc-

tion on h. We assume h ¼ 1; 2; . . . ; j ð jam� 3Þ. The case where h ¼ 1

has been proved. Let X ð jþ1Þ be of word-length r� j and Y of word-length

rþ 1. We consider a sequence of single transformations of tþ 1 steps

V � X ð jþ1Þ
H � � �H cY ; ð4:5Þ

where V is a positive word of length j þ 2. We discuss the following three

cases.

Case 1: V H bb ja.

Applying the induction hypothesis, we see that there exists a positive word Z1

such that

aX ð jþ1Þ
H bm�j�1a � Z1; Y H bm � Z1:

By the induction hypothesis, we see that there exists a positive word Z2 such

that

X ð jþ1Þ
H bZ2; bm�j�2a � Z1 H cZ2:

By the induction hypothesis, we have a contradiction. Hence, there do not

exist positive words X ð jþ1Þ and Y that satisfy the equality ð4:5Þ.
Case 2: V H bb jþ1.

Applying the induction hypothesis, we see that there exists a positive word Z1

such that

bX ð jþ1Þ
H bm�j�1a � Z1; Y H bm � Z1:

Thus, we have X ð jþ1Þ H bm�j�2a � Z1.
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Case 3: V H bb jc.

Applying the induction hypothesis, we see that there exists a positive word Z1

such that

cX ð jþ1Þ H bm�j�1a � Z1; Y H bm � Z1:

By the induction hypothesis, we have a contradiction. Hence, there do not

exist positive words X ð jþ1Þ and Y that satisfy the equality ð4:5Þ.
Lastly, we show the claim Hrþ1;m�1. Let X ðm�1Þ be of word-length

r�mþ 2 and Y of word-length rþ 1. We consider a sequence of single

transformations of tþ 1 steps

V � X ðm�1Þ
H � � �H cY ; ð4:6Þ

where V is a positive word of length m. We discuss the following three cases.

Case 1: V H bm�1a.

By the above result, we see that there exists a positive word Z1 such that

aX ðm�1Þ
H ba � Z1; Y H bm � Z1:

By the induction hypothesis, we see that there exists a positive word Z2 such

that

X ðm�1Þ
H ba � Z2; Z1 H cZ2:

Thus, we have Y H bmc � Z2.

Case 2: V H bm�1b.

By the above result, we see that there exists a positive word Z1 such that

bX ðm�1Þ
H ba � Z1; Y H bm � Z1:

Thus, we have X ðm�1Þ H aZ1.

Case 3: V H bm�1c.

By the above result, we see that there exists a positive word Z1 such that

cX ðm�1Þ
H ba � Z1; Y H bm � Z1:

We have a contradiction. Hence, there do not exist positive words X ðm�1Þ and

Y that satisfy the equality ð4:6Þ.

This completes the proof of Theorem 2.

4.2. Cancellativity of Hþ
m . In this subsection, we show the cancellativity of

the monoid Hþ
m .

Theorem 3. The monoid Hþ
m is a cancellative monoid.

Proof. First, we remark the following.
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Proposition 3. The left cancellativity on Hþ
m implies the right cancella-

tivity.

Proof. Consider a map j : Hþ
m ! Hþ

m , W 7! jðWÞ :¼ sðrevðWÞÞ, where
s is a permutation ða;b; cc;b;a Þ. By a similar arguments in the proof in Proposition

1, we can show the statement.

To prove the cancellativity of the monoid Hþ
m , it su‰ces to show the

following proposition.

Proposition 4. Let Y be a positive word in Hþ
m of length r A Zb0 and let

X ðhÞ be a positive word in Hþ
m of length r� h A f2m; . . . ; rg.

(i) If vX ð0Þ H vY for some v A fa; b; cg, then X ð0Þ HY.

(ii) If aX ð0Þ H bY, then X ð0Þ H bZ and Y H cZ for some positive word Z.

(iii) If aX ð0Þ H cY, then X ð0Þ H cZ and Y H aZ for some positive

word Z.

(iv) If bX ð0Þ H cY, then there exists an integer k ð0a ka r� 2m� 2Þ and
a positive word Z such that X ð0Þ H ckðabÞmba � Z and Y H akbðabÞmb � Z.

(v) If bb � X ð1Þ H cY, then X ð1Þ H cðabÞm�1
ba � Z and Y H bðabÞmb � Z for

some positive word Z.

For 2a ha r� 2m, we prepare the following propositions.

(vi-h) If ch�1bb � X ðhÞ H bY, then X ðhÞ H cðabÞm�1
b � Z and Y H

ðabÞmbah�1 � Z for some positive word Z.

Proof. The statement in Proposition 4 for a positive word Y of word-

length r and X ðhÞ of word-length r� h A fr� 2m; . . . ; rg will be referred to as

Hr;h. We will show the general claim by induction. It is easy to show that,

for r ¼ 0; 1, Hr;h is true. For the induction hypothesis, we assume

(A) Hs;h is true for s ¼ 0; . . . ; r and arbitrary h for transformations of all

chain-lengths,

and

(B) Hrþ1;h is true for 0a hamaxf0; rþ 1� 2mg for all chain-lengths

a t.

We will show the claim Hrþ1;h for chain-lengths tþ 1. For the sake of

simplicity, we devide the proof into two steps.

Step 1. We shall prove the claim Hrþ1;h for h ¼ 0. Let X ;Y be of word-

length rþ 1, and let

v1X H v2W2 H � � �H vtþ1Wtþ1 H vtþ2Y

be a sequence of single transformations of tþ 1 steps, where v1; . . . ; vtþ2 A
fa; b; cg and W2; . . . ;Wtþ1 are positive words of length rþ 1. By the assump-

tion t > 1, for any index t A f2; . . . ; tþ 1g we can decompose the sequence into
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two steps

v1X H vtWt H vtþ2Y ;

in which each step satisfies the induction hypothesis (B).

If there exists t0 such that vt0 is equal to either to v1 or vtþ2, then by the

induction hypothesis, Wt0 is equivalent either to X or to Y . Hence, we obtain

the statement for the v1X H vtþ2Y . Thus, we assume from now on vt 0 v1 and

vt 0 vtþ2 for 1 < ta tþ 1.

Suppose v1 ¼ vtþ2. If there exists t0 such that fv1 ¼ vtþ2; vt0g0 fb; cg,
then each of the equivalences says the existence of a; b A fa; b; cg and positive

words Z1, Z2 such that X H aZ1, Wt0 H bZ1 H bZ2 and Y H aZ2. Applying

the induction hypothesis (A) to bZ1 H bZ2, we get Z1 HZ2. Hence, we obtain

the statement X H aZ1 H aZ2 HY . Thus, we exclude these cases from our

considerations. Next, we consider the case where ðv1 ¼ vtþ2; vtÞ ¼ ðb; cÞ for

1 < ta tþ 1. Namely we have v2 ¼ � � � ¼ vtþ1 ¼ c. Hence, we consider the

following case

bX H cW1 H � � �H cWtþ1 H bY :

Applying the induction hypothesis (B) to each step, we see that there exist

positive words Z3 and Z4 such that

X H ðabÞmba � Z3; W1 H bðabÞmb � Z3;

Wtþ1 H bðabÞmb � Z4; Y H ðabÞmba � Z4:

Since the equality W1 HWtþ1 holds, we see that X HY .

In the case of ðv1 ¼ vtþ2; vtÞ ¼ ðc; bÞ for 1 < ta tþ 1, we can prove the

statement in a similar manner.

Suppose v1 0 vtþ2. It su‰ces to consider the following two cases.

Case 1: ðv1; vt; vtþ2Þ ¼ ða; b; cÞ.
Because of the above consideration, we consider the case where t ¼ tþ 1,

namely

aX H bWtþ1 H cY :

Applying the induction hypothesis to each step, we see that there exist positive

words Z1 and Z2 such that

X H bZ1; Wtþ1 H cZ1;

Wtþ1 H ðabÞmba � Z2; Y H bðabÞmb � Z2:

Thus, we see that cZ1 H ðabÞmba � Z2. Applying the induction hypothesis (A)

to this equality, we see that there exists a positive word Z3 such that

Z1 H aZ3; bðabÞm�1
ba � Z2 H cZ3:
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Hence, we have bbcðabÞm�2
ba � Z2 H cZ3. Applying the induction hypothesis

(A) to this equality, there exists a positive word Z4 such that

cðabÞm�2
ba � Z2 H cðabÞm�1

ba � Z4; Z3 H bðabÞmb � Z4:

Hence, we have ba � Z2 H abba � Z4. Moreover, we see that there exists a

positive word Z5 such that

Z2 H cba � Z5; Z4 H cZ5:

Thus, we have

X H babðabÞmbc � Z5 H c � bðabÞmbcb � Z5;

Y H bðabÞmbcba � Z5 H a � bðabÞmbcb � Z5:

Case 2: ðv1; vt; vtþ2Þ ¼ ða; c; bÞ.
We consider the case where t ¼ tþ 1, namely

aX H cWtþ1 H bY :

Applying the induction hypothesis to each step, we see that there exist positive

words Z1 and Z2 such that

X H cZ1; Wtþ1 H aZ1;

Wtþ1 H bðabÞmb � Z2; Y H ðabÞmba � Z2:

Thus, we see that aZ1 H bðabÞmb � Z2. Applying the induction hypothesis (A)

to this equality, we see that there exists a positive word Z3 such that

Z1 H bZ3; ðabÞmb � Z2 H cZ3:

Hence, there exists a positive word Z4 such that

bðabÞm�1
b � Z2 H cZ4; Z3 H aZ4:

We have bbcðabÞm�2
b � Z2 H cZ4. Applying the induction hypothesis (A) to

this equality, we see that there exists a positive word Z5 such that

cðabÞm�2
b � Z2 H cðabÞm�1

ba � Z5; Z4 H bðabÞmb � Z5:

Hence, we have Z2 H cba � Z5. Thus, we obtain

X H cbabðabÞmb � Z5 H bðabÞmbacb � Z5;

Y H ðabÞmbacba � Z5 H cðabÞmbacb � Z5:

Step 2. We shall prove the claim Hrþ1;h for 1a ha rþ 1� 2m. We will

show the general claim Hrþ1;h. First, we show the case where h ¼ 1. Then,
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we consider the following case

bb � X ð1Þ
H � � �H cY :

By the result of Step 1, we see that there exists a positive word Z1 and an

integer k A Zb0 such that

bX ð1Þ
H ckðabÞmba � Z1; Y H akbðabÞmb � Z1:

Thus, we have bX ð1Þ H ackbðabÞm�1
ba � Z1. Applying the induction hypothesis

(A), we see that there exists a positive word Z2 such that

X ð1Þ
H cZ2; bZ2 H ckbðabÞm�1

ba � Z1 H ckbbcðabÞm�2
ba � Z1:

We consider the case where kb 1. By the induction hypothesis, we see that

there exists a positive word Z3 such that

Z2 H ðabÞmbak � Z3; cðabÞm�2
ba � Z1 H cðabÞm�1

b � Z3:

Hence we have ba � Z1 H abb � Z3 and therefore we have aZ1 H cb � Z3. By the

induction hypothesis, there exists a positive word Z4 such that

Z1 H cb � Z4; Z3 H cZ4:

Thus, we have

X ð1Þ
H cðabÞmbakc � Z4 H cðabÞm�1

ba � cbak � Z4;

Y H akbðabÞmbcb � Z4 H bðabÞmb � cbak � Z4:

Next, we consider the case where 2a ka rþ 1� 2m. We consider the

following case

ch�1bb � X ðhÞ
H � � �H bY : ð4:7Þ

By the result of Step 1, we see that there exists a positive word Z1 and an

integer k1 A Zb0 such that

ch�2bb � X ðhÞ
H ak1bðabÞmb � Z1; Y H ck1ðabÞmba � Z1:

By repeating the same process h� 1 times, there exist integers k2; . . . ; kh�1 A
Zb0 and a positive word Zh�1 such that

bb � X ðhÞ
H akh�1 � bðabÞmb � Zh�1:

Then, we have b � X ðhÞ H ckh�1 � ðabÞmb � Zh�1 H ackh�1 � bðabÞm�1
b � Zh�1. By

the induction hypothesis, there exists a positive word Zh such that

X ðhÞ
H cZh; ckh�1 � bðabÞm�1

b � Zh�1 H bZh:
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Hence, we have bZh H ckh�1 � bbcðabÞm�2
b � Zh�1. By the induction hypothesis,

there exists a positive word Z0 such that

cðabÞm�2
b � Zh�1 H cðabÞm�1

b � Z0; Zh H ðabÞmbakh�1 � Z0:

Thus, we have bZh�1 H abb � Z0. We obtain Zh�1 H cb � Z0, and hence we

have

X ðhÞ
H cðabÞmbakh�1 � Z0 H cðabÞm�1

b � cbakh�1 � Z0:

Applying this result to (4.7), we have

bY H ch�1bb � cðabÞm�1
b � cbakh�1 � Z0 H bðabÞmbah�1 � cbakh�1 � Z0:

Therefore we have Y H ðabÞmbah�1 � cbakh�1 � Z0.

This completes the proof of Theorem 3.

We have a remark on the presentation of the two monoids Gþ
m and

Hþ
m .

Remark 5. Since the presentation of the monoid Gþ
m (resp. Hþ

m ) is not

complete, the su‰cient criterion for the cancellativity given in [Deh1], [Deh2] is

not satisfied for the monoid Hþ
m (resp. Hþ

m ). Moreover, some procedures, called

completion ([Deh1], [Deh2]), do not stop in finite steps in both cases. Thus, the

cancellativity of them cannot be checked by the method in [Deh1], [Deh2].

5. Calculations of the skew growth functions

In this section, we will calculate the skew growth functions for the monoids

Gþ
Bii
, Gþ

m , Hþ
m and Mabel;m. The datum for proving the cancellativity of the

monoids are indispensable to the calculations of the skew growth functions.

5.1. The skew growth function NGþ
Bii

;degðtÞ. In this subsection, we present an

explicit calculation of the skew growth function for the monoid Gþ
Bii
. In [I1],

we have made a success in calculating the spherical growth function PGþ
Bii

;degðtÞ
by using the normal form for the monoid Gþ

Bii
. By the inversion formula, we

can calculate the skew growth function NGþ
Bii

;degðtÞ. Nevertheless, we present

an explicit calculation, because, in spite of the fact that the monoid is non-

abelian and the height of it is infinite, we succeed in the non-trivial calculation.

First of all, we recall a fact from [I1, Section 7].

Lemma 1. Let X and Y be positive words in Gþ
Bii

of length r A Zb0.

(i) If vX H vY for some v A fa; b; cg, then X HY.

(ii) If aX H bY, then X H bZ and Y H cZ for some positive word Z.

(iii) If aX H cY, then X H cZ and Y H aZ for some positive word Z.
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(iv) If bX H cY, then there exist an integer k A Zb0 and a positive word Z

such that X H ckba � Z and Y H akbb � Z.

Thanks to Lemma 1, we have proved the cancellativity in [S-I]. More-

over, we can prove the following Lemma.

Lemma 2. If an equality bb � X H cY in Gþ
Bii

holds, then X H aZ and

Y H bb � Z for some positive word Z.

Proof. Due to Lemma 1, we see that there exists an integer k A Zb0 and

a positive word Z0 such that

bX H ckba � Z0; Y H akbb � Z0: ð5:1Þ

We consider the case kb 1. Due to Lemma 1, we see that there exist an

integer i1 A Zb0 and a positive word Z1 such that

X H ci1ba � Z1; ck�1ba � Z0 H ai1bb � Z1:

Moreover, we see that there exists a positive word Z
ð1Þ
0 such that

Z0 H ci1 � Zð1Þ
0 ; ck�1ba � Zð1Þ

0 H bb � Z1:

Repeating the same process k-times, there exist integers i2; . . . ; ik A Zb0 and

positive words Z
ðkÞ
0 and Zk such that

Z0 H ci1þi2þ���þik � Z ðkÞ
0 ; ba � ZðkÞ

0 H bb � Zk:

Moreover, we see that there exists a positive word Z 0 such that

Z
ðkÞ
0 H bZ 0; Zk H cZ 0:

Applying this result to ð5:1Þ, we have

bX H ckbaci1þi2þ���þik b � Z 0
H baci1þi2þ���þik bak � Z 0;

Y H akbbci1þi2þ���þik b � Z 0
H bb � ci1þi2þ���þik bak � Z 0:

Thus, we have X H a � ci1þi2þ���þik bak � Z 0.

As a consequence of Lemma 2, we obtain the followings.

Corollary 1. If an equality bb � X H cl � Y in Gþ
Bii

holds for some positive

integer l, then X H al � Z and Y H bb � Z for some positive word Z.

Due to Corollary 1, we can solve the following equation.

Proposition 5. If an equality cib � X H c jb � Y in Gþ
Bii

holds for 0a i < j,

then there exists an integer k A Zb0 and a positive word Z such that

X H ckba j�i � Z; Y H ckb � Z:
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Proof. Due to the cancellativity, cib � X H c jb � Y if and only if bX H
c j�ib � Y . Thanks to Lemma 1, we see that there exist an integer k A Zb0 and

a positive word Z1 such that

X H ckba � Z1; c j�i�1b � Y H akbb � Z1:

Moreover, we see that there exists Y 0

Y H ck � Y 0; c j�i�1b � Y 0
H bb � Z1:

Due to Corollary 1, there exists a positive word Z2 such that

bY 0
H bb � Z2; Z1 H a j�1�1 � Z2:

Thus, we have

X H ckba j�i � Z2; Y H ckb � Z2:

As a corollary of Proposition 5, we show the following lemma.

Lemma 3. For 0a k1 < k2 < � � � < kp,

mcmðfck1b; ck2b; . . . ; ckpbgÞ ¼ fckpb � ckb j k ¼ 0; 1; . . .g

By using Lemma 3, we easily show the following.

Proposition 6. We have hðGþ
Bii
; degÞ ¼ y.

Proof. Due to Lemma 1, we show

mcmðfb; cgÞ ¼ fcb � ckb j k ¼ 0; 1; . . .g:

Due to Lemma 1, for 0a k1 < k2 < � � � < kp, we have

mcmðfcb � ck1b; cb � ck2b; . . . ; cb � ckpbgÞ ¼ fcb � ckpb � ckb j k ¼ 0; 1; . . .g:

By using Lemma 3 repeatedly, we show hðGþ
Bii
; degÞ ¼ y.

By using Lemma 3, we calculate the skew growth function. We have to

consider four cases where J1 ¼ fa; bg; fa; cg; fb; cg or fa; b; cg. We denote by

TmcmðGþ
Bii
; J1Þ the set of all the towers starting from a fixed J1. If J1 ¼ fa; bg

or fa; cg, due to Lemma 1, then mcmðfa; bgÞ and mcmðfa; cgÞ consist of only

one element, respectively. Next, we consider the case where J1 ¼ fb; cg. For

a fixed tower T , if there exists an element D A jT j such that degðDÞ ¼ l þ 2,

then, from Lemma 3, we see the uniqueness. For any fixed l A Z>0, we

calculate the coe‰cient of the term tlþ2 which is denoted by al , by counting all

the signs ð�1ÞaJ1þ���þaJn�nþ1 in the definition ð3:1Þ associated with the towers

T ¼ ðI0; J1; J2; . . . ; JnÞ for which degðDÞ can take a value l þ 2. To calculate
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the coe‰cient al , we consider the set

T l
Gþ

Bii

:¼ fT A TmcmðGþ
Bii
; J1Þ jD A jT j such that degðDÞ ¼ l þ 2g:

By using Lemma 3 repeatedly, we show

maxfthe height of T A T l
Gþ

Bii

g ¼ bðl þ 1Þ=2c:

For u A f1; . . . ; bðl þ 1Þ=2cg, we define the set

T l
Gþ

Bii
;u :¼ fT A T l

Gþ
Bii

j the height of T ¼ ug:

Hereafter, we write simply T l (resp. T l
u ) for T l

Gþ
Bii

(resp. T l
Gþ

Bii
;u). Thus, we

have the decomposition:

T l ¼
G
u

T l
u : ð5:2Þ

Claim 1. For any u, we show the following equality

ð�1Þu�1
l�uCu�1 ¼

X
T AT l

u

ð�1ÞaJ1þ���þaJu�uþ1:

Proof. For the case of u ¼ 1, the equality holds. For the case of u ¼ 2,

we calculate the sum
P

T AT l
2
ð�1ÞaJ2�1. By indices 0a k1 < k2 < � � � < kp, the

set J2 is generally written by fcb � ck1b; cb � ck2b; . . . ; cb � ckpbg. Due to Lemma

3, we show that the maximum index kp can range from 1 to l � 2. For a fixed

index kp ¼ k A f1; . . . ; l � 2g, we easily show

X
T AT l

2 ;kp¼k

ð�1ÞaJ2�1 ¼ �1:

Therefore, we show that the sum
P

T AT l
2
ð�1ÞaJ2�1 ¼ �ðl � 2Þ ¼ �l�2C2�1.

We show the case for 3a ua bðl þ 1Þ=2c by induction on u. We

assume the case where u ¼ j. For the case of u ¼ j þ 1, we focus our atten-

tion to the set J2. Since the set J2 can be written as fcb � ck1b; cb � ck2b; . . . ;
cb � ckpbg, due to Lemma 3, we show that the maximum index kp can range

from 1 to l � 2j. By the induction hypothesis, it su‰ces to show the following

equality

Xl�2j

k¼1

l�j�k�1Cj�1 ¼ l�j�1Cj :

Therefore, we have shown the case u ¼ j þ 1. This completes the proof.
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By the decomposition ð5:2Þ, we show the following equality.

Claim 2. al ¼
Pbðl�1Þ=2c

k¼0 ð�1Þkl�k�1Ck.

Then, we easily show the following.

Claim 3. alþ2 � alþ1 þ al ¼ 0.

Proof. Since an equality nþ1Ck � nCk ¼ nCk�1 holds, we can show our

statement.

We easily show a1 ¼ a2 ¼ 1. Hence, the sequence falgyl¼1 has a period 6.

Lastly, we consider the case where J1 ¼ fa; b; cg. For any fixed l A Z>0,

we calculate the coe‰cient of the term tlþ3 which is denoted by bl . Since

mcmðfa; b; cgÞ ¼ fcb � ckb j k ¼ 1; 2; . . .g, we can reuse Lemma 3. In a similar

manner, we have the following conclusion.

Claim 4. blþ2 � blþ1 þ bl ¼ 0.

Since b1 ¼ b2 ¼ 1, we also show that the sequence fblgyl¼1 has a period 6.

After all, we can calculate the skew growth function for the monoid Gþ
Bii
:

NGþ
Bii

;degðtÞ ¼ 1� 3tþ 2t2 þ t3

1� tþ t2
� t4

1� tþ t2
¼ ð1� tÞ4

1� tþ t2
:

5.2. The skew growth function NGþ
m ;degðtÞ. In this subsection, we present an

explicit calculation of the skew growth function for the monoid Gþ
m .

First of all, we show the following proposition.

Proposition 7. If an equation cibm�1 � X H c jbm�1 � Y in Gþ
m holds for

0a i < j, then there exists a positive word Z such that

X H ba j�i � Z and Y H bZ:

Proof. Since we have shown the cancellativity in § 4, cibm�1 � X H
c jbm�1 � Y if and only if bm�1 � X H c j�ibm�1 � Y . Thanks to Proposition 2

(iv-ðm� 2Þ-b), we see that there exists a positive word Z such that

X H ba j�i � Z; Y H bZ:

As a corollary of Proposition 7, we show the following lemma.

Lemma 4. For 0a k1 < k2 < � � � < kp,

mcmðfck1bm�1; ck2bm�1; . . . ; ckpbm�1gÞ ¼ fckpbmg

Thus, we obtain the following proposition.

Proposition 8. hðGþ
m ; degÞ ¼ 2.

By using Lemma 4, we calculate the skew growth function. We have to

consider four cases where J1 ¼ fa; bg; fa; cg; fb; cg or fa; b; cg. We denote by
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TmcmðGþ
m ; J1Þ the set of all the towers starting from a fixed J1. If J1 ¼ fa; bg

or fa; cg, due to Proposition 2, then mcmðfa; bgÞ and mcmðfa; cgÞ consist of

only one element, respectively. Next, we consider the case where J1 ¼ fb; cg.
For any fixed l A Z>0, we calculate the coe‰cient of the term tmþl which is

denoted by cl . To calculate the coe‰cient cl , we consider the set

T l
Gþ

m
:¼ fT A TmcmðGþ

m ; J1Þ jD A jT j such that degðDÞ ¼ mþ lg:

For u A f1; 2g, we define the set

T l
Gþ

m ;u :¼ fT A T l
Gþ

m
j the height of T ¼ ug:

Since mcmðfb; cgÞ ¼ fcb � ckbm�1 j k ¼ 0; 1; . . .g, we easily show c1 ¼ c2 ¼ 1.

Moreover, we show the following.

Proposition 9. cl ¼ 0 ðl ¼ 3; 4; . . .Þ.

Proof. From the consideration in Claim 1 of Example 1, for u ¼ 2, we

also show X
T AT l

Gþ
m ; u

ð�1ÞaJ1þ���þaJu�uþ1 ¼ �1:

Thus, we have cl ¼ 0 ðl ¼ 3; 4; . . .Þ.

Lastly, we consider the case where J1 ¼ fa; b; cg. For any fixed l A Z>0,

we calculate the coe‰cient of the term tmþlþ1 which is denoted by dl . In

a similar way, we show d1 ¼ d2 ¼ 1 and dl ¼ 0 ðl ¼ 3; 4; . . .Þ. After all, we

calculate the skew growth function for the monoid Gþ
m :

NGþ
m ;degðtÞ ¼ 1� 3tþ 2t2 þ ðtmþ1 þ tmþ2Þ � ðtmþ2 þ tmþ3Þ

¼ ð1� tÞðtmþ2 þ tmþ1 � 2tþ 1Þ:

Remark 6. By the inversion formula, we are able to calculate the spherical

growth function PGþ
m ;degðtÞ through the skew growth function NGþ

m ;degðtÞ. We can

not find the direct calculation of the spherical growth function PGþ
m ;degðtÞ in the

existence literatures.

5.3. The skew growth function NHþ
m ;degðtÞ. In this subsection, we present an

explicit calculation of the skew growth function for the monoid Hþ
m .

First of all, we show the following proposition.

Proposition 10. If an equality cibðabÞm�1
ba � X H c jbðabÞm�1

ba � Y in

Hþ
m holds for 0a i < j, then there exists a positive word Z such that

X H cba j�i � Z; Y H cb � Z:
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Proof. Since we have shown the cancellativity of Hþ
m in § 4, we show

cibðabÞm�1
ba � X H c jbðabÞm�1

ba � Y , bðabÞm�1
ba � X H c j�ibðabÞm�1

ba � Y .

Thanks to Proposition 4 (vi-h), we see that there exists a positive word Z1

such that

ðabÞm�1
ba � X H ðabÞmba j�i � Z1; cðabÞm�2

ba � Y H cðabÞm�1
b � Z1:

Therefore, we see that there exists a positive word Z2 such that

X H cba j�i � Z2; Y H cb � Z2:

As a corollary of Proposition 10, we show the following lemma.

Lemma 5. For 0a k1 < k2 < � � � < kp,

mcmðfck1bðabÞm�1
ba; ck2bðabÞm�1

ba; . . . ; ckpbðabÞm�1
bagÞ

¼ fckpbðabÞm�1
bacbg

Thus, we obtain the following proposition.

Proposition 11. hðHþ
m ; degÞ ¼ 2.

Thanks to Lemma 5, we can calculate the skew growth function. We

have to consider four cases where J1 ¼ fa; bg; fa; cg; fb; cg or fa; b; cg. We

denote by TmcmðHþ
m ; J1Þ the set of all the towers starting from a fixed J1. If

J1 ¼ fa; bg or fa; cg, due to Proposition 4, then mcmðfa; bgÞ and mcmðfa; cgÞ
consist of only one element, respectively. Next, we consider the case where

J1 ¼ fb; cg. For any fixed l A Z>0, we calculate the coe‰cient of the term

t2mþ3þl which is denoted by el . In order to calculate the coe‰cient el , we

consider the set

T l
Hþ

m
:¼ fT A TmcmðHþ

m ; J1Þ jD A jT j such that degðDÞ ¼ 2mþ 3þ lg:

For u A f1; 2g, we define the set

T l
Hþ

m ;u :¼ fT A T l
Hþ

m
j the height of T ¼ ug:

Since mcmðfb; cgÞ ¼ fbckðabÞmba j k ¼ 0; 1; . . .g, we easily show e1 ¼ e2 ¼
e3 ¼ 1. Moreover, we show the following.

Proposition 12. el ¼ 0 ðl ¼ 4; 5; . . .Þ.

Proof. From the consideration in Claim 1 of Example 1, for u ¼ 2, we

also show X
T AT l

Hþ
m ; u

ð�1ÞaJ1þ���þaJu�uþ1 ¼ �1:

Thus, we have el ¼ 0 ðl ¼ 4; 5; . . .Þ.
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Lastly, we consider the case where J1 ¼ fa; b; cg. For any fixed l A Z>0,

we calculate the coe‰cient of the term t2mþ4þl which is denoted by fl . In a

similar way, we show f1 ¼ f2 ¼ f3 ¼ 1 and fl ¼ 0 ðl ¼ 4; 5; . . .Þ. After all, we

calculate the skew growth function for the monoid Hþ
m :

NHþ
m ;degðtÞ ¼ 1� 3tþ 2t2 þ ðt2mþ3 þ t2mþ4 þ t2mþ5Þ � ðt2mþ4 þ t2mþ5 þ t2mþ6Þ

¼ ð1� tÞðt2mþ5 þ t2mþ4 þ t2mþ3 � 2tþ 1Þ:

Remark 7. By the inversion formula, we are able to calculate the growth

function PHþ
m ;degðtÞ through the skew growth function NHþ

m ;degðtÞ. We can not

find the direct calculation of the spherical growth function PHþ
m ;degðtÞ in the

literatures.

5.4. The skew growth function NMabel;m;degðtÞ. In this subsection, we calculate

the skew growth function for the monoid Mabel;m.

First of all, we easily show the following proposition.

Proposition 13. Let X and Y be positive words in Mabel;m of length

r A Zb0.

(i) If vX H vY for some v A fa; bg, then X HY.

(ii) If aX H bY, then either X H am�1 � Z1 and Y H bm�1 � Z1 for some

positive word Z1 or X H bZ2 and Y H aZ2 for some positive word Z2.

Lemma 6. There exists a unique tower Tn ¼ ðI0; J1; J2; . . . ; JnÞ of height

n A Z>0 with the ground set I0 ¼ fa; bg such that

J2k�1 ¼ faðk�1Þmþ1; aðk�1Þmbg ðk ¼ 1; . . . ; bðnþ 1Þ=2cÞ;

J2k ¼ fakm; aðk�1Þmþ1bg ðk ¼ 1; . . . ; bn=2cÞ:

Proof. We easily show J1 ¼ fa; bg and J2 ¼ fam; abg. Thanks to Prop-

osition 13, we show our statement by induction on k.

Therefore, we immediately show hðMabel;m; degÞ ¼ y. Moreover, from

the definition ð3:1Þ, we can calculate the skew growth function

NMabel;m;degðtÞ ¼ ð1� 2tþ t2Þð1þ tm þ t2m þ � � �Þ ¼ ð1� tÞ2

1� tm
:

6. Appendix

In this section, we deal with two monoids M4 and Gþð41Þ whose towers

do not stop on the first stage J1. The skew growth functions for them can be

calculated with comparative ease.
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Example 1. In [Deh2], the author investigated a certain monoid that we

rename to M4. The presentation is the following

M4 :¼ a; b; c; d

ab ¼ bc ¼ ca;

ba ¼ db ¼ ad;

caa ¼ dbb

������
* +

mo

:

By referring to Higman-Garside’s method (see [G], [B-S]), we easily show the

following proposition.

Proposition 14. Let X and Y be positive words in M4 of length

r A Zb0.

(i) If vX H vY for some v A fa; b; c; dg, then X HY.

(ii) If aX H bY, then either X H bZ1 and Y H cZ1 for some positive word

Z1 or X H dZ2 and Y H aZ2 for some positive word Z2.

(iii) If aX H cY, then X H bZ and Y H aZ for some positive word Z.

(iv) If aX H dY, then X H dZ and Y H bZ for some positive word Z.

(v) If bX H cY, then X H cZ and Y H aZ for some positive word Z.

(vi) If bX H dY, then X H aZ and Y H bZ for some positive word Z.

(vii) If cX H dY, then X H aa � Z and Y H bb � Z for some positive

word Z.

Thanks to Proposition 14, we see that the monoid M4 is a left cancellative

monoid. In the monoid M4, we have an anti-homomorphism j : M4 ! M4,

W 7! jðWÞ :¼ sðrevðWÞÞ, where s is a permutation ða;b; c;db;a; c;d Þ and revðWÞ is

the reverse of the word W ¼ x1x2 . . . xk (xi is a letter) given by the word

xk . . . x2x1. By a similar argument in § 5.1, we can show that the monoid

M4 is a cancellative monoid. Due to Proposition 14, we can calculate the

skew growth function. We have to consider the case where J1 ¼ fa; bg.
We have mcmðfa; bgÞ ¼ fab; adg and mcmðfab; adgÞ ¼ fabag, and therefore

hðM4; degÞ ¼ 2. From the definition ð3:1Þ, we can calculate the skew growth

function for the monoid M4 as follows:

NM4;degðtÞ ¼ 1� 4tþ 4t2 � t3 ¼ ð1� tÞð1� 3tþ t2Þ:

Example 2. For the figure-eight knot, a Wirtinger presentation of the

knot group Gð41Þ can be shown to be

Gð41ÞG a; b; c; d
ca ¼ dc; bd ¼ da;

ac ¼ ba; db ¼ bc

����
� �

:

For this presentation, we associate the monoid defined by it, which is denoted

by Gþð41Þ. By referring to Higman-Garside’s method (see [G], [B-S]), we

easily show the following proposition.
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Proposition 15. Let X and Y be positive words in Gþð41Þ of length

r A Zb0.

(i) If vX H vY for some v A fa; b; c; dg, then X HY.

(ii) If aX H bY, then X H cZ and Y H aZ for some positive word Z.

(iii) There do not exist positive words X and Y that satisfy an equation

aX H cY.

(iv) There do not exist positive words X and Y that satisfy an equation

aX H dY.

(v) There do not exist positive words X and Y that satisfy an equation

bX H cY.

(vi) If bX H dY, then either X H dZ1 and Y H aZ1 for some positive word

Z1 or X H cZ2 and Y H bZ2 for some positive word Z2.

(vii) If cX H dY, then X H aZ and Y H cZ for some positive word Z.

Thanks to Proposition 15, we see that the monoid Gþð41Þ is a left

cancellative monoid. In the monoid Gþð41Þ, we have an anti-homomorphism

j : Gþð41Þ ! Gþð41Þ, W 7! jðWÞ :¼ sðrevðWÞÞ, where s is a permutation

ða;b; c;db; c;d;a Þ and revðWÞ is the reverse of the word W ¼ x1x2 . . . xk (xi is a letter)

given by the word xk . . . x2x1. By a similar argument in § 5.1, we can show

that the monoid Gþð41Þ is a cancellative monoid. Due to Proposition 15, we

easily have hðGþð41Þ; degÞ ¼ 2. From the definition ð3:1Þ, we can calculate the

skew growth function for the monoid Gþð41Þ as follows:

NGþð41Þ;degðtÞ ¼ 1� 4tþ 4t2 � t3 ¼ ð1� tÞð1� 3tþ t2Þ:
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273–302.

[G] F. A. Garside: The braid groups and other groups, Quart. J. Math. Oxford Ser. (2),

20 (1969), 235–254.

[I1] T. Ishibe: On the monoid in the fundamental group of type Bii, Hiroshima Math. J. 42,

no. 1, (2012), 99–114.

[I2] T. Ishibe: Infinite examples of cancellative monoids that do not always have least

common multiple, Vietnam J. Math. 42 (2014), no. 3, 305–326.

[S1] K. Saito: Inversion formula for the growth function of a cancellative monoid,

J. Algebra 385 (2013), 314–332.

[S2] K. Saito: Growth functions associated with Artin monoids of finite type, Proc. Japan

Acad. Ser. A Math. Sci. 84 (2008), no. 10, 179–183.

[S3] K. Saito: Growth functions for Artin monoids, Proc. Japan Acad. Ser. A Math. Sci.

85 (2009), no. 7, 84–88.

[S4] K. Saito: Limit elements in the configuration algebra for a cancellative monoid, Publ.

Res. Inst. Math. Sci. 46 (2010), no. 1, 37–113.

[S5] K. Saito: Growth partition functions for cancellative infinite monoids, preprint RIMS-

1705 (2010).

[S-I] K. Saito and T. Ishibe: Monoids in the fundamental groups of the complement of

logarithmic free divisors in C3, J. Algebra 344 (2011), 137–160.

[Xu] P. Xu: Growth of the positive braid semigroups, J. Pure and Appl. Algebra 80 (1992),

no. 2, 197–215.

Tadashi Ishibe

E-mail: tishibe@ms.u-tokyo.ac.jp

317The skew growth functions


