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Abstract. In this paper, we attempt to select a working correlation structure for

generalized estimating equations. We propose a selection criterion based on the Stein’s

loss function. Our criterion consistently selects the true correlation structure when the

unknown parameters are sqrt(n)-consistent, where n is the sample size. We demonstrate

the performance of the proposed methodology by a numerical study.

1. Introduction

In the longitudinal data analyzed in biomedical and epidemiological

researches, it is often the case that the responses within individuals are

dependent. The generalized estimating equation (GEE) approach was devel-

oped by Liang and Zeger [13] for estimating regression coe‰cients in such

correlated data; it is an expansion of the likelihood equation in the gener-

alized linear model (GLM) that was proposed by Nelder and Wedderburn

[14]. Using a GEE relaxes the assumption of joint distribution for the

observations. We can use the GEE by only assuming a marginal distribution

of each response and a working correlation structure, which is allowed to

include an unknown parameter. Furthermore, under certain conditions, the

GEE estimator is asymptotically normally distributed and consistent even when

the working correlation structure has been misspecified (see, [13]). However,

some studies have noted that a misspecification of the working correlation

structure may induce undesirable results. For instance, Crowder [4] showed

that a misspecification of the working correlation structure may ruin the

asymptotic normality of the GEE estimator, since the parameter of the working

correlation structure may not be minimized in the interior of the parameter

space. Fitzmaurice [6] showed that a GEE estimator is less e‰cient when

the independent structure is assumed to the working correlation matrix. Thus,

it is important to adequately determine the working correlation structure,
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although the primary use of the GEE approach is to estimate the regression

parameter. Although we can estimate the correct correlation structure by

using the unstructured correlation matrix, it is better not to use this as the

working correlation matrix, since it may increase the variance of the GEE

estimator unless the response has low dimensionality or the sample size is su‰-

ciently large. Thus, we often wish to obtain a correct and lower-dimensional

correlation structure.

Recently, a number of papers have considered the selection of the working

correlation structure. The Akaike information criterion (AIC) derived in [1]

and the Bayesian information criterion (BIC) derived in [19] are often used to

select the best model, due to their theoretical validity (see [15] or [18] for

example). For example, the BIC and its generalization, the GIC derived in

[15], can be used to select the true model since their selection probabilities of

the true model goes to 1, which is called the consistency. Information criteria

are typically based on the maximum log-likelihood and some penalty terms.

Since the GEE approach does not assume a joint distribution of responses, Pan

[16] considered using the quasi-likelihood instead of the likelihood and derived

the quasi-likelihood under the independence model criterion (QIC), which is an

AIC-type criterion. These criteria may be used to select a subset of explan-

atory variables rather than a working correlation structure. The correlation

information criterion (CIC) was derived in [10] from the penalty term of

the QIC, and this improves the selection of the correlation structure. In

addition, there have been some methods proposed for selecting the best

working correlation structure. Pan [17] attempted to select the working

correlation structure that minimizes the mean squared prediction error esti-

mated by a resampling method. Hin, et al. [9] proposed a criterion based on

a measurement between the true correlation and the candidate correlation

structure. Chen and Lazar [2] used an empirical likelihood approach to

construct a model selection criterion. All of these works use di¤erent ways

to measure the di¤erence between two matrices. Although there are more

studies that have considered the selection of the working correlation structure,

little attention has been paid to the theoretical properties of these criteria.

The primary aim of the present paper is to propose a GIC-type criterion

that can be used to select the true correlation structure. Furthermore, we

attempt to determine su‰cient conditions for the GIC-type criterion to be

consistent. Since we do not assume a joint distribution, as discussed above,

we need an alternative measurement. Thus, we consider to use a loss function

instead of the likelihood. In this study, our criterion is constructed based

on Stein’s loss function derived in [12], which is one of the famous loss func-

tion for matrices. Moreover, we can show the consistency property of our

criterion.
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The present article is organized as follows: in Section 2, we introduce the

GEE; in Section 3, we propose a criterion for selecting the true correlation

structure; in Section 4, we derive its asymptotic behavior; in Section 5, we

demonstrate the performance of our criterion with finite samples by presenting

a numerical study; in Section 6, we present a discussion and our conclusions.

2. Generalized estimating equations

In this section, we introduce the GEE approach. For individuals i ¼
1; . . . ; n, we have an m-dimensional response vector yi ¼ ðyi1; . . . ; yimÞ0 and an

m� p explanatory variable matrix X i ¼ ðxi1; . . . ; ximÞ0. We allow the compo-

nents of yi to be correlated, but we assume that y1; . . . ; yn are independent.

Furthermore, we do not predetermine the distribution of each yi. In the GEE

approach, we assume the marginal density function of yij to be the GLM, i.e.,

f ðyij; yij ; fÞ ¼ exp½f�1fyijyij � aðyijÞg þ bðyij; fÞ�;

where að�Þ and bð�Þ are known functions, the unknown parameter yij is referred

to as the natural location parameter, and f is referred to as the unknown scale

parameter. Suppose that yij A Y0, where Y0 is the interior of the natural

parameter space Y. In order to use some of the properties of the MLE, we

assume regularity assumptions; for details, see [5]. A linear predictor hij ¼ x 0
ijb

is related to mij ¼ E½yij � by a link function hð�Þ, i.e., hðmijÞ ¼ hij , where b is a

p-dimensional unknown regression coe‰cient. From the properties of the

GLM, mij ¼ qaðyijÞ=qyij and Var½yij � ¼ fq2aðyijÞ=qy2ij. By using a working

correlation matrix R, the covariance matrix of the ith observation yi is

assumed to be

V i ¼ fA
1=2
i RA

1=2
i ; i ¼ 1; . . . ; n; ð1Þ

where Ai ¼ diagfq2aðyi1Þ=qy2i1; . . . ; q
2aðyimÞ=qy2img. Examples of the working

correlation structure are

Independent ðIndep:Þ : R ¼ Im;

Exchangeable ðEx:Þ : ðRÞjk ¼ a;

AR� 1 : ðRÞjk ¼ aj j�kj;

Unstructured ðUnst:Þ : ðRÞjk ¼ ajk;

ð2Þ

where ðRÞjk denotes the ð j; kÞth element of R, and a and ajk are correlation

parameters. Note that R is symmetric and its diagonal elements are all ones,

since it is a correlation matrix. Using this notation, the GEE is defined as

follows.
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Definition 1. The GEE for b with a working correlation matrix R is

defined as follows:

Xn

i¼1

D 0
iV

�1
i ðyi � miÞ ¼ 0p; ð3Þ

where Di ¼ AiDiX i, Di ¼ diagfquðhi1Þ=qhi1; . . . ; quðhimÞ=qhi1g, uðhijÞ ¼ yij , and

V i was defined in (1).

Denote b̂bðRÞ as the GEE estimator with R, which is given by solving (3)

with respect to b. In actual use, unless R is a constant matrix, we need to

estimate R. Let a be a correlation parameter constructing R, i.e., R ¼ RðaÞ.
There are several methods for estimating a; see [21]. In Section 5, we estimate

a by using a moment-based method.

3. Selection of working correlation structure

In order to select the true correlation structure, let M be a set of

working correlation structures. For instance, the elements of M are some

particular working correlation structures introduced in (2). Examples with (2)

are illustrated in Section 5. We assume M to involve at least one correct

correlation structure. Let R� be the true correlation matrix. For theoretical

purposes, we divide M into the over-fitted set Mþ and the under-fitted set

M�, i.e.,

Mþ ¼ fR A M jb a A K s:t: RðaÞ ¼ R�g;

where K is the parameter space, which is a compact set and M� ¼ MnMþ.

For all R A Mþ, we assume that there exists a A K0 such that RðaÞ ¼ R�,

where K0 is the interior of K. Let the true correlation structure be R0, which

has the fewest number of parameters among Mþ.

Let m̂mi, ÂAi, and f̂f be estimators of mi, Ai, and f, respectively. For selecting

R0 from M, we define the following discrepancy function that is based on

Stein’s loss function:

SLnðRÞ ¼ n log detðRÞ þ n trðR̂RUR
�1Þ; ð4Þ

where

ðR̂RUÞjk ¼ f̂f�1 Pn
i¼1 êeij êeik=n; j0 k;

1; j ¼ k;

�

êei ¼ ðêei1; . . . ; êeimÞ0 ¼ ÂA
�1=2
i ðyi � m̂miÞ:

ð5Þ
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It is known that for any correlation matrix R,

log detðRÞ þ trðR�1R�Þb log detðR�Þ þm

holds with equality if and only if R ¼ R�. Stein’s loss function is almost the

same as �2 � the Gaussian log-likelihood. Crowder [3] and Wang and Carey

[21] considered using the Gaussian log-likelihood for estimating the unknown

parameter.

Recall that one of our aims is to derive a GIC-type criterion. The GIC

is defined as �2 � the maximum log-likelihood þ the number of parameters

� the tuning parameter. By using (4) instead of the likelihood for yi, we

consider a GIC-type criterion as follows.

Definition 2. For a working correlation structure R ¼ RðaÞ A M, the

GIC-type criterion is

GICgnðRÞ ¼ SLnðR̂RÞ þ qgn; ð6Þ

where R̂R ¼ RðâaÞ, âa is an estimator of a, q is the number of elements in a, and

gn is a tuning parameter.

Note that in the definitions of (4) and (6), we have neither specified the

working correlation structure for estimating the GEE estimator b̂b nor the

way how to estimate f̂f and âa.

By minimizing the GIC, the best working correlation structure is obtained.

Definition 3. The best correlation structure selected by the GIC pro-

posed in (6) is

Rbest ¼ argmin
R AM

fGICgnðRÞg:

Note that Rbest depends on the data as well as the way in which f and a

are estimated.

4. Properties of criteria

In this section, we show the consistency of the GIC proposed in (6). Sup-

pose that the mean structure has been correctly specified. The proof can then

be obtained in a way similar to that in [15]. The following assumptions are

su‰cient conditions for the consistency of the GIC:

(C1) For all R A M, b̂b � b ¼ Opðn�1=2Þ and f̂f� f ¼ Opðn�1=2Þ.
(C2) uðhijÞ is continuously di¤erentiable.

(C3) For all R A Mþ, âa� a ¼ Opðn�1=2Þ and Rð�Þ is di¤erentiable func-

tion at a, where a satisfies RðaÞ ¼ R�.

95Consistent working correlation selection in GEE



Note that if we consider b̂b ¼ b̂bðImÞ and

f̂f ¼
Xn

i¼1

êe 0i êei=ðnm� pÞ; ð7Þ

where êei is defined in (5), then it follows from [13] that the condition (C1) is

established under the condition (C2). Under the conditions (C1)–(C3), an

evaluation of the selection probability for an over-fitted correlation structure

is obtained.

Theorem 1. Under the conditions (C1)–(C3), for all R A MþnfR0g, when
gn ! y,

lim
n!y

PrðRbest ¼ RÞ ¼ 0:

Proof of Theorem 1. Denote q and q� as the number of elements of

correlation parameter for R and R0, respectively. From Definition 3, the

selection probability of R is

PrðRbest ¼ RÞaPrfGICgnðR0Þ > GICgnðRÞg

¼ PrfSLnðR̂R0Þ � SLnðR̂RÞ > ðq� q�Þgng: ð8Þ

We evaluate SLnðR̂R0Þ and SLnðR̂RÞ. Under the conditions (C1)–(C3), for all

R A Mþ, it is established from the Taylor theorem that

n1=2jðR̂RÞjk � ðR�Þjkj ¼ n1=2jðRðâaÞÞjk � ðR�Þjkj

a n1=2jqðRð~aaÞÞjk=qaj jâa� aj;

where RðaÞ ¼ R� and ~aa is a q-dimensional vector between âa and a. Hence,

it follows from âa� a ¼ Opðn�1=2Þ that

R̂R� R� ¼ Opðn�1=2Þ: ð9Þ

On the contrary, let

R�
U ¼ f�1

Xn

i¼1

A
�1=2
i ðyi � miÞðyi � miÞ

0A
�1=2
i =n:

Since all elements of R�
U are a di¤erentiable function of b and jb̂b � bj ¼

Opðn�1=2Þ, it follows from a Taylor theorem that

R̂RU � R�
U ¼ Opðn�1=2Þ:
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Note that in Y0, aðyÞ is a Cy-class function and all of the orders of the

moments of yij exist and are bounded for all n under the regularity assump-

tions [5]. Additionally, these assure that the maximum eigenvalue of A�1
i is

upper bounded. Therefore, since the variance of
ffiffiffi
n

p
jðR�

UÞjk � ðR�Þjkj is also

upper bounded. Hence, by applying the Chebyshev inequality, for all d > 0,

there exists a positive constant C such that

Prf
ffiffiffi
n

p
jðR�

UÞjk � ðR�Þjkjb dgaC;

where 1a j; kam. From this result

R�
U ¼ R� þOpðn�1=2Þ:

Hence,

R̂RU ¼ R� þOpðn�1=2Þ: ð10Þ

From (9) and (10), ŴW ¼ R̂R
�1=2
U R̂RR̂R

�1=2
U � Im ¼ Opðn�1=2Þ. Hence, for all l ¼

1; . . . ;m, llðŴWÞ ¼ Opðn�1=2Þ, where llðAÞ is the lth smallest eigenvalue of

A for any matrix A. Hence, by applying a Taylor expansion, for all

l ¼ 1; . . . ;m,

logf1þ llðŴWÞg ¼ llðŴWÞ � llðŴWÞ2=2þOpðn�3=2Þ;

f1þ llðŴWÞg�1 ¼ 1� llðŴWÞ þ llðŴWÞ2 þOpðn�3=2Þ:

Hence,

log detðIm þ ŴWÞ ¼
Xm
l¼1

logf1þ llðŴWÞg ¼ trðŴWÞ � trðŴW2Þ=2þOpðn�3=2Þ;

trfðIm þ ŴWÞ�1g ¼
Xm
l¼1

f1þ llðŴWÞg�1 ¼ m� trðŴWÞ þ trðŴW2Þ þOpðn�3=2Þ:

By substituting above results into (4),

SLnðR̂RÞ ¼ n log detðR̂RÞ þ n trðR̂RU R̂R
�1Þ

¼ n log detðR̂RUÞ þ n log detðR̂RR̂R�1
U Þ þ n trfðIm þ ŴWÞ�1g

¼ n log detðR̂RUÞ þ n log detðIm þ ŴWÞ þ n trfðIm þ ŴWÞ�1g

¼ n log detðR̂RUÞ þ nmþ n trðŴW2Þ=2þOpðn�1=2Þ

¼ n log detðR̂RUÞ þ nmþOpð1Þ: ð11Þ
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It follows from (11) that SLnðR̂R0Þ � SLnðR̂RÞ ¼ Opð1Þ. Note that the defi-

nition of R0 implies that q� q� > 0 holds. By substituting these results into

(8), since gn ! y as n ! y, then

lim
n!y

PrðRbest ¼ RÞ ¼ 0: r

A similar result can be shown for the under-fitted structure.

Theorem 2. Under the conditions (C1)–(C3), for all R A M�, when

gn=n ! 0,

lim
n!y

PrðRbest ¼ RÞ ¼ 0:

Proof of Theorem 2. As in (8), the selection probability of R A M� is

evaluated as

PrðRbest ¼ RÞaPrfSLnðR̂R0Þ=n� SLnðR̂RÞ=n > ðq� q�Þgn=ng;

where q and q� are the number of elements in R A M� and R0, respectively.

SLnðR̂R0Þ=n� SLnðR̂RÞ=n can be separated by using

rðAÞ ¼ �log detðAÞ þ trðAÞ �m

as follows:

SLnðR̂R0Þ=n� SLnðR̂RÞ=n

¼ �log detðR̂R�1
0 Þ þ trðR̂RU R̂R

�1
0 Þ þ log detðR̂R�1Þ � trðR̂RU R̂R

�1Þ

¼ �log detðR̂RU R̂R
�1
0 Þ þ trðR̂RU R̂R

�1
0 Þ �mþ log detðR�R̂R

�1Þ

� trðR�R̂R
�1Þ þmþ log detðR̂RUR

�1
� Þ � trðR̂RUR

�1
� Þ þm

� trfðR̂RUR
�1
� � ImÞðR�R̂R

�1 � ImÞg

¼ rðR̂RU R̂R
�1
0 Þ � rðR�R̂R

�1Þ � rðR̂RUR
�1
� Þ

� trfðR̂RUR
�1
� � ImÞðR�R̂R

�1 � ImÞg: ð12Þ

It follows from R̂RU ! R� and R̂R0 ! R� in probability under the conditions

(C1)–(C3) that

rðR̂RU R̂R
�1
0 Þ ¼ opð1Þ; rðR̂RUR

�1
� Þ ¼ opð1Þ: ð13Þ

Let c ¼ infa AK rðR�RðaÞ�1Þ. If c ¼ 0, from the compactness of K,

there exists a sequence fal j l ¼ 1; 2; . . .g such that al ! a� A K which satisfies

rðRðalÞ�1R�Þ ! 0. Since rðAÞ is a continuous function on AL ¼ fA j rðAÞaLg
for all L > 0, Rða�Þ ¼ R� holds which contradicts that R A M�. Hence, c > 0

is established.
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Here, for all A;B A AL, and t A ½0; 1�

trðAÞ þ ð1� tÞrðBÞ � rðtAþ ð1� tÞBÞ

¼ log detftAB�1 þ ð1� tÞImg � log detðtAB�1Þ

¼
Xm
l¼1

½logftllðAB�1Þ þ ð1� tÞg � logftllðAB�1Þg�b 0:

The last inequality is established from the fact that the logarithm is

concave. Hence, rðtAþ ð1� tÞBÞa trðAÞ þ ð1� tÞrðBÞaL holds, and then

tAþ ð1� tÞB A AL. Therefore, AL is a convex set.

Let A½t� ¼ Im þ tðR̂R�1R� � ImÞ. Then, rðA½0�Þ ¼ rðImÞ ¼ 0 and rðA½1�Þ ¼
rðR̂R�1R�Þb c. Since for all L > 0, AL is the convex set and rð�Þ is con-

tinuous on AL, there exists t A ½0; 1� such that rðA½t�Þ ¼ c. It follows from

the convexness of gðtÞ ¼ rðA½t�Þ þ trfðR̂RUR
�1
� � ImÞðA½t� � ImÞg that

rðR�R̂R
�1Þ þ trfðR̂RUR

�1
� � ImÞðR�R̂R

�1 � ImÞg

¼ fgð1Þ � gð0Þgb fgðtÞ � gð0Þg=tb gðtÞ

¼ cþ trfðR̂RUR
�1
� � ImÞðA½t� � ImÞg

b c�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trfðR̂RUR

�1
� � ImÞ2g trfðA½t� � ImÞ2g

q

b c�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trfðR̂RUR

�1
� � ImÞ2gb

q
ð14Þ

where

b ¼ maxftrfðA� ImÞ2g j rðAÞ ¼ cg > 0:

Denote E as the event that ftrfðR̂RUR
�1
� � ImÞ2g < c2=ð4bÞg and Ec as the

complement of E. Under the event E, from (14), it is established that

rðR�R̂R
�1Þ þ trfðR̂RUR

�1
� � ImÞðR�R̂R

�1 � ImÞgb c� c=2 ¼ c=2: ð15Þ

On the other hand, we can see that

Prf�rðR�R̂R
�1Þ � trfðR̂RUR

�1
� � ImÞðR�R̂R

�1 � ImÞg < �c=2g

¼ PrfrðR�R̂R
�1Þ þ trfðR̂RUR

�1
� � ImÞðR�R̂R

�1 � ImÞg > c=2g

¼ 1� PrfrðR�R̂R
�1Þ þ trfðR̂RUR

�1
� � ImÞðR�R̂R

�1 � ImÞga c=2g

¼ 1� PrðfrðR�R̂R
�1Þ þ trfðR̂RUR

�1
� � ImÞðR�R̂R

�1 � ImÞga c=2gVEÞ

� PrðfrðR�R̂R
�1Þ þ trfðR̂RUR

�1
� � ImÞðR�R̂R

�1 � ImÞga c=2gVEcÞ:
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Thereby, it follows from (15) that

Prf�rðR�R̂R
�1Þ � trfðR̂RUR

�1
� � ImÞðR�R̂R

�1 � ImÞg < �c=2g

b 1� PrðEcÞ ! 1; ð16Þ

where the last convergence is established from R̂RU ! R� in probability.

From (12), (13), (16), and ðq� q�Þgn=n ! 0, for all R A M�,

lim
n!y

PrðRbest ¼ RÞ ¼ 0: r

From these theorems, a su‰cient condition for the consistency of our

criterion is obtained.

Theorem 3. Suppose gn ! y and gn=n ! 0. Under the conditions (C1)–

(C3),

lim
n!y

PrðRbest ¼ R0Þ ¼ 1

holds.

Proof of Theorem 3. The probability of the true correlation structure

selection is divided into two parts, as follows:

PrðRbest ¼ R0Þ ¼ 1� PrðRbest 0R0Þ

b 1�
X

R AMnfR0g
PrðRbest ¼ RÞ

b 1�
X

R AMþnfR0g
PrðRbest ¼ RÞ �

X
R AM�

PrðRbest ¼ RÞ:

From Theorem 1 and Theorem 2, it follows that

lim
n!y

PrðRbest ¼ R0Þ ¼ 1: r

5. Numerical study

In this section, we present a numerical study to illustrate the performance

of our criterion in a finite sample situation. We prepared gn ¼ 2, 2 log log n

and log n, respectively, as the AIC-type, Hannan and Quinn’s IC(HQIC)-type

proposed in [7], and BIC-type tuning parameters for the GIC proposed in

(6). For convenience, the GICs with gn ¼ 2, 2 log log n and log n are called

the AIC, the HQIC and the BIC, respectively. We compared some properties

of the AIC, the HQIC and the BIC with those of the QIC and the CIC. The
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QIC and the CIC for the working correlation structure R are defined as

follows:

QICðRÞ ¼
Xn

i¼1

Xm
j¼1

f̂f�1Lðm̂mij ; yijÞ þ 2 trðV̂V sŜSI Þ;

CICðRÞ ¼ trðV̂V sŜSI Þ;

where m̂mij is the estimator of mij , Lðmij ; yijÞ ¼ yij log mij þ ð1� yijÞ logð1� mijÞ,

V s ¼ S�1
R

Xn

i¼1

D 0
iV

�1
i ðyi � miÞðyi � miÞ

0V�1
i Di

( )
S�1

R ;

SR ¼
Xn

i¼1

D 0
iV

�1
i Di; SI ¼ f�1

Xn

i¼1

D 0
iA

�1
i Di;

where V̂V s and ŜSI are estimators of V s and SI obtained by substituting the GEE

estimator b̂bðRÞ and âa into b and a, respectively, and V i is defined in (1). Note

that the CIC is the same as half of the second term in the QIC. Throughout

this section, we assumed b̂b ¼ b̂bðImÞ and that f̂f is as given in (7), for calculating

the GIC.

We prepared four candidate models, each with 50, 100, 200, 500 and 1,000

samples. For each sample, we had a four-dimensional response vector yi ¼
ðyi1; . . . ; yi4Þ0 and a 4� 2 explanatory matrix X i ¼ ðxi1; . . . ; xi4Þ0. Let xij ¼
ð1; xijÞ0, and assume that the xij were independent and identically distributed

as the uniform distribution Uð�1; 1Þ. We assumed that yij was distributed as

Bð1; pijÞ according to a logistic regression model, i.e., pij ¼ 1=f1þ expð�x 0
ijbÞg

and b ¼ ð1;�1Þ0. A set of candidate correlation structures M was considered

in the following case, introduced in (2):

M ¼ f‘‘Indep:’’; ‘‘Ex:’’; ‘‘AR� 1’’; ‘‘Unst:’’g:

In all simulations, we assumed that the true correlation structure of yi was an

element of M, as defined below:

Indep: : R0 ¼ I4;

Ex: : R0 ¼ I4=2þ 141
0
4=2; where 14 ¼ ð1; 1; 1; 1Þ0;

AR-1 : ðR0Þjk ¼ 2�j j�kj;

Unst: : R0 ¼ H
�1=2
d HH

�1=2
d ; where H ¼ ðhijÞ1ai; ja4 ¼ W 0W þ I4;

ðWÞjk @
i:i:d:

Uð�1; 1Þ and Hd ¼ diagðh11; . . . ; h44Þ:
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The correlation parameter a was estimated for each candidate correlation

structure by using the following moment-based method:

Ex: : âa ¼
Pn

i¼1

P
j>k êeij êeik=fnmðm� 1Þ=2g;

AR-1 : âa ¼
Pn

i¼1

Pm�1
j¼1 êeij êei; jþ1=fnðm� 1Þg;

Unst: : âajk ¼
Pn

i¼1 êeij êeik=n:

Note that the conditions (C1)–(C3) held in this simulation setting. The BIC

satisfied the assumptions of Theorem 3 but the AIC satisfies only the assump-

tion of Theorem 2. For the situations described above, we simulated 1,000

repetitions.

In this numerical study, we considered three measurements to evaluate the

criteria: the selection probability of the true structure, the predictive mean

squared error (PMSE), and the average value of the variance of b̂b (VAR) with

the best correlation structure selected by each criterion. The definitions of the

PMSE and VAR are

PMSE :
1

1000

X1000
l¼1

Xn

i¼1

fm̂mðlÞ
i;best � mig

0V�1
i fm̂mðlÞ

i;best � mig;

VAR :
1

1000

X1000
l¼1

b̂b
ðlÞ
best �

1

1000

X1000
l¼1

b̂b
ðlÞ
best

�����
�����
2

;

where m̂m
ðlÞ
i;best and b̂b

ðlÞ
best are the estimators of mi ¼ E½yi� and b, respectively, with

using the best correlation structure in the lth iteration.

Tables 1–4 listed the results of the selection probability and the ratios of

the PMSE and VAR to the values of the BIC. From Tables 1–4, we could

look the consistency of the BIC, and we saw that on many occasions, the QIC

and CIC did not select the true correlation structure frequently. In all cases

except ‘‘Unstructured’’ with n ¼ 50 and n ¼ 100, the BIC performed better

than the other criteria. When the sample size was small, the improvements

from the BIC were especially good. In the ‘‘Unstructured’’ case, the AIC, the

HQIC and the CIC performed better than the BIC. This result implied that

the penalty term of the BIC was too big to select the ‘‘Unstructured’’

correlation structure when the sample size was not large in comparison

with the true correlation parameter. The QIC and the CIC might have a

tendency to select the over-fitted structure rather than the true structure.

Based on these results, we recommend using the BIC to select the true

correlation structure when the sample size is large. However, if the sample
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size is not large, we recommend using the AIC or the HQIC for a conservative

selection.

6. Discussion

In this paper, we proposed a GIC-type criterion based on Stein’s loss

function (the discrepancy between the true correlation structure and a working

correlation structure) in order to select the true correlation structure, and we

derived su‰cient conditions for its consistency. Since the consistency of our

criterion is shown from the property of Stein’s loss function and the n1=2-

consistency of b̂b and âa, we will be able to expand this class of criteria and

its consistency to general semiparametric frameworks. Moreover, it may be

Table 1. Selection probability, predictive mean square error, and variance of b̂b when the true

correlation structure is ‘‘Independent’’

n IC Indep. Ex. AR-1 Unst. PMSE VAR

50 AIC 704 138 109 49 1.00 1.00

HQIC 824 91 66 19 1.00 1.00

BIC 924 44 30 2 1.00 1.00

CIC 39 50 52 859 1.05 1.06

QIC 121 103 124 652 1.01 1.01

100 AIC 714 120 123 43 1.00 1.00

HQIC 858 66 72 4 1.00 1.00

BIC 941 31 28 0 1.00 1.00

CIC 57 64 56 823 1.03 1.04

QIC 124 125 113 638 1.01 1.01

200 AIC 719 123 112 46 1.00 1.00

HQIC 870 62 65 3 1.00 1.00

BIC 956 21 23 0 1.00 1.00

CIC 54 49 56 841 1.01 1.01

QIC 116 106 130 648 1.00 1.01

500 AIC 716 119 124 41 1.00 1.01

HQIC 907 43 49 1 1.00 1.00

BIC 976 9 15 0 1.00 1.00

CIC 49 55 59 837 1.01 1.01

QIC 116 109 125 650 1.01 1.01

1000 AIC 727 103 119 51 1.00 1.00

HQIC 914 42 44 0 1.00 1.00

BIC 983 9 8 0 1.00 1.00

CIC 52 58 42 848 1.00 1.00

QIC 115 121 112 652 1.00 1.00
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possible to show that the criterion based on other loss functions (such as the

quadratic loss function) has the consistency property.

Through the simulation results, we confirmed that the proposed criterion

with gn ¼ log n often selects the true correlation structure in large sample

situations. Furthermore, this selection method improves the PMSE and the

variance of b̂b, which are of primary interest in the GEE approach. However,

when the true correlation structure is ‘‘Unstructured’’ and n is not su‰ciently

large, the BIC-type criterion did not work well in the simulation. This may

arise from that the number of the correlation parameter for ‘‘Unstructured’’ is

too many with respect to the sample size.

In order to solve this problem, we consider two approaches. One is to

consider this situation as a high-dimensional setting, i.e., we allow the number

Table 2. Selection probability, predictive mean square error, and variance of b̂b when the true

correlation structure is ‘‘Exchangeable’’

n IC Indep. Ex. AR-1 Unst. PMSE VAR

50 AIC 0 680 39 281 1.02 1.01

HQIC 0 826 46 128 1.01 1.00

BIC 0 908 54 38 1.00 1.00

CIC 0 103 25 872 1.02 1.00

QIC 134 253 78 535 1.12 1.26

100 AIC 0 727 1 272 1.01 1.01

HQIC 0 899 8 93 1.01 1.01

BIC 0 974 9 17 1.00 1.00

CIC 0 121 8 871 1.02 1.02

QIC 112 291 69 528 1.14 1.21

200 AIC 0 703 0 297 1.00 1.00

HQIC 0 930 0 70 1.00 1.00

BIC 0 992 0 8 1.00 1.00

CIC 0 117 0 883 1.00 1.00

QIC 120 307 52 521 1.13 1.20

500 AIC 0 726 0 274 1.00 1.00

HQIC 0 959 0 41 1.00 1.00

BIC 0 1000 0 0 1.00 1.00

CIC 0 107 0 893 1.00 1.00

QIC 107 339 46 508 1.12 1.18

1000 AIC 0 731 0 269 1.00 1.00

HQIC 0 968 0 32 1.00 1.00

BIC 0 1000 0 0 1.00 1.00

CIC 0 136 0 864 1.00 1.00

QIC 131 336 56 477 1.17 1.25
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of correlation parameters to be as large as the sample size. This indicates that

the dimension of the responses m is assumed to be large. Another approach

is to construct a risk function based on Stein’s loss function and to derive a

bias-corrected criterion, as was done in [8, 11, 20]. We expect that these

approaches will yield more adequacy criteria or assumptions for selecting the

true correlation structure.
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Table 3. Selection probability, predictive mean square error, and variance of b̂b when the true

correlation structure is ‘‘AR-1’’

n IC Indep. Ex. AR-1 Unst. PMSE VAR

50 AIC 0 32 756 212 1.02 1.02

HQIC 0 38 883 79 1.01 1.01

BIC 0 38 940 22 1.00 1.00

CIC 0 13 118 869 1.04 1.05

QIC 105 126 264 505 1.15 1.24

100 AIC 0 3 802 195 1.01 1.01

HQIC 0 7 938 55 1.00 1.00

BIC 0 9 985 6 1.00 1.00

CIC 0 4 129 867 1.01 1.01

QIC 87 125 289 499 1.14 1.22

200 AIC 0 0 797 203 1.01 1.01

HQIC 0 0 951 49 1.00 1.00

BIC 0 0 997 3 1.00 1.00

CIC 0 0 123 877 1.01 1.01

QIC 78 140 307 475 1.12 1.19

500 AIC 0 0 803 197 1.00 1.00

HQIC 0 0 977 23 1.00 1.00

BIC 0 0 1000 0 1.00 1.00

CIC 0 0 120 880 1.00 1.00

QIC 81 152 296 471 1.11 1.17

1000 AIC 0 0 810 190 1.00 1.00

HQIC 0 0 985 15 1.00 1.00

BIC 0 0 1000 0 1.00 1.00

CIC 0 0 147 853 1.00 1.00

QIC 83 141 326 450 1.11 1.18
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