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ABSTRACT. For J an m-tuple of analytic functions, we define an algebra
Hyf o contained in the bounded analytic functions on the analytic polyhedron
{]6’(z)]| < 1,1 <1 <m}, and prove a representation formula for it. We give con-
ditions whereby every function that is analytic on a neighborhood of {||0'(z)| < 1,
1 </ <m} is actually in Hfon- We use this to give a proof of the Oka extension
theorem with bounds. We define an Hyf o functional calculus for operators.

1. Introduction

In [4] a new proof of the Oka Extension Theorem for p-polyhedra was
given using operator-theoretic methods. While the proof used both the func-
tional calculus for commuting operator-tuples and the Oka-Weil approximation
theorem for analytic functions defined on a neighborhood of p-polyhedra, it
had the novel feature that it revealed norms for which extensions were obtained
with precise bounds.

In this paper we shall improve upon the results from [4] in a number of
ways. First, we shall eliminate our reliance on the functional calculus for
general operator-tuples developed by J. Taylor, and in its place, use a simple
functional calculus for commuting diagonalizable matrix-tuples together with
a technical axiom described in Section 3 of the paper. Secondly, we shall not
require the Oka-Weil approximation theorem. Rather, using our technical
axiom we shall give an original proof of the stronger Oka Extension Theorem
[10] that is entirely elementary in nature. Finally, rather than working on
p-polyhedra, we shall work with analytic polyhedra defined in general domains
of holomorphy.

Once the program described in the above paragraph is carried out, the
door is opened for generalization of Oka and Cartan like results in several
complex variables that involve the existence of extensions of holomorphic
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functions. We illustrate this point by giving a proof of a special case of
the Cartan Extension Theorem for holomorphic functions defined on analytic
varieties in domains of holomorphy.

Here is a prototypical example.

ExampLE 1. Let .o = H*(D?), the algebra of all bounded analytic
functions on D?. It was shown in [1] that a function ¢ is in H*(D?) and
has norm less than or equal to 1 if and only if there is a graded Hilbert space
Y =2"® £ and a unitary operator V:C® ¥ — C@® ¥, which can be
written in block form as

cC 27
C A B
V:
& (C D)’
so that, writing P' for the projection from % onto %' and P? for the
projection from % onto %2, we have

#(z) = A+ B(z'P' + 22P)[I, — (z' P! + 22P*)D] "' C. (1.1)

If now T = (T',T?) is a pair of commuting operators on a Hilbert space #,
one can modify (1.1) to

W) =1, ®A+1,@B(T'®P' +T>® P?)
Ires — (T'@P' + T°®@ P)I, ® D] 'y ® C. (1.2)
Formula (1.2) makes sense as long as the spectrum of the operator
(T'®P' +T*® P, ®D

does not contain the point 1. This will be guaranteed if 7' and T both have
spectrum in the open disk D. If, in addition, one assumes that they are both
strict contractions (i.e. have norm less than one), then it can be shown that the
formula (1.2) gives a contractive H*(D?) functional calculus for 7. Indeed,
the contractivity follows from calculating I — ¢(7)"¢(T) and observing that it
is positve; the fact that the map is an algebra homomorphism follows from
observing that in both (1.1) and (1.2), if one expands the inverse in a Neumann
series, one gets an absolutely convergent series of polynomials, provided ||z||
(respectively, ||T||) is less than one.

In [4], ExamPLE 1 was generalized to polynomial polyhedra as follows.
Let 0 = (¢',...,0™) be a polynomial mapping, which we think of as a map
into C" with the /*-norm. Let
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Gy = {ze C’: 6(2)]| < 1,
Ks={zeC’:6(2)]| <1},

and for any domain Q@ = C? let O(Q) denote the algebra of holomorphic
functions on Q. Let us use Cg’(%’)d to denote the set of all commuting
d-tuples of bounded linear operators on the Hilbert space #. Define the
family of operators %; by

Fy={T e CL(H)":|6(T)| <1}. (1.3)
Then define an algebra HJ* of holomorphic functions on Gs by
Hy" ={¢p € O(G;) :sup{||¢(T)|| : T € #5 and o(T) = G5} < o0}. (14)

There is a representation formula for functions in Hj* very similar to (1.1); this
generalizes to operators just as in (1.2). It was shown in [4] that this leads not
only to a new proof of the Oka extension theorem [10], but that it gives sharp
bounds for the norms of the extensions, which the function theory approaches
do not yield.

1.1. Main results. The definition of H”, and also of Z; if ¢ is allowed to
be a holomorphic mapping on some domain, has the drawback that it requires
knowledge of the Taylor spectra of the tuples 7. In Section 2 we define
versions of these objects in a more direct and elementary way that avoids
Taylor’s theory. This goal is accomplished through restricting our use of
operators in defining norms to the diagonalizable, finite dimensional case.
For commuting diagonalizable matrices there is no mystery to the functional
calculus: one simply chooses a basis of eigenvectors, and applies the function to
the joint eigenvalue.

In Section 2, we describe a set of matrices Z; en & %5, and algebras

Hj > and a localized version Hj,,(E), that are substitutes for Hj,. In
Section 3 we prove a representation theorem for Hy",,, and Hy,. (E).

If U is a domain of holomorphy, and 6 € O(U)" is no longer assumed
to be polynomial, the formal calculations work just as before, leading to an
algebra Hj,, of functions on Gy ={ze U:|d(z)]| <1}. To be useful, we
would like to know what functions are in Hj,.,. In particular, we define 6 to
be utile (DEFINITION 4 below) if every function holomorphic on a neighborhood
of K; is in H(gfgen.

In Section 4, we prove two theorems that give conditions for ¢ to be utile
in terms of operator theoretic properties of the set F; 4. These conditions
are not always satisfied. However, we show in Section 5 that one can add

more functions to the set J to get a new family y so that K, = K5, and hence
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the function theory is unchanged, but so that y is utile, and therefore one can
attack function theory problems using these operator theory tools.

To illustrate the use of these ideas, in Section 6 we prove refinements of
the Oka extension theorem and the Oka-Weil theorem. In Section 7 we prove
a special case of the Cartan extension theorem.

1.2. Functional calculus. If .o/ is a topological algebra that contains the
polynomials C[z',...,z9], and if T = (T',...,T9) is a d-tuple of commuting
operators on a Banach space 4, an .o/-functional calculus for T is a continuous
homomorphism 7z from ./ to B(Z'), the bounded linear operators on %, such
that 7(z') = T’ for each 1 </ <d.

In the ground-breaking papers [15, 16], J. L. Taylor developed a func-
tional calculus for the algebras O(U), where O(U) denotes the algebra of all
holomorphic functions on the open set U = CY. This was a multi-variable
version of the Riesz-Dunford calculus in one variable. He also defined a
spectrum for commuting d-tuples, now called the Taylor spectrum, and showed
that for any commuting d-tuple 7, there is an O(U) functional calculus for T if
and only if the Taylor spectrum of 7' lies in U.

A drawback to Taylor’s approach is that it is often difficult to deter-
mine what the spectrum of 7T is, and the formulas defining ¢(7T) can be too
complicated to handle. (We shall routinely write ¢(7) for n(¢).)

In Section 8 we propose a different approach. The key idea is that we
choose some basic functions ¢', and then define an Hy e, functional calculus
by writing down a relatively simple formula for ¢(7) in terms of (7)), that
gives a well-defined operator whenever [|0(T)| < 1.

The formula (a modification of (1.2)) can be thought of as a multi-
variable version of the Sz.-Nagy-Foias functional calculus, which is an
H*(D) functional calculus for (single) Hilbert space contractions that
have spectrum in the open unit disk D, or, more generally, have no unitary
summand [14]. Our approach generalizes ideas of C.-G. Ambrozie and D.
Timotin [5], of J. A. Ball and V. Bolotnikov [6], and of the authors and
N. J. Young [4].

Our approach leads in Section 8 to a functional calculus for any
p-polyhedron (a set of the form Kj), or, more generally, any rationally
convex set. The rational Oka-Weil theorem asserts that any holomorphic
function on a neighborhood of a rationally convex set is a limit of rational
functions, so at first blush the existence of the functional calculus is un-
remarkable. However, our functional calculus comes with a norm control, and
this is its key property. In THEOREM 10, we show there is no ambiguity: when
#(T) is defined both by our definition and by Taylor’s, the two definitions
coincide.
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2. [_I(S%Qen(E>

Let U be a domain of holomorphy in C¢, fixed throughout the paper.
We will take & = (d1,...,,,) € O(U)" to be an m-tuple of non-constant
holomorphic functions on U and think of it as a map into C" with the
/*-norm. (More generally, one can consider 6 as a map into the r-by-s
matrices. This is natural if one wishes to define a functional calculus not
for d-tuples T of commuting contractions, but defined by other inequalities, for
example if 7 is a row-contraction, defined by T'T" + ...+ T9T9 < I. For
convenience we will not do our calculations in this generality.

We define two analytic polyhedra in U by G;=0'(D™) and K;=
571(W). We shall always assume that Ks is compact. 1If T is a d-tuple
of pairwise commuting operators acting on an N-dimensional Hilbert space,
we say that T is generic if there exist N linearly independent joint eigen-
vectors whose corresponding joint eigenvalues are distinct (equivalently, T is
diagonalizable and o¢(7) has cardinality N). If A4 ={4;,...,Ax} is a set
consisting of exactly N distinct points in C?, we let %, denote the set of
generic d-tuples of pairwise commuting operators 7 acting on CV with
a(T) = A. We shall let superscripts identify components of d-tuples and sub-
scripts identify components of N-tuples. Thus, if T = (T',..., T9) € %,, then
there exist N vectors ki,...,ky € CV such that

T"kj = Ajk;

for l<r<dand 1<j<N. If Te%; and f is holomorphic on a neigh-
borhood of ¢(T), then we define f(T) to be the unique operator on CV that
satisfies

S (T)k; = f(4)k;, I<j<N. (2.1)

We now define generic and local versions of the sets %5, H;° and the norm
| -|ls from [4]. Fix a set E < G5 and let E€ denote the space of complex
valued functions on E. For finite 4 < Gy, let %5 4 be the set in ¥, defined by

Fsa={T e ||lo(T) <1,l=1,...,m}. (2.2)

We then define a collection of generic operators, F; gn, by setting

g;r)‘.,gen: U ~97(5.A- (23)
A Afinite
A<=Gs

For f e EC, define [/ 115 gen Dy the formula,
1115, gen = sup[I/ (D]l (2.4)

€Fs, gen

o(T)SE
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Note that the notation, ||f|l5 . sees E due to the fact that E = dom f.
Finally, we define H;,.,(E) to consist of all f € E€ such that ||f 5 gen 18
finite.

Before continuing, we remark that the space Hj.,(E), as just defined,
refines the space Hs considered in [4] in two ways. First, by taking supremum
over generic operators rather than operators with spectrum in Gy, use of the
Taylor functional calculus is avoided (though a priori it may be the case that
[ lls.gen # Il - l5)-  Secondly, we have localized the definition of Hy* through
the introduction of the set E. This represents a considerably more general
scheme than considered in [4]. In particular, our work here will make it
clear that many of the proofs in [4] do not require that the elements of Hj”
be holomorphic. However, when E = Gs and f = ¢ is holomorphic on G it
turns out that ||f|l5 een = [|#l|;—see THEOREM 1.

The following proposition is a straightforward analog of [4, Proposition
2.4]. For E a set, we let /*(FE) denote the Banach algebra of bounded
complex valued functions f on E equipped with the norm,

171, = sup|f(e)l-
eeE

ProposiTioN 1. Hy" (E) equipped with |- ||; yn is a Banach algebra.

Furthermore, Hjf .. (E) = (7 (E) and ||f1l,, < ||fl5 gen Jor all f € Hi e, (E).

Proor. The only assertion that is not immediately obvious is that
H.,(E) is complete. Let f, be a Cauchy sequence in HJ,,(E). It con-
verges in /*(E) to a function f. For any T in Z; gen With o(T) < E, we have

Jo(T) — f(T). Therefore

AT < s0p 1) < 5P 1fill o

so f is in Hy,,(E) as required. []

Further useful regularity of the elements of Hjf,,(E) is revealed in the
following proposition. For oy, a, € D, we recall that the Carathéodory pseudo-
metric, d, is defined on D by the formula,

Oy — o)

d(ay,00) = , oy, 00 €D.

1-— maz
For any Banach space ', we shall let ball Z denote the closed unit ball of Z.

ProposiTION 2. If feball Hy,  and i, € E, then

,gen

d(f(), F(22) < max d(d(h),0,(Ja2)). (2.5)

1<i<m
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Proof. Fix Ay, 4, € E with 4y # A, and set 4 = {A,4}. For T € 4, let
07 denote the angle between the eigenspaces of 7. By the remark following
(2.7) in [2], elements of ¥, are determined uniquely by this angle between their
eigenspaces. Furthermore, by the calculations immediately following (2.13) in
[2], if g is a function defined on 4 and T € %,, then

lg(T)]| <1< sin 0y > d(g(41),9(42)). (2.6)
Recalling (2.2), we see that (2.8) implies that if 7' € %,, then

TeFs < sinfr > max d(0;(41),0/(12)).

1<i<m

In particular, there exists T € %5 4 such that

sin 0y = max d(d;(41),0,(42)).

1<I<m

As || f(T)|| <1 for this T, we deduce from (2.6) that (2.5) holds. [
CorOLLARY 1. If f € H ., (E), then f is continuous on E.

Proor. If f # 0 in HJ,,(E), then Proposition 1 implies that || f1|; ;en fis
continuous. [

The equivalence of conditions (a), (b), and (c) in the next proposition is an
exact analog of from [4, Proposition 2.7].

PropoSITION 3. Let E < Gy be finite. The following are equivalent.
(@)  Hyen(E) = 7 (E).

(b) A'|peH e, (E) for r=1,....d.

() ZFs5E is bounded.

(d) 9|y is one-to-one.

Proor. It is obvious that (a) implies (b) and that (b) implies (c).

(c) = (d): Let E={ey,...,ex}, and assume that d(e;) =d(ez). Choose
vectors ki, ..., ky so that {k,,..., ky} are orthonormal, and k; is orthogonal to
{ks,...,kn}, but at angle 0 to k». Then T defined by T7k; = ej’kj is in %5 g,
but the norm of 7" will tend to infinity as 6 tends to 0.

(d) = (a): It is sufficient to prove that for each 1 < j < N, the function
J; defined by

ﬁ(ei):07 i# ], ﬁ(e/)zl
is in Hy,,(E). Since J is one-to-one, there exists some function g; : 6(E) — C
such that gjod = f;.  To prove that f; is in H",.,(E), it suffices to prove that
g; is bounded on m-tuples of commuting generic contractions. This latter
assertion follows from LEMMA 1, below. [J
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LEmMA 1. Let A ={A,...,Ax} be a set of N distinct points in D™.  The
Sunction g;, defined on A by gj(4;) = 6y, is bounded on m-tuples of commuting
contractions.

ProoF. For each i # j, choose r; so that A" # /. Define h by

A
W) =T[—=%

By von Neumann’s inequality, each factor in /(7") has norm at most one if 7 is
. . 1
an m-tuple of commuting contractions. Let g9;i = mh. ]
Y
3. Representing elements of H gfgen(E)

In this section we shall derive three conditions that are necessary and
sufficient for a given f € E€ to be an element of ball Hj on(E).  These con-
ditions, which are summarized in Theorem 1 below, represent the appropriate
extension of [4, Theorem 4.5] to the Hj’,,,(E) setting. To state the theorem
will require a number of definitions.

DerINITION 1. Let f be a function on E. We say a 4-tuple (a,f,y, D) is
a (0, F)-realization for f if a € C and there exists a decomposed Hilbert space,
M =P, A, such that

(i) the 2 x 2 matrix

| a 1®p
V‘[y@l D ]

acts isometrically on C @ .,
(ii) for each 1€ E, o(4) acts on .# via the formula,

(DL, x1) = DL, di(A)x, (3-1)
(iii) for each A€ E,
S0 = a+ ()1 = DS(R) "9, . (3.2)

DEerFINITION 2. For E = G, we let %s5(E) denote the collection of func-
tions /1 defined on E x E that have the form

h<;”7:u) = Z(l _5(7/1)51(;“))01(;“7#)) e E,
=1

where for [ =1,...,m, a;(A,u) is positive definite on E.
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LemMA 2. If E < G is finite and f e ball Hi . (E), then 1 — f(u)f(2) €
%s(E).

Proor. This follows from a Hahn-Banach separation argument, as in
[3, Section 11.1]. In brief, let R be the set of functions on E x E. One needs
to show that every real linear functional L on R that is non-negative on the
cone %s(E) is non-negative on the function 1 — f(u)f (). Let ¥~ denote the
functions on E, and use L to define a sesqui-linear form on functions on E by

>0 =3 LGP + F(2) + 5 LUV 0) ~ G90).

By a normal families argument, one can show that s(E) is closed, so

0 S

P()(2) =D ()31 () 01(2) P(A)[1 — 61 ()01 (1)) € €5(E).

k=0

Therefore the form {-,-»; is actually positive semi-definite, so after modding
out by a null-space if necessary, one gets an inner product on ¥". The fact
that L is non-negative on %s(E) means that multiplication by each J; is a
contraction on ¥". Since f is in ball Hy ., (E), multiplication by f is also a
contraction, and applying it to the function that is constantly 1, one gets that

0< 0,1 —<f o =L = [ f(2),
as desired. [

DerFNiTION 3. Let m be a positive integer and # a separable infinite
dimensional Hilbert space. We let %, denote the collection of pairwise
commuting m-tuples of contractions acting on #. If Fe OD™), we define
1€, by

1E]l,, = sup [[F(T)]. (3-3)

TeF,,

o(T)=D"
For now, by F(T) we shall mean the Taylor functional calculus as defined
in [15]; though we shall see in Section 8 that we can use a much simpler
definition. We let H;? denote the set of all ¥ € O(D™) such that ||F||,, < co.

ProposITION 4. H? equipped with || -||,, is a Banach algebra. Further-
more, H* < H*(D™) and if F € HY, then sup..pn|F(z)| <||F|,,

Proor. This is proved for example in [4, Proposition 2.4]. []

Lemma 3. If {F,} is a sequence in ball HX, F e O(D™) and F, — F in
O(D™), then F eball HY.
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Proor. If F, — F and o(T) =« D™, then F,(T) — F(T) in operator norm,
by continuity of the Taylor functional calculus [15]. Hence, if T € %, and
o(T) = D",

|E(T)] = Jim [F(T)] <1

Therefore ||F|,, <1. O

LemmA 4. If F eball H;,, then there exist m positive definite functions on
D", Ay,..., A, such that

1-— Z (1 —wyz))A(z, w)

m
=1

for all z,weD™.
Proor. This was proved in [1]. [

TuEOREM 1. Let E < Gs and let f € EC. The following conditions are
equivalent.

(@) feball Hf, (E).

() [1— 7/ (2)] € o(E).
() f has a (9, E)-realization.
(d) IFeball HX; VieE f(4) = F((4)).

Proor. That (b) implies (c) follows from a Lurking Isometry argument.

Indeed, suppose

m

(1= (0 f ()] =Y (1 =01(w)d(2))ar(, ), (3-4)

=1

where for / =1,...,m, a;(4,u) is positive definite on E. For each 1 </ < m,
find Hilbert space valued functions u; such that

ar(4, 1) = <ur(2), wi(1)>-
Then (3.4) can be interpreted as saying that the map

& {5(1)(@—1)111(/1))} - Léf%)}

is an isometry, and this gives the (J, F)-realization.
To see that (c) implies (d), let (a,f,7,D) be a realization for f as in
Definition 1. If we define F by the formula,

F(Z)=a+<Z(1 —DZ)™ 'y, p>, (3.5)
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then Feball H? by [5], and f = FoJd|E. To see that (d) implies (a), fix

F eball H? and assume that f = Fod|E. If A is a finite subset of £ and
T € F5 4, then o(T) € #,,. Hence,

1A = [IFEGT)I < 1.

We now turn to the task of proving that (a) implies (b). Assume that
feball H, (E). Let {4} be a dense sequence in E, and for n>1, set
Ay =A{A,..., 4} Fix n. As febal H, (E), [ €ball Hf,, (4,). Hence,
by Lemma 2, [I — f(u)f(A)] € €s(A,). As (b) implies (c) and (c) implies (d),
there exists F, € ball H? such that f|4, = (F, 09)|4,.

By PROPOSITION 4, {F,} is uniformly bounded on D”. Hence, there exist
F e O(D™) and a subsequence {F,,} such that {F,,} — F as i — co in O(D").
By Lemma 3, Feball H?. Furthermore, as f|4, = (F,00)|4, for each
n, f(A)=F((4)) for all k. But {A} is dense in E, so that, by Corollary
1, f(A)=F(@©(4)) for all A€ E. Consequently, if A;,...,4, are as in

Lemma 4,

=7 (s () =1=FO(n)F©6(4) = Em:(l —0(1)31(2)) A41(5(2),0(n)).-

=1

As the functions, a;(4, u) = A;(6(1),0(y)), are positive definite on E, this proves

via Definition 2 that 1 — f(u)f (1) € €s(E). [

4. Utility

A fundamental fact, which allows for the purely operator theoretic con-
struction in Section 2 to have significance for several complex variables, is that
the elements of Hj',.,(G;) are holomorphic functions on G;. We adopt the
abbreviated notation, Hy.,, for H.,(Gs).

PROPOSITION 5. H",., equipped with || -||; yn is a Banach algebra. — Fur-
thermore, if H*(Gjs) denotes the space of bounded holomorphic functions on Gy
equipped with the sup norm, |- ||, then Hf,, = H*(G;) and ||¢]|,, <|ls gen
Jor all ¢ e HY

,gen”

Proor. That HJ° is a Banach algebra, H;°_ < L*(Gs), and

J, gen Jd,gen —

[4ll.. < [|$ll5 en Whenever ¢e Hf,., all follow from Proposition 1. That

Hy o = O(D™), follows from (a) implies (d) in THEOREM 1. []
We now come to one of the central points of the paper. Our goal is to
use the operator theoretic construction of Section 2 and the representation

result THEOREM 1 to study holomorphic functions on domains of holomorphy.
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If this program is to be carried out, then there must be an ample supply of
holomorphic functions in H oen- Thus, the following definition is germane.

DEFINITION 4. Let 9 € O(U)".  We say that ¢ is wrile if f € Hy',,, when-
ever f is holomorphic on a neighborhood of Kj.

4.1. An operator-theoretic characterization of utility. THEOREM 2 below gives
a characterization for when a tuple J is utile in terms of the following natural
operator theoretic notions.

DEFINITION 5. Let us agree to say that J is bounding if Fs gen is bounded,
1e., for each r=1,...,d,
sup |77 < 0.
e-'o/-'{)igen
Note that if ¢ is bounding and {7,} is a sequence in #; gen, then @le T,
is a well defined bounded operator.

DerINITION 6. We say that J is spectrally determining if 6 is bounding
and if ‘7(@;0:1 T,) c K; for every sequence {7,} in F; gen.

As we have adopted the strategy of studying holomorphic functions
defined on a neighborhood of Kj;, the following technical modification of
the notions of bounding and spectrally determining will prove useful.

DermniTION 7. We say that o is strictly bounding (resp. strictly spectrally
determining) if there exists # < 1 such that # is bounding (resp. spectrally
determining).

Note that if £ < 1, then s gen © Fi5,gen 50 that if J is strictly bounding,
then J is bounding. Likewise, if 0 is strictly spectrally determining, then o
is spectrally determining. To prove this, assume 0 is spectrally determining
and let {7,} be a sequence in Fjgen. AS Fsgen © Fi5,gen, 1 = @n T, is a
well defined operator with o(T) < K,s = U. Hence, the operators, ;(T),
[=1,...,m make sense by the Taylor functional calculus. Furthermore, as
T, € 5 gen, for each I =1,... . m,

101 (T) = 10:(ED, Tu)ll = 1D, (Tl < 1.

Hence, by the spectral mapping theorem, o(T) < K5, as was to be shown.
We used the fact that 6;(P,7,) =@P,0/(T,). This follows from
Lemma 5.

LemMmA 5. Let #, be a sequence of Hilbert spaces, and let T, be in
Ci”(ﬁf,,)d. Assume that T := (—Dn T, is bounded, and its spectrum lies inside

U. Let ge O(U). Then g(@®, Ty) =D, 9(Ty).
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Proor. This result follows from Vasilescu’s construction of the Taylor
functional calculus as an integral of an operator-valued Martinelli kernel (see
[17, Section III.11] or [8]. The integrand for 7 is the direct sum of the
integrands for each 7,,. [

The authors have been unable to resolve fully the following issue.
Question: Does bounding imply spectrally determining?

However, we show in THEOREM 2 that utile and spectrally determining are
equivalent, and in THEOREM 5 that strictly bounding implies utile.
In some cases Question can be answered.

PrOPOSITION 6. Let K5 be a p-polyhedron, ie. U = C? and by, ...,, are
polynomials. If 0 is bounding, then 0 is spectrally determining.

ProoF. Fix a sequence {7,} in Fsen. As 6 is bounding, T =P, T,
is a well defined bounded operator. Furthermore, if p is a polynomial, p(T) =
@D, p(T,). Thus, if 1 </<m,

AT = 1D,=y (Tl < 1,

so that o(6(T)) = (D7)™. Hence, by the spectral mapping theorem for
polynomials, &(a(T)) = a(d(T)) = (D7)". Thus, o(T)<d (D)") =Ks.
(]

We now can state our characterization of utility in operator terms.

THEOREM 2. Let 6 € O(U)™. Then ¢ is utile if and only if 6 is spectrally
determining.

The proof of THEOREM 2 will be presented in Subsection 4.3. The proof
of sufficiency will be a straightforward operator-theoretic proof that relies on
the Taylor functional calculus while the proof of necessity will rely on some
nontrivial function theory which we discuss in the next subsection. We record
the following simple corollary of ProposiTioN 6 and THEOREM 2 for future
reference.

ProposITION 7. Let K5 be a p-polyhedron. If ¢ is bounding, then ¢ is
utile.

4.2. Some function theory on domains of holomorphy. In this section we
record some results from function theory on domains of holomorphy that will
be used in the sequel. Recall that O(U) is naturally a Fréchet space when
endowed with the topology of uniform convergence on compact subsets of U.
A Dbasic fact which we shall require is the following “baby” Corona Theorem.
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The result is well-known, though we cannot find a reference where it is
explicitly stated. It can be proved by the observation that if o is not in
U~, then the functions R(A) can be chosen to be continuous, because the
maximal ideal space of A(U~) is U~ (see e.g. [12]). If aedU, take a
sequence of points o, tending to a from outside U~ and use a normal families
argument.

Tueorem 3. If ae C\U, then there exist R!,...,R?e O(U) such
that

d
1= Ry =) (4.1)
r=1

for all 1eU.

Recall that if o/ is an algebra, then a complex homomorphism of o/ is a
homomorphism defined on .o/ whose target algebra is C. The following result
is also well-known.

THEOREM 4. y is a continuous complex homomorphism of O(U) if and only
if there exists o€ U such that x(f) = f(a) for all fe O(U).

Proor. Sufficiency is obvious. To prove necessity, let A" be the r-th
coordinate function, and define o = y(1"). If a ¢ U, then applying y to both
sides of (4.1) would yield a contradiction.

If e U, then by [11, Thm. VIL.4.1], for every f in O(U), there are, for
1l <r <d, functions Q" in O(U) satisfying

d
)= fl2) =) (A" =a)Q(4).

r=1

Applying y to both sides, we get that y(f) = f(«). O

4.3. The proof of the utility theorem. This subsection is devoted to a
proof of Theorem 2. First assume that J is spectrally determining. Fix f,
holomorphic on a neighborhood of Ks.  We need to show that f € Hy,.,. To
that end, fix a sequence, {7,} in Fj gen. As {7y} in F; 4en and o is spectrally
determining, if we set 7 = @n T,, then T is a well defined bounded operator
with ¢(T) < K;. Hence, as f is holomorphic on a neighborhood of Kj,
f(T), as defined by the Taylor functional calculus, is a well defined bounded
operator. But f(T) =), f(T,) by Lemma 5, so || f(T,,)|| < ||f(T)]| for all n.
Summarizing, we have shown that if {7,} is a sequence in F; g, then

sup, [/ (Tn)l| < 0. Thus, [[fl5 gen < o0 and f € Hy o,
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Now assume that 6 is utile. We first show that J is bounding. As
f(2) = 2" is holomorphic on a neighborhood of K; and J is utile, f € Hy,.
Hence,

sup (|77 = sup [/ (T)] = [1/1ls gen < 0-

€ F5, gen € F5, gen

This proves that ¢ is bounding.

To complete the proof that ¢ is spectrally determining, fix a sequence, {7}
in F5gen. As d is bounding, T = @n T, is a well defined bounded operator.
For definiteness, we assume 7 is in C¥ (%)d. We need to show that
O’(T) < K;.

Since J is utile, O(U) = Hy',,. It follows that the formula

(f) =D, f(Tn), feO(U)

defines an algebra homomorphism, 7 : O(U) — £ (), with the property that
7(1) = 1, and which the closed graph theorem implies is continuous. Let .o/
be the operator norm closed algebra generated by ran z. Evidently, .o/ is a
commutative Banach algebra with unit, containing the components of 7.
We let o,(7T) denote the algebraic spectrum of 7' in this algebra .o/. It
is well known that o(T) < 6.,(T) (see, e.g., [8]). Also, by Gelfand Theory,
if X denotes the space of complex homomorphisms of .o/, then ¢.,(T) =
{x(T) |y e X}. Thus, the proof of THEOREM 2 will be complete if we can
prove the following claim.

Claim 1. If y € X, then x(T) € K;.
To prove this claim we shall require the following simple lemma.

LeEMMA 6. If 0 is utile and Q is a neighborhood of Ky, then there exists a
positive constant, ¢, such that

||f||6.gen =c sug |f<)*)|

for all fe H”(Q).

Proor. The utility of 6 guarantees that the formula L(f) = f|Gs defines a
linear transformation L: H*(Q) — H 5gen- The closed graph theorem implies
that L is bounded. []

We now turn to the proof of Claim 1.
Let ye X and set a = y(T). As yort is a continuous complex homo-
morphism of O(U), it follows from THEOREM 4 that

%= 7(T) = 7(x()) = (o)A € U.
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To see that « is in K35, we argue by contradiction. If o ¢ K, then there exists
t <1 such that K5 < G;5 and a ¢ K;5. As K5 is O(U)-convex and « € U\Kys,
there exists a sequence {f;} in O(U) such that

sup |fr(A)] <1 (4.2)
LreKys
and
| fic(o)| — o0. (4.3)

Evidently, (4.2) implies via an application of LEmMMA 6 that there exists a
constant ¢ such that || fill5 en < ¢. But then,

()] = [ (i) < llz(fi)ll < 1 fills, gen < €
for all k, contradicting (4.3). This completes the proof of Claim 1. [J

4.4. Strictly bounding implies utile.

THEOREM 5. If 0 is strictly bounding and f is holomorphic on a neigh-

borhood of Ks, then there exists F € Hfgen such that F = f on G.

PrOOF. Suppose that ¢ is strictly bounding and f is holomorphic on a
neighborhood of K;. Choose f < 1 so that %5 gn is bounded, but sufficiently
large so that in addition, f is holomorphic on Gj;.

We first construct a mapping from D" into C? that serves as a left
inverse for . Fix r. As [[A"||;5 sen < o0, an application of the equivalence of
(a) and (d) in THEOREM 1 (with E = G5 and z = 1") yields @" € H,? with

=@ (15(2),  Ae Gy (4.4)

Define ¥ € O(t'D™) by setting ¥'(z) = @'(1z) for zet 'D™. Finally,
amalgamate the functions ¥', r=1,...,d into a mapping, ¥ : t~'D” — C.

Now, d: Gis — t7'D" and ¥ : r~'D” — C?. Furthermore, (4.4) implies
that ¥ od =1idg,. Hence, J is one-to-one, proper, and unramified. As a
consequence, not only does 6 embed G, as an analytic submanifold of r~'D"”,
but V' =0J(Gy) is an analytic variety and w: V' — C is holomorphic on V' if
and only if wod is holomorphic on G,. As f is holomorphic on Gy, it
follows that,

w@0(4) =f(4), L€ Gy, (4.5)

defines a holomorphic function, w, on V. By the Cartan extension theorem,
there exists H € O(t~'D™) such that

H(z) = w(z), zeV. (4.6)
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Comparing (4.5) and (4.6) we see that f (1) = H(6(4)) whenever A€ Gy.
As H € O(t~'D"™) implies that H € H* (this follows from ProposITION 6 and
THEOREM 2), it follows that Condition (d) in THEOREM 1 holds. Hence, applying
the equivalence of (a) and (d) in that theorem a second time, we deduce that

: o0
J € H e, as was to be shown. []J

5. Subordination and utility

If 6e O(U)™ and y e O(U)" are both tuples of non-constant functions,
we say that y is an extension of 6 if n>m and y; =9, for 1 </ <m. 1If y
is an extension of ¢ and in addition, K, = K5, we say that y is subordinate
to 6. Note that if y is subordinate to J, then G, = G;5, F, gen S s, gens
|| . Hy,gen = || : ||§.gen and H(fgen < H}%gen'

We now describe a procedure from [4] that is very effective for using
Hj e, to do function theory. Suppose one is given a p-polyhedron, Ks and a
function, f, holomorphic on a neighborhood of Ks5. As Kj; is a p-polyhedron,
PropositioN 7 will imply that /"€ HJ",, provided J is bounding. While § may
not be bounding, there nevertheless exists a bounding subordinate extension y
of 8. As K, = Kj, the classical function theory has not changed, but now, as
J € H} e, the structure theory from Sections 2 and 3 of the paper can be
applied to f. A particularly simple way to construct a bounding subordinate
extension y of J is to set

y=(01,...,0merl, . el ?) (5.1)

where ¢ is chosen sufficiently small that for each r=1,...,d, |eA"| <1 for all
A€ Ks (recall that ¢ is such that Kj is always compact). Note that if one
assumes that K5 < D™ (as Oka did), then one can choose ¢ = 1.

In [4] the idea in the previous paragraph was used to give a new proof
of Oka’s Extension Theorem. We give another proof in Section 6 below.
One novel feature of this new argument is that it is valid not only when y
is defined by (5.1), but rather, it merely requires that y is bounding.
Another interesting feature of the argument is that it provides bounds for
the extension.

When one passes from p-polyhedra to the more general case of analytic
polyhedra defined in domains of holomorphy, as in light of Question, the
situation is more complicated. To imitate the argument for p-polyhedra one
now needs to know that there are extensions of ¢ that are spectrally
determining.

THEOREM 6. If 6 € O(U)" is non-constant, then there exist n>m and
ye O(U)" such that y is subordinate to § and y is spectrally determining.
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Proor. Without loss of generality, we may assume that ¢ is bounding
and [[A"||5 gn <1 for each r. Note that this implies that if 7' € F gen, then
IT"|| <1 for r=1,...,d. Consequently,

if {T,} is a sequence in Fj gen, then o(@P7 T,) = (D). (52)

We now define y. Let E=(D)‘\U. (The set E may be empty, in
which case we let y =0, and skip to the last paragraph of the proof). By

TueoREM 3, for each o € E there exist functions R!,...,RY e O(U) such that
d

SR - =1 (5.3)
r=1

for all 2e U. We set

M; = R (A
« = Max|R,(2)

(5.4)

and let M, = (M]},..., M¢) so that |M,||, the Euclidean norm of M,, is given
by

d 1/2
M| = <Z |M§'|2> : (5:5)
r=1

We let B,(¢) denote the Euclidean ball in C? centered at o and fix positive

s<1. As E is compact and {BDC (HMS||> ‘oceE} is an open cover of E,
o
there exist oy,...,o, € E such that
£ () (56)
it \IM,]

For r=1,...,d and i=1,...,n we define functions p/ e O(U) by the
formulas,

1

PP =R (5.7)

Finally, define an extension y of d by setting

y:(517527“-a(smap]lvplzv-“apila ----- ap;£7p;3a7p;1!) (58)

Note that (5.4) and (5.7) imply that for each r and 7, maxg,|p/| <1 so that y is
subordinate to .

We now show that y, as constructed above, is spectrally determining.
Accordingly, fix a sequence {7,} in &, g and set T =P T,. We need to
show that o(7T) < K.
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Claim 2. o(7T)c U.

27

To prove this claim, observe that (5.2) implies that it suffices to prove that

To prove (5.9), fix fe E. By (5.6) there exists i such that

If for S €., gen, We define an operator X(S) by the formula,

then (5.3) implies that

d
Y RL(S)(S
r=1

Also, since by the construction of y and (5.7) we have that

BeE=pé¢a(T).

15— il <
l IIMa,II

d
S) =Y RL(S)(B o),
r=1

d d
=Y RS =) =D RL(S)( ~
r=1 r=1

=1 - X(5).

IR, (S)] < M

we see via (5.5), (5.10) and (5.12) that

[X(S

d
ZIIR A" = o]

a,|ﬂ _OC

HM&

S

= M, 1|8 — ol
N

< HMa,-Hm
o

= .

12 /
- (ZM;f) (z 5o
& r=1

1/2
2)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)
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We now let S =T, and direct sum. If we set

Y =@, R, (T,),

then (5.12) implies that Y is a well defined bounded operator that commutes
with 7. Likewise, if we set

X = C—Drotczl X(Tn)a

then (5.13) implies that X is a well defined bounded operator that commutes
with T with the added property that

| X|| <s<1. (5.14)
Finally, observe that by (5.11),

YT -p)=1-X. (5.15)
r=1
As (5.14) and (5.15) imply that Z:; Y'(T" — p") is invertible, it follows that
p¢o(T). This completes the proof of (5.9) which establishes Claim 2.
To complete the proof of THEOREM 6 we need to show that o(7T) < Kj.
As ¢(T) < U and the functions J; are in O(U), it follows from the Taylor
functional calculus that the operators J;,(7) are well defined. Furthermore, by
the spectral mapping theorem for analytic functions, 6(a(7")) = ¢(6(T)). But
[0/(T)|| <1 for each /, so that ¢(6(T)) = (D7)™. Hence, a(T) <o ' ((D7)")
=Ks. O

6. The Oka extension theorem on analytic polyhedrons

As discussed in [4], the following result, THEOREM 7 below, represents a
refinement of a classical theorem of Oka. However, unlike in [4], we will not
use the Oka-Weil Theorem. We define

12|

=sup{||®(T)|| : tT € Fn,0(tT) = D"}.

Hoom

THEOREM 7. Let U be a domain of holomorphy and assume that d, ...,
om € O(U) with 6 strictly bounding. If ¢ is holomorphic on a neighborhood
of Ky, then there exists @ holomorphic on a neighborhood of (D™)™ such that
#(A) = @ od(A) for all € Gs. Moreover, @ can be chosen so that ¥t < 1 and
sufficiently close to 1, we have

1®0 = Nl

Proor. Let ¢ be holomorphic on a neighborhood of Ks;. Choose
t" <t <1 such that Fs gn is bounded and ¢ is holomorphic on a neighbor-
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hood of K,5. By THEOREM 5, ¢ € Hj gen® Hence, by THEOREM 1, there exists
¥ € H such that ¢(1) = ¥(10(2)) for all 2 € Gy, and with ||| .. = ||#]l = -
If we define @ by &(z) = ¥(tz), then @ is holomorphic on a rﬂieighborhfg%ma
of (D™)" and §(4) = P od(4) for all A€ G;. Moreover, [Py, = ¥y =
-

We also get a generalization of the Oka-Weil theorem.

THEOREM 8. Let U be a domain of holomorphy and assume that Jy, ...,
om € O(U) with K5 compact in C?. If ¢ is holomorphic on a neighborhood of
Ks, then ¢ can be uniformly approximated on Ks by holomorphic functions on U.

PrOOF. By THEOREM 6, we can choose y e O(U)" such that y, =4, for
1 </<m, K,=Ks, and y is spectrally determining. By THEOREM 2, y is utile,
so ¢ € H,,. By THEOREM I, there is a function @ in H,° such that ¢ = @ o .
The partial sums of the Taylor series of @, composed with 7y, give a sequence

of polynomials in y that converge uniformly to ¢ on Kj.

7. A Cartan extension theorem

In this section U is a domain of holomorphy in C?. We assume that V is
an analytic set in U with the special presentation: there exists # = (7,...,%,) €
O(U)" such that

V={leU:n(l) =0} (7.1)

Any domain of holomorphy U can be exhausted by a sequence Gy < K <
Gz « U of analytic polyhedra, by [I11, Cor. IL3.11]. Choose such a
sequence. We make a second assumption about V:

Ve > 0, Vk =1, [Fe Hﬁ*‘,gen] A [F|V0G,5k+1 = 0]

n
F - Z 77r¢r
r=1

o0

= 3¢, € 5 gen’

<e. (7.2)

H®
ok gen

Inequality (7.2) will hold, for example, (once we augment each 5% to make
it utile as we can by THEOREM 6) if there is some compact set L = U with
the property that whenever Q is an open set with L = Q = U and F € O(Q)
vanishes on VN, then F is in the ideal in O(Q) generated by 7.

In this section we wish to prove a special case of the Cartan extension
theorem, first proved in [7]; see [9, Thm. 1.5] for a more recent treatment. It
can be argued that the logic is circular, as we use THEOREM 5, whose proof used
the Cartan extension theorem. However, whenever the answer to Question is
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known to be yes, such as for a p-polyhedron by ProPOSITION 6, one does not
need THEOREM 5.

THEOREM 9. Let V < U satisfy (7.1) and (7.2). Suppose f is holomorphic
on a neighborhood Q of V. Then f has a holomorphic extension to U.

Proor. By THEOREM 6, one can assume that each ok = (5{‘,...,6,’,‘/{) is
spectrally determining, and therefore bounding. Moreover, by multiplying 5%
by a number slightly greater than one (and so slightly shrinking Gj:), one can
assume that each 6% is strictly bounding.

For each k, there exists a positive number M* such that

BE = (k... 08 M*yy, ..., M*y,)

[T}

will satisfy Ky == QN Ggn. As B is an extension of 0%, it is a fortiori
strictly bounding, so by THEOREM 5 it is utile. Therefore by THEOREM 1, we
can find a function ¥* in Hge., such that vk o g% is a holomorphic function

on Gﬁ/\' that equals the extension of f to QN Gy.
Now let

DKL,y =R a0, ,0).
Then ®* 06" is holomorphic on G+, and agrees with f on VN G. Define
R = @R (6% (4).

Each h* is in H 5? ., and provides an extension of f to G; we would like to
get an extension on all of U at once.

Let us define new functions inductively. To start, we let g' = A, g*> = h?
and g3 =1’

Having defined ¢* in H o with

gk|VﬂGJk = f|VﬂG§kv
observe that #**! —g* is in H}  and vanishes on ¥'NGy. So by assump-
tion (7.2), h**! — g* can be approximated in H., ., by functions of the form
> 1.4, By THEOREM 1, each ¢, in turn can be uniformly approximated
on K-> by polynomials in 0*=1 so in particular by functions holomorphic
on all of U. Therefore there is a function ¢“*! in O(U) such that ¢**!|, =0
and

I = " = Ml e, <27 (7.3)

Define gk+! = pk+1 — gk+1 By (7.3), the functions {g¥} will be a Cauchy
sequence on every compact subset of U, so, by passing to a subsequence, one
can extract a limit that is holomorphic on U. Call this limit function F. As
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each g agrees with f on V'N Gy, we conclude that F is our desired extension
of fto U. [

8. Functional calculus

We shall use formula (3.2) to define a functional calculus for Hj",,. For
M = @Zl My a graded Hilbert space, let P; be the orthogonal projection onto
Ay, If S=(S',...,8™) is an m-tuple of operators on a Hilbert space #, we

shall let Sp denote the operator on J# ® .# given by

Sp:zm:S’(@P’.

=1
In this notation, 6(4) from (3.1) becomes 6(4),. For any vector ¢ € .#, define
Re: W - HQ M, v v ®E.

DerFiNiTION 8. As in DErFINTION 1, let f be a function on Gy with a
(0, Gy)-realization (a,B,y, D). Let T € %5 be a d-tuple of commuting operators
on a Hilbert space #, and assume that o(7T) = Gs. Then we define f(T) by

f(T) = aly + Rid(T) plLy ® Ly — (Ly ® D)3(T),] 'R, (8.1)

Some remarks are in order.

1. Let S=(1(T),...,0m(T)). The assertion ¢(7) < G5 seems to re-
quire the calculation of the Taylor spectrum of 7. But by the spectral
mapping theorem, this becomes the much more innocuous assertion
that

a(S") = D, 1<Vli<m.

2. To use (8.1), we need to be able to define 6;(7") for each 1 </ < m.
If 6, is a polynomial or rational function, this is immediate; or if J
itself comes from a (6', Gs)-realization, we can define 6(7) by the
analogous formula. For general o, it is still possible to define 6(7T)
in some circumstances—for example if 7 is a multiplication operator
on a space of holomorphic functions. It is, however, essential to the
definition that we know how to define &(T).

3. In order for the right-hand side of (8.1) to make sense, we need to
know that [l ® L, — (I ® D)Sp] is invertible. This follows from
PROPOSITION 8 below.

4. To speak unambiguously of f(T), we need to know that the operator
defined by (8.1) and the one defined by the Taylor functional calculus
agree. This follows from THEOREM 10 below.
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5. For our notion of functional calculus to be useful, we would like
to know that Hy,., has a rich supply of functions. In Section 4 we
address the issue of when every function holomorphic on a neigh-
borhood of Kj is in HS"

o,gen’

ProposITION 8. The operator Iy ® I, — (Iy ® D)O(T)p is invertible
whenever the Taylor spectrum of T is in Gy.

Proor. It is sufficient to prove that if ¢(S) = D™, then o[(Iy ® D)Sp]
< D. By LemMma 7, below, there is an invertible operator 4 so that if
R = A"'S4, then each R’ is a strict contraction. Then

(A" ® 1) l(lyf ® D) (2”': S'® P1>

=1

(A®Ly)

:(]f®D)<§:Rl®Pl>.

=1

The latter expression is a product of a strict contraction with a contraction, so
its spectrum is in D. So as (I, ® D)Sp is similar to it, the spectrum is the
same. [

The following lemma is multivariable version of a well-known result of
G.-C. Rota [13].

LemMa 7. If o(S) < D™, then there is an invertible operator A so that
47184 <1, 1 <l <m.

PrOOF. As each S’ has spectral radius less than 1, choose N > 0 such
that ||(S)N||< C <1, 1 </ <m. Define a new norm on # by

llolll = Z lp(S)el”,

where the sum is over all monomials p of degree at most N —1 in each
variable. The norm ||| - ||| satisfies the parallelogram law, so is a Hilbert space
norm. Moreover, it is similar to the norm || -, and

NZMZ § — llg(S)el?

LS - D)ol

= N2m
q

!
N [

1

W(Cz—l)Hsz

IA



Oka extension theorem 33

where ¢ ranges over monomials that have no positive powers of z/. So in the
| - ||l norm, each S’ is a strict contraction. Let 4 be the similarity between the
Hilbert space with the ||| - ||| norm and the original | -| norm. [

THEOREM 10. Assume f and T satisfy the hypotheses of DEFINITION 8.
Then the operator f(T) defined be the Taylor functional calculus equals the
operator defined by (8.1).

ProoF. Let F e ball H® be defined by (3.5), so F(5(4)) = f(4). As the

m
Taylor functional calculus respects composition, it is enough to prove that F(S)

defined by the Taylor calculus and F(S) defined by
aly + R;Sp[ly ® Ly — (I ® D)Sp] 'R, (8.2)

agree. By the argument in the proof of ProrosiTioN 8, the contraction
(I ® D)Sp has spectral radius less than 1, so the Neumann series expansion
of (8.2) converges absolutely. The partial sums form a sequence of poly-
nomials in S that converge to F(S) in norm, and by continuity they also
converge to F(S) defined by the Taylor functional calculus.
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