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ABSTRACT. We introduce two notions of equivalence for rational quadratic forms.
Two n-ary rational quadratic forms are commensurable if they possess commensurable
groups of automorphisms up to isometry. Two n-ary rational quadratic forms F and
G are projectivelly equivalent if there are nonzero rational numbers r and s such that
rF and sG are rationally equivalent. It is shown that if F and G have Sylvester
signature {—,+,+,...,+} then F and G are commensurable if and only if they are
projectivelly equivalent. The main objective of this paper is to obtain a complete
system of (computable) numerical invariants of rational n-ary quadratic forms up to
projective equivalence. These invariants are a variation of Conway’s p-excesses. Here
the cases n odd and n even are surprisingly different. The paper ends with some
examples.

1. Introduction

In the classical theory of rational quadratic forms, two n-ary, rational
quadratic forms F and G are rationally equivalent if there is an n x n rational
matrix 7 such that 7'FT = G. In particular, if T is integral and det 7 = +1,
F and G are said to be integrally equivalent. This is a purely arithmetic
definition. 1 want to introduce a “geometric” definition of equivalence.

Say that two n-ary rational quadratic forms F and G are “equivalent” if
“they possess the same groups of automorphisms up to isometry”. That is,
there is a real n x n matrix T such that T'FT = G and T~!'(Aut F)T = Aut G,
where Aut F denotes the subgroup of GL(n,Z) consisting of those matrices U
such that U'FU = F. In geometric terms, that means that, if F is hyperbolic,
the two hyperbolic orbifolds, obtained as quotients of hyperbolic n-space H”
under the actions of Aut F and Aut G, are isometric.
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Now, this definition is too strict for various reasons, which explain why
the theory of arithmetic groups does not insist in Aut F' and Aut G being equal
up to isometry, but relax this condition to asking if Aut F and Aut G are
commensurable up to isometry. That is, we will say that two n-ary, rational
quadratic forms F and G are commensurable (see Definition 1) if there is a real
n x n matrix T such that T'FT = +G and T-'HyT = Hg, where Hp < Aut F
and Hg < Aut G are finite index subgroups. In geometric terms, that means
that, if F is hyperbolic, the two hyperbolic orbifolds, obtained as quotients of
H” under the actions of Aut F and Aut G, have (up to isometry) a common
finite orbifold-covering.

One reason why I introduce the above definition is that the restriction of
the interesting automorphs of a rational quadratic form F to the ones with
integral entries is somehow technical or artificial. Indeed, there are abundant
examples of supergroups G of Aut F made up of real automorphs that still act
properly and discontinuously on, say, H®>. (For instance there is a supergroup
of Aut(<{—1,1,4,4>), made up of real automorphs of {—1,1,4,4% which is
isomorphic to the Picard’s group Aut(<{—1,1,1,1>).) Necessarily then, the
index of Aut F in G is finite, since H®>/G has finite volume. A second reason
is that when one changes from one model of H? to another one (say the upper
half-space model), very often Aut F is sent to a group of homographies and
antihomographies of CP! whose entries are not algebraic integers. In these
cases, Aut F' possesses a finite index subgroup that is transfered to one with
algebraic integer entries.

Note that the definition of commensurable, rational quadratic forms F and
G is relevant only when the groups of automorphisms of the two forms are
infinite (when F and G are hyperbolic, for instance). Two n-ary, definite,
rational quadratic forms are always commensurable.

Clearly F and AF, 1€ Q\{0}, are commensurable. Moreover, any two,
rationally equivalent, rational quadratic forms F and G are commensurable
([6]). This suggest to call two nm-ary, rational quadratic forms F and G
projectivelly equivalent (see Definition 2), denoted F £ G, if there are nonzero
rational numbers r and s, such that rF and sG are rationally equivalent.

This definition is the main topic in this paper. The relevance of it lies in
the following theorem:

“If two n-ary, rational quadratic forms F and G are hyperbolic then F and
G are commensurable if and only if they are projectivelly equivalent”.

The main objective of this paper is to obtain (computable) numerical
invariants of n-ary, rational quadratic forms, such that F £ G if and only
if the invariants for F and G coincide. These invariants are variations of
Conway’s p-excesses ([7]). Here the cases n odd and n even are surprisingly
different.
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In sections 6 and 7, I offer a number of computed examples and I ask
some questions.

In section 8, I give a geometric construction of an arithmetic group
consisting of automorphs of an integral quadratic form, and I offer a historical
perspective of rational quadratic forms, from a geometrical point of view, for
the benefit of the more algebraically oriented reader.

In conclusion, I think that the definition F La corresponds perfectly to
the geometric classification of quadratic forms. It would be very interesting
to generalize this theory to quadratic forms over arbitrary number fields.

For the reader’s sake, after some generalities on quadratic forms and the
proof of the above theorem, I will review the invariants of rational equivalence
(Conway’s p-excesses), discovered by Conway ([7]), before using them to obtain
the projective classification of quadratic forms.

I am very grateful to my brother Angel Montesinos-Amilibia. His help
has been invaluable to understand the geometry of integral quadratic forms.
Specially for having written a program that enabled me to perform a number
of computations. I am also very much indebted to the editor of this journal
for the many suggestions that made the paper more readable.

2. Quadratic forms: preliminaires

A general reference is [6] (see also [10] and [7]).
Let x be the column vector with coordinates xi,...,x, and F a symmetric
n x n matrix. Then the expression

f(x) =x"Fx

is called the n-ary quadratic form with matrix F. We will make use also of
the associated bilinear form

f(x,y) :foy.

The adjoint of F, denoted Adj F, is the quadratic form det(F)F~!.

We call F a rational quadratic form if F is rational, that is, the matrix
entries of F are rational numbers and the determinant of F is nonzero. We
call F an integral quadratic form if F is integral, that is, the matrix entries of
F are rational integers (i.e. if it is classical integral (Gauss), or integral as a
symmetric bilinear form) and the determinant of F is nonzero.

We shall say that two n-ary, rational quadratic forms F and G are
Q-equivalent, or that they are in the same Q-class, and write F 2 G, if there
is an n X n rational matrix M such that M'FM = G. In particular, if M is
integral and det M = +1, we shall say that F and G are Z-equivalent, or that
they are in the same Z-class, and write F L.
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An n x n matrix U with real entries is a real automorph of the rational
quadratic form F if U'FU = F. Then det U = +1. The real automorph U is
proper if det U = +1, improper if det U = —1.

The group Og(F) of real automorphs of F is called the real orthogonal
group of the form F.

A real automorph U with integer entries is called an automorph (proper
or improper) of F. The set of automorphs of F is the automorphism group
Aut(F) of F. The subset Aut™(F) of proper automorphs is the proper
automorphism group of F. The group Aut*(F) has index 1 or 2 in Aut(F).

We shall say that a rational quadratic form is hyperbolic if it is equivalent
to {—,+,+,...,+} or {+,—,—,...,—} over the real field R.

3. Commensurable and projectively equivalent forms

We want to investigate the relationship between the following two
definitions.

DEerFINITION 1. Two n-ary, rational quadratic forms F and G are com-
mensurable if there is a real n xn matrix 7 such that T'FT = +G and
T-'HyT = Hg, where Hr < Aut F and Hg < Aut G are finite index sub-
groups.

DerINITION 2. Two n-ary, rational quadratic forms F and G are projec-
tivelly equivalent, denoted F L G, if there are nonzero rational numbers r and s
such that rF 2 sG.

This is an equivalence relation because
rF 2 sG, 16 2 uH = riF L 5tG 2 sul
Of course F 2 G implies F ~ G, but not viceversa.

PropoOSITION 1.  Let F and G be two n-ary rational quadratic forms. The
following statements are equivalent.
1 rFla.
(2) There is a nonzero, square-free integer a such that F el
(3) There is a nonzero integer a and an integral matrix T such that
T'FT = aG.

ProoF. If F X G there are nonzero rational numbers r and s, such that
rF 2 sG. Then
(T/m)(a/p)F(T/m) = (b/q)G,

where T is an integral matrix and m, a, b, p, g are non-zero integers. Hence
T'(agF)T = m’bpG. Hence F L G if and only if there are nonzero in-
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tegers, ¢ and b, and an integral matrix 7, such that T/(bF)T = aG. Then
T'(bbF)T = baG. Hence (hT)'F(hT) = baG, which proves that (1) implies
(3). Next, assume (3). Then if a = p?h, where b is an square-free integer,
we can write

(T/p)'F(T/p) = bG.
Hence (3) implies (2). Obviously, (2) implies (1).
For instance:

COROLLARY 1. Every integral quadratic form F is projectively equivalent to
its adjoint Adj F.

Proor. Denote, for brevity, Adj F by G. Then
G'FG = GFG = det(F)*F~'FF~' = det(F)*F~' = det(F)G.
As a non-trivial example of commensurable forms, note the following:

THEOREM 1. FEvery integral quadratic form F is commensurable to its
adjoint G =Adj F. FEven more, there is a real n xn matrix M such that
M'FM = +G and M~" Aut FM = Aut G.

Proor. Let d denote the absolute value of det F and ¢ its sign +1 or
—1. Let M be VdF~'. Then M'FM = ¢G and

M~ Aut FM = Aut G.

Indeed, let U be an automorph of F. Then FUF~'= (U ‘)71. That is,
M~'UM = (U™"), which is integral (and therefore, an automorph of G).
Conversely, Let V' be an automorph of G. Then

GVG' =F'vF =)L,
Hence

MVM~ = F'vF =",
which is integral (and therefore, an automorph of F).

RemARk 1. It follows that the group Aut(Adj F) is the set of the
transposes of the elements of Aut(F).

Note that any rational quadratic form is projectivelly equivalent to an
integral form.

In [6] it is proved that Q-equivalent, integral forms are commensurable.
Next, we show that, more generally, two rational forms are commensurable
if they are projectively equivalent.
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PrROPOSITION 2. Let F and G be two n-ary, projectively equivalent, rational
quadratic forms. Then F and G are commensurable. In fact, if T is an integral
matrix and a is a nonzero integer such that T'FT = aG, then M'FM = ¢G and
there is a finite index subgroup H of Aut(F) such that M~'HM = K, where
M=T/\/|a|, e = Tal and K < Aut(G) is a finite index subgroup.

PrOOF. Let m be the determinant of 7. Then m is a rational integer. If
m = +1, then F and aG are Z-equivalent and, therefore,

77! Aut(F)T = Aut(aG) = Aut(G).

Assume m # +1. Define the homomorphism ¢, from Aut(F) into
GL(n,Z/mZ), by o(U)=U mod m. Let

H:={QeAut(F): T"'QT e Aut(G)}.

Then ker w is a subgroup of H. In fact, if U eker w, then U =1 mod m.
That is, U =1+ mA, where A is integral. Then

T'UT =T "I+ mA)T =1+mT'AT

is integral, because mT ! = Adj(T) is integral. Hence T 'UT is an auto-
morph of G, because

(T'UT)'aG(T'UT) = T'U'FUT = T'FT = aG.

Therefore U € H. The group H is a finite index subgroup of Aut(F), because
it contains ker w and GL(n,Z/mZ) is a finite group. Now, K := T 'HT is a
finite index subgroup of Aut(G), because it contains ker #, where the homo-
morphism 7, from Aut(G) into GL(n,Z/mZ), is defined by #(V) =V mod m.
In fact, K = {P e Aut(G) : TPT~! € Aut(F)}, and similar arguments as above

apply. Defining M = T/\/|a|, ¢ =-% we have

" al
M'FM = T'(F/|a|)T = ¢G
and
M~"HM = (\/|a|T""H(T/\/]a|) = T"'HT = K.
This concludes the proof.

Next, we will show that the converse is true for hyperbolic forms. It is
probably true for all indefinite forms, n > 3.

LemMmA 1. Let h be an element of GL(n,R) with an eigenvalue ). such
that the kernel of h — Al is a 1-dimensional (h-invariant) vector subspace V of
R". If z belongs to the centralizer of h in GL(n,R), then z(V)=1V.
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ProOOF. Assume that z belongs to the centralizer of 4 in GL(n,R) and let
ve V. Then hz(v) = zh(v) = Az(v). Hence z(v) e V. Hence z(V)=V.

Recall that a projective reference in R" is a set of 1-dimensional vector
subspaces {V71,..., Vy; Vui1} such that Vy,..., V, are linearly independent, and
V.11 1s in general position with respect to Vy,..., V,. It is well known that an
element of GL(n, R) fixes a projective reference if and only if it is of the form
A, where A is a real number and 7 is the identity matrix.

Let F be an m-ary, hyperbolic quadratic form, n > 3. It represents a
quadric Qf in the real projective space RP"~! that bounds a topological ball.
The interior of this ball is a model (Klein model) of hyperbolic (n — 1)-space
H,’?l, and its group of isometries is the orthogonal group (isomorphic to
O(n, 1)) of the given quadratic form. A hyperbolic (or loxodromic) isometry is
an orientation-preserving isometry with two fixed points “at infinity” (that is,
on Qp). Other orientation-preserving isometries are either elliptic (fixing a
point inside Q) or parabolic (with just one fixed point “at infinity™).

ProprosSITION 3. Let F be an n-ary, hyperbolic, quadratic form, n > 3, and
let h be a hyperbolic isometry of F. If ze GL(n,R) commutes with h then
z(x) =x and z(y) =y, where x and y are the fixed points of h at infinity
(in OF).

Proor. The isometry 4 is a hyperbolic isometry, that is, a hyperbolic
translation along a geodesic y, of (n— 1)-hyperbolic space Hl’é_l whose
endpoints x and y are at infinity. That is, there is a 2-dimensional / invari-
ant subspace W), which is the direct sum of two 1-dimensional A-invariant
subspaces Vj, and V) with real eigenvalues 4, <1 and A, >1 such that
Jnty=1; and there is a (n— 2)-dimensional /-invariant subspace W, (the
“polar” of xy) such that F, restricted to it, is definite, and, therefore, #,
restricted to W), has no real eigenvalues different from +1. Hence the kernel
of h — ;1 is equal to the 1-dimensional (h-invariant) vector subspace V), of R”,
and similarly, the kernel of 4 — ;1 is equal to the 1-dimensional (h-invariant)
vector subspace V). Since z commutes with A, z(x) =x and z(y) =y, by
Lemma 1. This completes the proof.

COROLLARY 2. Let F be an n-ary, hyperbolic, rational quadratic form,
n >3, and let H be a finite index subgroup of Aut(F). Then the centralizer of
H in GL(n,R) is the set of diagonal matrices AI, where 1 is a real number and T
is the identity matrix.

ProOF. The orbifold HJ'/Aut(F) is complete and of finite volume
([5]). Tt has a finite orbifold covering H}! /H that shares these two properties.
Hence the limit set of H is Qp ([15, Theorem 12.2.13]). This limit set is
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the adherence of the set of fixed points of the hyperbolic isometries in H
([15, Theorem 12.2.4]). Hence this set contains a projective reference. By
Proposition 3, z fixes the points of this reference. Hence z = AI, where 4 is a
real number and [/ is the identity matrix. This concludes the proof (compare
[15, Corollary 2 to Theorem 12.2.6]).

ProrosITION 4. If F and G are two binary, hyperbolic, commensurable
rational quadratic forms, then they are projectively equivalent.

Proor. Here F and G are P-equivalent to diagonal matrices {1,—Ag)
and <1, —A4¢), respectively, where Ar and A4 are square-free positive integers.
(In fact, F is Q-equivalent to a diagonal matrix, say <{a,b), which is P-
equivalent to ala,b) = {a® ab), which is Q-equivalent to {1,—Ar).) It is
known (see [10]) that Aut®({l,—4z)) is isomorphic to C, x C.,, where the
cyclic group C; is generated by the automorph {—1,—1), and the infinite cyclic
group C,, is generated by the automorph

Po qodr

9% po |
where py and ¢o are integers such that (i) p3 — ¢34 = 1; (ii) qo >0, po > 1;
and (iii) pp is minimal among the pairs (p, g) satisfying the conditions analogous

to (i) and (ii). Since F and G are commensurable, {1, —4r> and {1, —4s) are
commensurable, by Proposition 2. Thus, there is a real matrix such that

M1, —4py)M = £{1, -4y

and

ald qdr M| P2 lreYile
q1 D1 q9 D2

where ¢; and ¢, are non-zero integers. Since the eigenvalues (p; — ¢1v4p,

p1+qivVArp) and (p2 — o/ 46, p2 + @2/ 4g) coincide, and Ap and Ag are
square-free, it follows that A = Ag. This concludes the proof.

THEOREM 2. If F and G are n-ary, hyperbolic, rational quadratic forms,
n >3, such that there is a real n x n matrix M such that M'FM = +G, and
there is a finite index subgroup H of Aut(F) such that M~'HM is a finite index
subgroup K of Aut(G), then M = \/rT, where T is an integral matrix and r is a
positive rational number. Hence F and G are projectively equivalent.

ProoF. Denote by #y,...,h, a system of generators of H ([5]). Then
ki=M"'"hM, i=1,....,m generate K. The h; and k; are integral matrices.
Denote by X = (x;) an n x n matrix with entries the n*> variables x;. Then
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hiX = Xk;, i =1,...,m is a homogeneous system of mn? linear equations, with
integer coefficients, in the variables x;. Denote by S the integral matrix of
the system. This is an mmn? x n”> integral matrix. Its rank is less than n?
since X = M is a solution. Let X = T be another solution. Then 7 !'4,T =
ki=M"'h;M. Hence (MT “)h(TM~')=h; Since h; generate the sub-
group of finite index H of Aut(F), MT~! belongs to the centralizer of H
in GL(n,R). Then, according to Corollary 2, M = AT, where /. is a real
number. Therefore, the rank of S is exactly n?> — 1. Then, since S is integral,
the solutions are of the form AN where N is an n x n integral matrix. In
particular, M = pN for some real number p that we can assume positive
(otherwise change the sign of N). Then M'FM = p>N'FN = +G. Therefore
p? is a positive rational number r and therefore M = pN = /rN, as we
wanted to prove. Hence F and G are projectively equivalent. This concludes
the proof.

We group together these results:

THEOREM 3. Let F and G be two n-ary, hyperbolic, rational quadratic
forms. Then they are commensurable if and only if they are projectively
equivalent.

ExampLE 1. The diagonal, ternary, integral quadratic forms F = {1,1,-8)
and G = {—1,1,1), with determinants —8 and —1 respectively, are commensur-
able. Even more, Aut F and Aut G both act in the hyperbolic plane H* and
the quotient hyperbolic orbifolds coincide, which implies that there is an isometry
of H? sending F to G and Aut F to Aut G. This common hyperbolic orbifold

is the hyperbolic asymptotic triangle t with angles 0,5,5. We can be more
specific.  The reflections
1 0 0 32 =2
g1 = 0 0 -1 ) gz:<1717_1>a g3 = -2 -1 2
0 -1 0 2 2 -1

in the edges of t generate Aut(G). Let M be \%N, where

—4 0 12
N=|3 1 -8
-3 1 8

Then M'GM = F and, moreover, M~'g;:M, i =1,2,3, are the matrices

-8 3 247 [-3 0 8
A,-1,15, 13 0 =8|,|0 1 0],
-3 1 9 -1 0 3
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which generate Aut(F). Since the forms F and G are commensurable, they must
be projectively equivalent. In fact N'GN = 2F.

4. The Conway’s invariants of Q-equivalence

Since F X G if and only if there is a nonzero square-free integer a such
that F 2 aG, one expects that a system of invariants for projective equivalence
will be obtain from known systems of invariants for rational equivalence.
We will prove this expectation through the invariants introduced by J. Conway
in [7]. For the sake of the reader, we start explaining carefully these
invariants.

4.1. The Jacobi Symbol after Conway. Following Conway [7], it will be
convenient to consider —1 as a prime number.

If S is a finite set, denote by X's the group of bijections (or permutations)
of S, and recall that a given permutation ¢ € X is called even (resp. odd) if,
when written as a product of (non necessarily disjoint) cycles, the number of
even cycles, in the product, is even (resp. odd). This defines a homomorphism
of 1 Xs — Cy, where Cy is the cyclic group of order k, by setting .o7(o) = 0 if
and only if ¢ is even.

Let a, n be two coprime integers, n odd (in particular, since —1 is prime, a
and n are not both negative). Multiplication of Z by a defines a permutation
of of the set of classes of Zmodn. Define the Conway symbol [¢] as
4./(of) mod 8. That is:

@10 mod, if o s § " (4.1)
4 odd

Then, by definition:

(of course, formula (4.2) implies a > 0), and

{“ J;k”} - H . keZ 4.3)

Moreover

since .o/ (0¢.07) = /(%) + 4 (a?).

n n



On integral quadratic forms 381

For example, n = 11, a = —3. Distribute the classes of Z mod 11 into 5

negative classes, 1 zero class and 5 possitive classes as follows (5 is the integer
part of 11/2):

{-5,-4,-3,-2,-1,0,1,2,3,4,5}
Then

N -5 4 -3 -2 -1 0 1 23 4 5
0‘:
1 4 1 -2 -5 3 0 -3 52 -1 —-4)

which is the product of the even permutation:
-5 4 -3 -2 -1 01 2 3 45
-4 -1 -2 -5 -3 0 3 5 2 1 4
with the transpositions (3,-3), (1,—1) and (4,—4). Therefore o;; is odd.
Hence [7i] =4 mod 8.
In general [ﬁ] is 4s¢ mod 8, where s? is the number of negative classes in the

lower half right part of (*).
For instance

[—_1}:{0 mod8if{n:1m0d4 : (4.5)
n 4 n=—1 mod4

because s, ! is the integer part of /2, which is even if and only if n = 1 mod 4.
It follows from (4.3) and (4.4) that

[;—j =0 if «=x*> modn (4.6)

The converse is not true ([5'] =0, but —1 is not a square mod 9). However,

the converse is true if n is prime. In this case, it is well known that there is
a primitive root mod n. This is an integer p, 0 < p < n, such that ¢ is an
(n—1) cycle. Since this cycle is an even cycle, the permutation ¢ is odd.
Hence [£] =4 mod 8. Then

is zero if and only if k is even (4.4). (Note that the powers of p run over all
nonzero classes of Z mod n.) Hence, if [¢] =0, then a = p** mod n. Hence
a is a square mod 7.

Thus, if n is prime then [ﬂ =0 if and only if a is a square mod n.
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REMARK 2. Jacobi defined [g] for coprime a and n, n prime, to be 0 if
and only if a is a square mod n, and extended this definition to n = p; ... px,
where pp,..., p; are prime numbers, by setting

=l a

Pr
Zolotarev gave meaning to [¢], for a general n, by defining [¢] as in the
present section. Therefore, to show that Jacobi and Zolotarev definitions
agree, (4.7) has to be proved. This follows from (4.4) and the so called
Quadratic Reciprocity Law, to be proved later.

Next, we prove that

m - [nf‘tka} . kel (4.8)

Consider the case n =11, a=3. Recall that [}]=4s{, mod 8, where s, is
the number of negative classes in the second row of

01 2 3 4 5
x3]
036 9 12 15

The classes 6 = —5 mod 11 and 9 = —2 mod 11 are negative. Hence s;, = 2.
Hence [£]=0 mod 8.
Analyzing this process closely, we see that we divide the interval

3[0,12—1] = {0,3%} = [0,16.5]

into ¢ = 3 parts

117 11 11 11 11

Bl I Bl Ml B By Yl St

b3} [55) 2)
to which we assign alternate signs +,—,+. A given class mod 11, falling in
one particular interval, has the sign assigned to this interval. For instance, the
classes 0, 3 fall in the first interval (+ sign); 6, 9 fall in the second (— sign); and

12, 15 fall in the third (+ sign).
Now, if we pass from n=11, a=3 to n=114+2x3=17, a =3, the

three intervals are now
171 [17 .17 17 .17
o372 T g
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That is,

11 11 11 11 11
[0,7+3} [7+3,27+6], [27+6,37+9],

and, now, in each interval fits one more class:
11
{0,3,6} € 0,7—#3

11 11
{9,12,15} € [7+3,27+6}

{18,21,24} € [%+3,2%+6].

Iterating this process once more (passing from n=11, a=3 to n=
11 +4 x 3 =23, a=3), each one of the three intervals will contain fwo more
classes than in case n = 11, @ = 3. Thus, the number of negative classes mod 2
does not change: 7| =s7|.4,3 =s3; mod 2. Therefore, in general

a a
o ez

as we wanted to prove.
For instance,

21 2

n|  |n+8k|’
and there are only two possibilities: 7 = +1 mod 8 or n = +3 mod 8. In the
first case

while in the second case

3]s

because 2 is not a square mod 3. Therefore,

H {0 mod 8 if {"_il mod § (49)
n 4 n=43 mod 8
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THEOREM 4 (Quadratic Reciprocity Law). Let m and n be two coprime odd
integers. Then

[ﬂ} . {%] — (m—1)(n—1) mod 8

Proor. Case 1. m=1 mod4, n=—1 mod4

Then m+n=0 mod4. Write m+n=4a. Assumen>m. Thenn>0
because m and n are coprime (in particular they cannot be both negative).
Then a > 0. Then

-
e R

Case 2. m=1 mod4, n=1 mod4
One of m, nis > 0. Assume m > 0. Then

ﬂ(@)ﬂ(ﬁ)j(ﬁ)i_i_ﬁ(ﬁ)ﬁ
n o —n o m o m m o m
Case 3. m=—-1 mod4, n=—-1 mod4
One of m, nis > 0. Assume m > 0. Then

B e P o M R )

which is congruent with [Z]+4 (m—1)(n—1) mod8. This completes the
proof.

From this theorem, (4.7) follows. For instance, let a, p, ¢ be odd integers.
Then, from (4.4) and the Quadratic Reciprocity Law, we obtain:

2] e tmeres-sn -] s

because a — 1 =0 mod 2 and (pg+ p+ ¢ —3) =0 mod 4.

4.2. The Conway’s p-excesses. Following Conway [7], we will define a set
of invariants (Conway’s p-excesses) that classify rational quadratic forms up to
Q-equivalence.
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Since a rational quadratic form is Q-equivalent to a diagonal integral one,
the p-excesses will be defined for these forms.

Start with an l-ary such form F = <a). For each prime number p (-1
included), write F = {p*A4), where p and A are coprime (if p = —1, 4 > 0),
and define the p-excess e,(F) as follows:

Case 1: p=—1. Define

0o . a>0
G(F)=p*—-1= f
e1(F)=p { 21{a<0

Case 2: p=2. Define

1-4
(1-0+[

X €ven

ex(F) = (1= )+ [ 2] moas = { ¢ odd

} mod 8, if{

Case 3: p an odd prime. Define

x A 0 .~ [ x even
ep(F)=(p —U-i—{;} mOdg_{(p—IH-[ﬂ mod 8, if {x odd

Next, let F = {ay,...,a,y be an m-ary, diagonal, integral quadratic form.
Define the Conway’s p-excess as

61,(F) = Zep(<ai>) mod 8
i=1

Among all the p-excesses, —1 included, the following Global Relation
holds:

Ze,,(F) =0 mod 8
P

The reduced determinant of an m-ary, diagonal, integral quadratic form
F, written det, F, is obtained from det F = py' ... p;* by reducing mod 2 the
exponents xi,...,x; of the different primes p,..., px (—1 included) entering in
the decomposition of det F in product of powers of prime numbers. It is well
defined up to Q-equivalence.

The Conway’s p-excesses and the reduced determinant of an me-ary,
rational quadratic form F are, by definition, the Conway’s p-excesses and
the reduced determinant of any m-ary, diagonal, integral quadratic form Fj,
Q-equivalent to F.

THEOREM 5 (Conway’s formulation of the Hasse-Minkowsky Theorem).
Two m-ary, rational quadratic forms are rationally equivalent if and only if they
have the same reduced determinants and the same Conway’s p-excesses.
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We will call these invariants the Conway invariants ¢(F) of F, and we will
codify them as follows:

C(F) = [Av (_176—1(F))7 (2762(}7))’ (plvePI(F))7" 'v(p/ﬂePk(F))]v

where 4 =det, F, and py,..., pr are the odd primes, in increasing order, such
that e, (F) # 0 mod 8. Note that the sequence pi,..., pr is finite, because,
if an odd prime p fails to divide det F, then there exists a diagonal integral
quadratic form Fj, Q-equivalent to F, such that p ydet F| [10] . This implies
that e,(F) = e,(F1) =0 mod 8.

EXAMPLE 2. F ={(—1,7,7,75%, G=<(=7.1,1,15%. Here F 2 G, because

C(F) - [777 (715 72)’ (230)5 (752)} = C(G)

5. Invariants of projective equivalence

5.1. Binary forms. The reduced determinant is the only invariant of projective
equivalence of a binary, integral quadratic form.

In fact, assume that two binary, diagonal, integral quadratic forms F =
{aj,ary, G = <{by,by) have the same reduced determinant A. Then F £ G,
because

ayary X arday,any 2 <1, 4)

Cbrybyy £ bi<by,byy R <1, 4

On the other hand, if F and G are two binary, diagonal, integral quadratic
forms such that F X G, then det, F = det, G, by Proposition 1.

5.2. Odd dimensional forms. Let F' be an odd dimensional, integral quadratic
form. Then, the dimension of F, together with the p-excesses of the integral
quadratic form (det, F)F, constitute a complete system of invariants of pro-
jective equivalence:

ProPOSITION 5. Two n-ary integral quadratic forms F and G, n odd, are
projectively equivalent if and only if (det, F)F and (det, G)G are rationally
equivalent.

REMARK 3. Note that the reduced determinant of the form (det, F)F is 1.
From the relation (5.1) below, it follows also that two n-ary integral quadratic
forms F and G, n odd, are projectively equivalent if and only if (det, G)F and
(det, F)G are rationally equivalent.
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PrOOF. Assume F 2 G. Then F 2 aG, for some nonzero square-free
integer a. Then det F = r? det(aG), where r is a nonzero rational number.
Since n is odd, this implies that det F = as® det(G), where s is a nonzero
rational number. Then

F R 4G 2 (as® det G det G)G = (det F det G)G (5.1)

But (det F det G)G 2 (det, F det, G)G, because det F = b? det, F, for some
integer . From which it follows that (det, F)F and (det, G)G are rationally
equivalent. Conversely, if (det, F)F and (det, G)G are rationally equivalent,
then F and G are projectively equivalent, by definition.

We deduce the following important result:

COROLLARY 3. Two m-ary integral quadratic forms F and G, n odd,
are projectively equivalent if and only if their adjoints Adj F and Adj G are
rationally equivalent.

Proor. Since every integral quadratic form F is projectively equivalent to
its adjoint Adj F (Corollary 1), then F £ G if and only if AdjF £ AdjG.
And by the above Proposition, Adj F £ Adj G if and only if det,(Adj F) Adj F
< det,(Adj G) Adj G. Since the reduced determinants of Adj F and Adj G
are 1, the corollary follows.

Therefore, a complete set of projective invariants of an n-ary, n odd,
integral quadratic form F is the set of Conway’s excesses for every odd prime p
(—1 included) of the adjoint form Adj F. Now, if the odd prime p # —1 fails
to divide det F, then ¢,(Adj F) =0 mod 8. But if p divides det F, then the
maximal power of p dividing det Adj F = (det F)"' is even, and, therefore,
e,(Adj F) =0 mod 4 (compare with Proposition 7). Moreover

—2(n—1)<e_(AdjF) <0
and e_1(Adj F) =0 mod 4. Thus,

THEOREM 6. A complete system of projective invariants of an n-ary, n odd,
integral quadratic form F is e_1(Adj F), together with the set of odd primes
p > —1, for which e,(Adj F) # 0 mod 8.

A convenient way of offering these invariants is to write invp F = [n;d; 5],
where

d:—e_l(Ade)7
4
and where S is the product of the odd primes p> —1 for which

e,(Adj F) #0 mod 8.
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Some of the implications of these invariants are studied in the forthcoming
paper [14].

For instance, to see if the diagonal ternary forms F = {—1,1,7) and
G = {1,—1,-3) are projectively equivalent, we have to check if their adjoints
Fi={,-7,—1) and G; = {(3,-3,—1) are rationally equivalent. And, in-
deed, they are, because their Conway invariants coincide:

c(Fr) =[1,(=1,-4),(2,4)] = c(G)
On the other hand, the forms F and G are not Q-equivalent, because
o(F) =[-7,(=1,-2),(2,4),(7,6)]
and
«(G) =[3,(=1,-4),(2,6),(3,06)]

are different.

5.3. Even dimensional forms. The even dimensional case is more difficult than
the odd one. Before finding a complete set of invariants, we need a number of
definitions and of auxiliary results.

Since every diagonal, integral quadratic form is Q-equivalent to a square-
free one (i.e. one with all its entries square-free), we start this section by re-
peating the definitions of the Conway’s p-excesses when F = {a) is square-free:

Case 1: p=—1. Define

0 . >0
e 1(F) :{_2 if {Z<o (5.2)
Case 2: p=2. Define
l—a . . fodd
er(F) = { (1—a/2) + [732} mod 8, if a is {even (5.3)
Case 3: p an odd prime. Define
0
o [pha
F) = a f 4
ey(F) {(p—U%—[%} mod 8, i {pa (5.4)

5.3.1. Some definitions. Let F be a diagonal, integral quadratic form of
even dimension 2d(F). Denote by n(F) the set of odd primes (—1 included)
dividing the reduced determinant det, F of F (the letter n suggests ‘“‘no-
square”).

The number s(F) (resp. #(F)) is defined to be 0 if the number of elements
pen(F) such that p=—1 mod 4 (resp. p = 43 mod 8) is even. Otherwise
s(F) (resp. t(F)) is defined to be 1.



On integral quadratic forms 389

We define another number o(F) with values {0,1}: o(F) is 0 if and only
if det, F is odd (the letter o suggests “odd”).

If ¢, (F) (resp. ¢_(F)) is the number of positive (resp. negative) diagonal
entries of F, then the Sylvester signature of F is defined to be & (F) —¢_(F).
Note that 2d(F) =¢,(F)+e_(F). Therefore, 2d(F), together with the Syl-
vester signature of F, determine &, (F) and e (F). In these terms, the
Conway’s —1-excess of F is e_|(F) = —2¢_(F). Let ¢(F) denote the smallest
of the two numbers ¢, (F) and ¢_(F). Then 0 < ¢&(F) < d(F) will be called
the Sylvester partition of F.

5.3.2. Projective invariants. Let F' be a diagonal, integral quadratic form of
even dimension 2d(F). In the remaining of the section we will prove that the
following collection of numbers is a complete set of invariants of projective
equivalence among forms of the same even dimension:
(1) The reduced determinant det, F of F.
(2) The Sylvester partition ¢(F) of F.
(3) The 2-excess es(F) of F, if det, F = (—=1)?") mod 8. Otherwise, this
number e,(F) is not included among the invariants.
(4) The g-excess e,(F) of F, if g ¢ n(F) and ¢ # —1 is an odd prime such
that
det, F

2(q — 1)d(F) + [T} =0 mod 8

Otherwise, this number e,(F) is not included among the invariants.
Note that if ¢ tdet F then e,(F) =0. Therefore the set of nonzero
e,(F)’s is finite.
We call this set of numbers the projective invariants p(F) of F, and we
codify them as follows:

p(F) = [A78(F),(2,€2(F)) or _7(‘]178611 (F>>7"'>(Qk>eqk(F))]v

where 4 = det,, F, and the ¢, ..., g are placed in increasing order, and the list
contains only those with e,(F) # 0 mod 8.

To prove that these numbers constitute, in fact, a complete set of pro-
jective invariants, we need some auxiliary results.

5.3.3. Auxiliary propositions.

ProPOSITION 6. Let F be an integral quadratic form of even dimension
2d(F). Then det, F = (—1)d<F> mod 8 if and only if

(o(F),d(F) + s(F), (F)) = (0,0,0) mod 2
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ProOF. By definition, the number s(F) is 0 if the number of elements
pen(F) such that p=—1 mod 4 is even. Hence o(F) =0 and s(F) =0 if
and only if det, F=1 mod4. Hence o(F)=0 and s(F)=d(F) mod?2 if
and only if det, F = (—1)““) mod 4. On the other hand, the number #(F) is
0 if the number of elements p € n(F) such that p = +3 mod 8 is even. Hence
o(F)=0 and #(F) =0 if and only if det, F = +1 mod 8. Finally,

(o(F),d(F) + s(F), ((F)) = (0,0,0) mod 2
if and only if det, F = (—=1)/") mod 8. This concludes the proof.

PrROPOSITION 7. Let F and G be two diagonal, integral quadratic forms of
the same even dimension such that n(F) =n(G). Then

ey(F) —ey(G) =0 mod 4,

for all primes p (—1 included). Moreover, if p is an odd prime such that
p¢n(F)=n(G) then

ey(F) =¢,(G) =0 mod 4.

PrOOF. We can assume that F and G are square-free, because any F can
be reduced to a Q-equivalent, square-free, diagonal, integral quadratic form.
Let p be an odd prime (—1 included). Let p* (resp. p”) the maximal power
of p dividing det F (resp. det G). Then ¢,(F) =x(p —1) mod 4 and ¢,(G) =
y(p—1) mod4. Since n(F)=n(G) then x =y mod 2. Hence

¢(F) = ¢,(G) = (x— »)(p— 1) = 0 mod 4.

By the global relation,

e(F)=— Z e,(F) mod 8.

p odd

Hence

e(F) —e(G) = — Z(e,,(F) —¢,(G)) =0 mod 4.
p odd

If the odd prime p ¢ n(F) =n(G), then x =y =0 mod 2. Hence
ep(F)=x(p—1)=0 mod 4

and
e,(G)=y(p—1)=0 mod 4

This completes the proof.
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ProprosITION 8. Let G be a diagonal, integral quadratic form of even
dimension 2d. Let b be a square-free, nonzero integer. Then
(1)  The value of e_1(bG) —e_1(G) is 0 if b> 0, and it is 4(¢_(G) — d) if
b <.
(2) For every odd prime p (—1 included), the value of e,(bG) — e,(G) is
(a) [%} mod 8, if p b and p e n(G).
(b) 0 modS8, if pkb and p ¢ n(G).
© 20p—1)(1+d)+[22]+ [2292] mod 8, if plb and pen(G).
(@ 2(p—1)d+[*2%] mod8, if plb and p¢n(G).
(3) If b is odd, the value of e2(bG) — ex(G) is

2(b—1)(d + 5(G)) + o(G) E} mod 8.
(4) If b=2by, by odd, the value of e,(2b1G) — e>(G) is

2(by — 1)(d + 5(G)) + o(G) L%] + 4¢(G) mod 8.
In particular
e2(2G) — e2(G) = 4t(G) mod 8

Proor. We may assume that G is a diagonal, square-free, integral quad-
ratic form. If b > 0, clearly e_;(bG) =e_1(G). If b <0, then

e1(bG) — e1(G) = =2(2d — &_(G)) — (~2¢_(G)) = 4(e_(G) — ),

and this completes the proof of part (1).
If p=—1, it follows from (1) that the value of e_;(bG) —e_1(G) is

0 b>0
{4(1+d) mod 8 if {b<0 and —1en(G),
4d b <0 and —1¢n(G)

because ¢_(G) is odd if and only if —1en(G), that is, if and only if
det, G < 0. This proves part (2) for p = —1, because

{b/(_—ll)} . [det,, (_;{(—1)

}:0 mod 8

if b<0 and det, G < 0; and

{det”l G} —0 mod 8

if det, G > 0.
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If p# —1 is an odd prime, let p* be the maximal power of p dividing
det G. If pLtb:

e,(bG) — e,(G) = x[%] mod 8.

Hence, if pen(G), x is odd and this proves (2a), while if p ¢ n(G), x is
even and this proves (2b). Assume pl|b, that is b = pb;, where p and b; are
coprime. Then, ¢,(bG) —¢,(G) mod 8 is:

e)(pb1G) — ¢)(G) = (2d — 2x)(p — 1) + (2d — x) [%] N [M} 7

p

where « =0 if p ¢ n(G), and « =1 if pen(G). Hence, if p en(G), x is odd
and « =1, and this proves (2¢), while if p ¢ n(G), x is even and o =0, and
this proves (2d).

By (24), (2b) and the global relation, €;(2G) —e;(G) mod 8 can be
written:

- > (626)—¢(G) = > F]_M(G) mod 8,
p odd prime pen(G) P

because {ﬂ =4 mod 8 if and only if p =43 mod 8. This proves the par-

ticular case of part (4).

Next, we prove part (3) by induction in the number of (odd) prime
numbers (—1 included), dividing b. Thus, assume, first, that b ¢ n(G) is an
odd prime. By the global relation, —e;(bG) + e2(G) mod 8 can be written as
follows:

D (ep(bG) — )(G)) + (e(bG) — €5(G)) mod 8
p#b,odd

Using (2a) and (2b):
D (ep(hG) —e)(G)) = > H mod 8.
p#b,odd pen(G) p
And using (2d):

det, G
b

€b(bG) — eb(G) = Z(b — 1)d + |: :| mod 8.

Hence —ey(hG) 4 e2(G) mod 8 is:

2(b— 1)d + 0(G) H + Z)([ﬂ + {%D mod 8.

pen(G
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By quadratic reciprocity:
Plal2l —(p=1yb—1) mod 8
p) o) Y '
Hence —ey(hG) + e2(G) mod 8 is:
(b-1) (2d+ Z (p— 1)) +0(G) F} mod 8.
b
pen(G)
And, since »—1 =0 mod 2, and
dp-D= > (p-D+ > (p—1)=25G) mod4,
pen(G) pen(G) pen(G)
p=1 mod 4 p=—1 mod 4

we have

—e2(bG) + e2(G) =2(b — 1)(d + 5(G)) + 0(G) E] mod 8.

Since the terms in the rigth-hand part of this formula are all zero mod 4, we

can change their signs mod 8. This proves (3) if b ¢ n(G) is an odd prime.
Next, assume that b € n(G) is an odd prime. As before, using the global

relation, (2a), (2b) and (2¢), we can write —ex(bG) + e2(G) as follows:

P E] +2(b-1)(1+d)+ B] + [de'["TG/b} mod 8.
Hence —ey(bG) + e2(G) is:
2(b — 1)(1+d) + 0(G) [ﬂ +pen(;)\{b}<|:%] + [ﬂ) mod 8.

Note that 2(b — 1) = (b — 1)* mod 8, because b is odd. Note also, that all the
terms in the last expresion are zero mod 4. Then, quadratic reciprocity implies

that e;(bG) — e(G) can be written as follows:

(b—l)(2d+ (p—l))—f—o(G)[ﬂ mod 8.
pen(G)

As before:

e (bG) — e2(G) =2(b— 1)(d + s(G)) + 0o(G) {ﬂ mod 8.

This proves (3) if b en(G) is an odd prime.
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Next, assume part (3) is true if b is a product of k odd primes (necessarily
different from each other, because b is square-free). Take a new prime ¢ and
let us prove (3) for the number gb. We have

e2(ghG) — e2(G) = ex(ghG) — e2(bG) + e2(bG) — e2(G).

By the induction hypothesis, e;(¢bG) — e2(G) mod 8 is:

2g— 1)(d + 5(bG)) + o(bG) E] +2(b = 1)(d + 5(G)) + 0(G) E] .

Since det,(bG) = det, G, we have s(bG) = s(G) and 0o(bG) = 0o(G). Therefore,

e2(ghG) — e2(G) = 2(q + b —2)(d + 5(G)) + 0o(G) [q_zb} mod 8.

Note that ¢g+b—2=¢gb—1 mod4, because ¢ =b =1 mod 2. Hence part
(3) is true, for an arbitrary odd number b.
Next, we prove part (4). Let b =2b;, where b; is odd. We have

€2(2b1G) — ez(G) = €2(2b1G) — ez(blG) + 62(b1G) — EQ(G).

Using the particular case of part (4), already proved, we can write e;(2b,G) —
e>(G) as follows:

41(b1G) + 2(by — 1)(d + 5(G)) + o(G) [b%] mod 8.

Hence formula (4) follows, because #(h;G) = #(G). This completes the proof.
REMARK 4. From parts (3) and (4), we have

e(—G) — er(G)

7] mod 2,

d+s(G) =

N 82(26) — EZ(G)

1(G) = y) mod 2.

Using Proposition 6, these two formulas provide a different expression of the
third projective invariant.

PrROPOSITION 9. Let py,...,px be different, positive, odd prime numbers.
Let my,my,...,m; €{0,4}. Then, there are infinitely many prime numbers b
such that
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and
b
|:—:|:m,‘, l:1,7k
pi
Proor. For each index i=1,...,k, select an integer n; such that

|:ﬂ:| = m;, 0<n< Dis

Di
)
— | = my.
no

By the Chinese theorem of rests, there is an integer b; such that

and an integer ny such that

by = n; mod p;, i=1,...,k
and
by = ny mod 8.

Then b; and 8p;...p; are coprime. All the numbers b in the arithmetic
progression

b1+ h(8p1 ... pr), h=1,2,3...

satisfy

and

|:2:|=m,‘, izl,...,k
Di

By Dirichlet Theorem, this progression contains infinitely many prime numbers.
This completes the proof.

5.3.4. Projective classification theorem.

THEOREM 7. Two rational quadratic forms of the same even dimension are
projectively equivalent if and only if they have identical projective invariants.

Proor. Before starting the proof, note that F LG implies p(F) = p(G),
where p(F) denotes the projective invariants of F. Since a rational quadratic
form is Q-equivalent to a diagonal, square-free, integral quadratic form, we can
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assume that the forms F and G, in the statement of the theorem, are diagonal,
square-free integral quadratic forms.

We first prove that the condition in the theorem is necessary. That is,
if F £ G then p(F)= p(G).

Since F ~ bG, for some nonzero, square-free integer b, then the Sylvester
signatures of F and bG coincide. But the Sylvester signature of G equals +
the Sylvester signature of G according as if b is positive or negative. Hence

(e4(F),e-(F)) = (+(G),6-(G))
or
(&4 (F),e-(F)) = (6-(G),e1(G)).

In either case &(F) =¢&(G). Let ¢ denote ¢(F) = ¢(G).

On the other hand, F 2 G implies r? det F = 5> det G, where 2d is
the common dimension of F and G, and r is a rational number. Hence
det, F =det, G. Let 4, denote this common reduced determinant. We also
define:

Cramm 1. If F 2 bG, where b is a nonzero, square-free integer, and for
some odd prime q # —1, q ¢n,

2(g— )d + [%} =0 mod 8,
then
eq(F) = e,(G) mod 8.
Proor. If ¢ b, Proposition § implies
eq(F) —e4(G) = ¢4(bG) — ¢,(G) =0 mod 8.
If ¢|b, Proposition 8 implies

eq(F) —¢,(G) = ¢4(bG) — ¢4(G) =2(q — 1)d + [iﬂ mod 8,

and this is zero by hypothesis. This completes the proof of this claim.
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Cram 2. If F 2 bG, where b is a nonzero, square-free integer, and
det, F = (—1)9 mod 8, then ey(F) = e2(G).

Proor. By Proposition 6, det, F = (—l)d mod 8 if and only if
(0,d +5,t) =(0,0,0) mod 2.

If b is odd, Proposition 8 implies that e,(F) — e,(G) is

e (bG) —er(G) =2(b—1)(d+5)+o0 E} mod 8§,

and this is zero, because b—1=d+s=0=0 mod2. If b=2b;, b; odd,
Proposition 8 implies that e;(F) — ex(G) is
2
e(2b01G) —e(G) =2(by — 1)(d +5)+ 0 {b—} + 47 mod 8,
1
and this is zero because by — 1 =d+s=0=1t=0 mod2. This completes
the proof of this claim.

Therefore, we have proved that if F L G then p(F) = p(G). Next, we
prove the converse.

Assume that the forms F and G are diagonal, square-free, integral quad-
ratic forms of the same even dimension 2d, and with the same projective
invariants p(F) = p(G). We want to prove that F el

Define 4, = det,, F = det, G and

0:=0(F) =0(G)

Step 1. Replacing, if necessary, G by —G, we can assume that p(F) =
p(G), and, moreover, that

e_1 (F) =é€_ (G)

Indeed, since G £ G

Step 2. Let a be the product of all the odd primes

r#—1, rén
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such that
e(G) —e(F) #0 mod 8

This is well defined, because it is a finite product. Indeed, if an odd prime r
fails to divide both det F and det G, then

e(G) =e,(F) =0 mod 8.
Consider aG. Then G £ aG implies
p(F) = p(G) = p(aG).
Moreover, since a > 0,
e_1(F)=e_1(G) = e_1(aq).
Next, we prove that
eq(aG) — e,(F) =0 mod 8,

for every odd prime ¢ # —1, g ¢ n.
In fact, if g ta, then

eq(aG) — e,(G) =0 mod 8,

by Proposition 8, and
e,(G) —e,(F) =0 mod 8,

by definition of @. And, adding up these two relations, we obtain
eq(aG) — e,(F) =0 mod 8.

But if g|a, then by Proposition 8:
Ay
e,(aG) — e4(G) =2(q — 1)d + {?} mod 8

Now, this has the only possible values 0 or 4 mod 8 (Proposition 7). It cannot
possibly be zero, otherwise both e,(G) and e,(F) would be part of the list
of projective invariants of F and G, respectively, and as such they should
coincide, which is not the case, since by definition of a,

eq(G) — e4(F) # 0 mod 8.

Now, the value of this last formula is 4 by Proposition 7. Hence, adding up
the last two relations, we finally obtain

e,(aG) — e,(F) =0 mod 8.
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Therefore, by replacing, if necessary, aG by G, we can assume that our original
forms F and G, besides having the same projective invariants p(F) = p(G),
they enjoy the following properties:

e,l(F) = efl(G).
and
e,(F) = ¢4(G) mod 8

for every odd prime g # —1, ¢ ¢ n.
Step 3. By Proposition 7, for every odd prime p # —1, pen,

ey(G) —e,(F) =0 mod 4.
Hence, by Proposition 9, there are infinitely many primes » such that b > 2,

bkydet F, b ydet G and

E] = ¢)(G) — ¢;(F) mod$8,

for every odd prime p # —1, pen.
For such numbers b, since G £ bG,

p(F) = p(bG) and e ,(F) = e_1(bG).
Next, we prove that
e, (bG) —e,(F) =0 mod 8§,
for every odd prime r # —1, r # b. In fact,
e (bG) — e,(F) = e,(bG) — e,(G) + e,(G) — e,(F) mod 8.

And this is zero mod 8, because if ren, then, by definition of » and by
Proposition 8:

e:(G) — ¢,(F) = [9] = ¢,(bG) — ¢,(G).

’
And, if r¢n, r # b, then

e (bG) — e,(G) = 0 mod 8,
by Proposition 8, and

e,(G) —e.(F) =0 mod 8,

by hypothesis.
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Remember that we have an infinitude of b’s satisfying the previous con-
ditions, and, since all such b’s are odd, Proposition 8 implies

e (bG) —er(G) =2(b—1)(d+5)+o0 {ﬂ mod 8,

and, if we can, we want to select b in such a way that
ez(bG) — EQ(G) = BQ(G) — ez(F) mod 8.

There are three cases in which this selection can be made. There will be a
remaining case, for which » must be defined ex novo.

Case 1. ¢,(G) —ey(F) =0 mod 8.

Select, as we can (Proposition 9), b =1 mod 8. Then

[ﬂ =0 mod 8.
Therefore
ez(bG) — EQ(G) =0 mod 8.

Case 2. ¢(G) —ey(F) =4 mod 8, and s+d =1 mod 2.
Select (Proposition 9) » = —1 mod 8. Then

[ﬂ =0 mod 8.

Therefore,
er(bG) — e(G) =2(b—1)(d +s) =4 mod 8,

because s+ d =1 mod 2.
Case 3. e3(G) —ex(F) =4 mod 8, and s+d =0 mod 2, o= 1.
Select (Proposition 9) » =3 mod 8. Then

E] =4 mod 8

Therefore,
ez(bG) — EQ(G) =4 mod 8.

In cases 1, 2 and 3 we obtain

e (bG) — e2(F) = e2(bG) — e2(G) + €2(G) — e2(F) = 0 mod 8.
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This, together with e_|(bG) =e_;(F) and ¢,(bG) =¢,(F) mod 8, for every
odd prime r # b, implies

ep(hG) = ep(F) mod 8,

by the global relation. Hence F Q bG, because det, hG = det, G = det, F.
P
Hence F ~ G, as we wanted to prove.
Only remains
Case 4. ¢3(G) —ex(F) =4 mod 8, and s+d =0 mod 2, 0 =0.
Here, t must be 1. Otherwise

(0,s+d,t) =(0,0,0) mod 2,

and this implies (Proposition 6) that e,(F) and e;(G) are projective invariants
of F and G, respectively. By hypothesis, they should coincide, and this is not
the case. Hence 1= 1.

Define b, ex novo, as a positive, odd prime number such that bt det F,
by det G and

- v

for every odd prime p # —1, p e n (Proposition 9 and Proposition 7). Then:
1: For every p # —1, pen, we can write e,(2bG) — e,(F) as follows:

e,(2bG) — e,(bG) + ¢,(bG) — ¢,(G) + ¢,(G) — ¢,(F) mod 8.

And this is zero, because (Proposition 8)

¢,(2bG) — ¢,(hG) = H ,

p
and
4 (66) - ¢,(G) = 2.
and
(G) - P = |2] + 2],

by definition of b.
2: For every odd prime p # —1, pé¢n, p#b we have

ey(2bG) — ey(F) = €,(2bG) — €,(G) + €,(G) — e,(F) = 0 mod 8,
because (Proposition 8)

ey(2bG) — e,(G) = 0 mod 8,
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and
e,(G) — e,(F) =0 mod 8,

by hypothesis.
3: e(2bG) — ex(F) can be written as follows:

e2(2bG) — e2(bG) + e3(bG) — 2(G) + e2(G) — ex(F) mod 8.
And this is zero, because by Proposition 8

2(2bG) — e(bG) = 41 = 4 mod 8;

and
er(bG) —er(G) =2(b—1)(s+d) +0E] =0 mod 8§,
because
b—1=s54+d=0=0 mod2;
and

ez(G) - EQ(F) =4 mod 8,

by the hypothesis of the present Case 4.
4: det, 2bG =det, G =det, F and e_;(F) = e_1(G) = e_1(2bG).
Therefore, since F and 2bG have the same reduced determinant and
the same p-excesses for all prime p # b, it follows (global relation) that also
ep(F) = ep(2bG). This implies that

F 2 26.

Hence F X G, as we wanted to prove.
This completes the proof of the theorem.

6. The projective classification of some particular even forms

THEOREM 8. There are at most two P-equivalence classes of 2d-ary integral
quadratic forms having the same square-free determinant A and Sylvester partition
a If4+# (—l)d mod 8, there is only one such P-class, namely {A,+1,...,+1),
where the appropriate signs are determined by a. If A= (—l)d mod 8 and
d # a mod 2, there are exactly two such P-classes, but if d =a mod 2, the
number of P-classes migth be one or two. For instance, if |A| is prime, there is
only one P-class.
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Proor. Let F and G be two 2d-ary integral quadratic forms with identic
square-free determinant 4 and Sylvester partition a. Since det F = det, F, the
only P-invariants of F are 2d, a, A, and the 2-excess e,(F) if

4= (-1)? mod 8.

In this case, F and G can only differ on the values of ¢;(F) and e;(G). But
ex(F) = e2(G) mod 4, since det, F = 4 = det, G (Proposition 7). Hence e,(G)
=e(F) mod 8, or e;(G) =ex(F)+4 mod8. Therefore, there are at most
two P-equivalence classes of 2d-ary integral quadratic forms having the same
square-free determinant 4 and Sylvester partition a. Note that, if

A4 # (—1)Y mod 8,

there is only one such class.

Let D be a product of different positive odd primes. Let a, d be integers
such that 0 <a <d. Let s; be the number of primes dividing D, and con-
gruent with —1 mod 4. Let ¢ be the number of primes dividing D, and
congruent with +3 mod 8. Let 4 = (—1)“D, and let s be the number of primes
(—1 included) dividing 4, and congruent with —1 mod 4. Note that s=
s1+a mod2. Assume s+d =0 mod2 and r=0 mod 2. We want to com-
pare the following two 2d-ary, square-free forms

F=<-1,4,-1,1,...,1,D)
and

G={(-D, 1,91 ~1,1,...,1>.

Here e (F)=e¢_1(G) and detF=detG=(—1)D=4. Moreover,
(0,s+d,t)=(0,0,0) mod2. These two forms F and G are, therefore,
P-equivalent if and only if e;(G) = e,(F) mod 8. Now

e(F)=2d—(—a+Q2d—-a—-1)+D)=2a+1-D
and
e(G)=2d —(—a+1+(2d —a)—D)=2a—1+D.
Thus
FLGoD=1mod4e s =0 mod2ed=a mod2,

because s; =s+a mod2 and d +s=0 mod 2, by hypothesis. Therefore, if
d # a mod 2, the 2d-ary forms F and G with the same square-free determinant
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A and the same partition a are P-inequivalent. But if d =a mod 2 and D is
a positive odd prime number, the only possible 2d-ary forms with the same
square-free determinant 4 = (—1)“D and the same partition a are just the
two forms F and G above, and these two are P-equivalent. However, if D is
not prime, anything can happen as the following examples show.

ExampLe 3. F=<1,1,1,19x 11>, G=<1,1,19,11>. Here a=d =
0 mod2 and 4=19x 11 =1 mod 8. However
er(F)=4—-(34+19x%x11)=0 mod 8
but

e(G)=4—(2+19+11) =4 mod 8.
Thus F and G are P-inequivalent.

ExampLE 4. <1,1,1,13 x5, <1,1,13,5>. Here a=d =0 mod2 and
A=13x5=1 mod8. However,

e(F)=4—-(34+13x5)=0 mod8
and

e3(G)=4— (2+13+5) =0 mod 8,

and there is only one P-class of quaternary, integral quadratic forms with deter-
minant 13 x 5 and Sylvester partition a = 0.

As an application of Theorem 8 we have:

COROLLARY 4. There are exactly two P-equivalent classes of quaternary,
hyperbolic, integral quadratic forms with square-free determinant A = —D, D > 0,
if and only if A=1 modS8. They are represented by F =<—1,1,1,D) and
G=<{(-D,1,1,1).

ProOF. Since d =2, a = 1, there are exactly two P-classes if and only if
A=(-1)“=1 mod 8.

It is very illustrative to compare the proof of P-inequivalence of F and G,
implicit in this Corollary, with the following geometric one.

First, use congruences mod 8 to show that F represents 0 but G does
not. This implies that the orbifold G :=H?/Aut(G) is compact, while F :=
H?/Aut(F) is not compact. Then, it is imposible that both orbifolds F and G
have a common finite orbifold-covering. It follows that Aut(F) and Aut(G)
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are not commensurable, and, as a consequence, F and G are P-inequivalent,
by Theorem 3.

7. Quaternary, hyperbolic, integral quadratic forms with reduced determinant
—1: the Picard form

Consider the projective classification of quaternary, integral quadratic
forms with the same reduced determinant and Sylvester partition. If the
determinant is square-free, this has been done in the previous section. Let
us consider forms with reduced determinant —1, to understand the possibilities.
For such forms, d +s=1 mod 2. Hence, besides the invariants d =2, a =1
and det, F = —1, the only projective invariants are the p-excesses e,(F), where
p runs over all positive odd primes such that

p

p

that is, such that p =1 mod4. Now, e,(F) =0 mod 8 if p fails to divide
det F. Hence we only need to consider the positive odd primes p dividing
det F and such that p =1 mod 4.

For instance, all the forms F, =<{-1,1,b,b> and G, = {(-b,b,1,1>, b
integer > 0, are P-equivalent to the Picard form (—1,1,1,1), because, if p|b
and p =1 mod 4, then

ep)((=1,1,b,bY) =2(p — 1) +2[¥] =0 mod 8,

and
e)({=b,b,1,1%) =2(p— 1) +2{b/p} + {_1] =0 mod 8.
p P
In fact
T(2)'F,T(2) = 2F,,
where
21 1 0
01 -1 0
TA=11 1 1 of
00 0 1
and

T(b)'F,T(b) =bF,, b>0 odd,
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where

S~
H

—
i
—_

>
o ouffe
O = O O
_—0 O O

Since the forms F, = {(—1,1,b,b) are all mutually commensurable, it is
interesting to find the rational number

vol (Fb)
vol(Fy)’

v(b) =

where vol(F;) denotes the volume of the hyperbolic orbifold F, := H? /Aut(F}).
I have calculated v(b), for a number of values of b, obtaining the following
results (to be published elsewhere):

1) If p=—1 mod4 is a prime number, then v(p) = L5~ H , 3 < p<100.
) If p=1 mod4 is a prime number, then v(p) = (> Zl 3<p<I10l.
) v(2) =3, 0(2%) =20(2), and v(2") = 22"2y(2), for 3<n < 7.

4) v(3") =32Dp3), for 1 <n <4.

5) 0(5") = 52=Dy(5), for 1 <n<2.

6) wv(ab) = v(a)v(bh), where a and b are coprime, and ab < 22.

he obvious conjectures remain open.
We end this section with another example.

2

/—\/—\

—~
(98]

—

,_]/—\

ExampLE 5. Consider H, = {—1,3, p,3p>, p prime, p =5 mod 12. Here,
det, H, = —1 and, as before, we only need to consider the positive odd primes ¢
dividing det H, and such that ¢ =1 mod 4. Hence, there is only one projective
invariant of H, to consider, namely

because p=1 mod 4. Since

[ 2 s

because p =2 mod 3, we deduce that all the forms H, are pairwise P-
inequivalent. There is an infinitude of them, due to the Dirichlet Theorem
on primes in arithmetic progression. The first three such forms are Hs, Hy;
and H29.
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8. Some historical comments

The theory of integral quadratic forms has geometric ramifications. In
1868 Beltrami ([1] and [2]) published the first models of the hyperbolic plane
H? (the pseudosphere, consisting on the interior of the plane circle of radius 1
together with a Riemannian metric of negative curvature) and of the hyperbolic
3-space H?. He also introduced the upper half-space model of H?, as the set of
points (u#,z) € C x R such that z > 0. The group of direct isometries being the
group PSL(2,C) of Moebius transformations.

Klein, following work by Cayley, developed a projective-geometric theory
that generalized Beltrami’s pseudosphere model. Namely, an (n+ 1)-ary real
quadratic form F with Sylvester signature n— 1 (a hyperbolic form, in this
article) represents a hyperquadric in the real projective n-space RP" that
bounds a topological ball. The interior of this ball is a model (Klein model) of
hyperbolic n-space H”, and its group of isometries is the orthogonal group
(isomorphic to O(n, 1)) of the given quadratic form. The three dimensional
half-space model of H? is related to the Klein model of the diagonal form
{—1,1,1,1) via stereographic projection ([11]; see the proof and comments by
Bianchi in [3]).

Motivated, perhaps, by Clifford’s discovery of a flat 2-torus inside spher-
ical 3-space, Klein stated the problem of enumerating all the (so called) forms
of Clifford-Klein. 1In actual language they can be identified with the geometric
orbifolds of constant curvature, complete and with finite volume (see [15]). A
number of illustrious geometers (Hermite, Picard, Klein, Fricke, Dick, Bianchi,
Poincaré, and later Hopf, Seifert and Threlfall among them) started the
investigation and the construction of these forms. The first noneuclidean
examples are the quotients of properly discontinuous groups acting upon
spherical and hyperbolic planes. The book by Fricke-Klein is one of the
best references. The heritage of Picard, Klein, Bianchi, etc. is the theory of
arithmetic groups, developed by Borel and Harish-Chandra and many others
(see [12] and [8]).

These groups are called arithmetic, because they are constructed using
arithmetic methods. For instance, in dimension three, the idea is to define a
subgroup G of PSL(2,C) (half-space model), or of O(3,1) (Klein model), such
that the entries of the matrices in G belong to a discrete subset of C (resp.
R). For instance, in dimension three, Bianchi, following work by Picard,
considered the set of homographies and antihomographies whose coefficients
are Gauss integers and with determinant 1 or i. This group (that we call
Picard’s group) is sent, via stereographic projection, to a subgroup of O(3,1)
conjugate to the discrete subgroup formed by all the 4 x 4 integral matrices
T such that T'FT =F, where F is the diagonal integral quadratic form
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(1,0,0,1)

(1,0,1,0)

Fig. 1. The 3-orbifold Q

{—=1,1,1,1) (the group Aut F of automorphisms of F). 1t is readily found that
the quotient of the action of Picard group on the ball of radius 1 is the
hyperbolic 3-orbifold Q depicted in solid lines in Fig. 1. The underlying
space of Q is a hyperbolic asymptotic tetrahedron with only one cusp-point
(1,0,0,1); the faces of the tetrahedron are mirrors; and the dihedral angles are
all right angles, excepted the indicated three angles.

W. Thurston discovered in 1976 that the topology and geometry of 3-
manifolds and 3-orbifolds (concept that he reintroduced and popularized) are
intimately related. Let us illustrate this by constructing, in an elementary way,
a finite index subgroup G of Picard’s group such that the quotient orbifold
H?/G is a complete, finite volume, hyperbolic manifold, homeomorphic to the
exterior of the Borromean rings. This will show that the group n(S*\B) ~ G
of the Borromean rings (Fig. 2) is arithmetic (compare [9]).

The octant of Fig. 1 is the union of six copies of Picard’s orbifold Q. The
eigth octants form an asymptotic regular octahedron O, which is the union
of 48 copies of Q. Reflect, through each face of O, the cone with apex the
center of O and base the face of reflection. We obtain an asymptotic regular
rombododecahedron R, having its tetravalent vertices at infinity. Its dihedral
angles are all right angles. Thus R is the union of 96 copies of Q. Identifying
the faces of R as depicted, one obtains the exterior £ of the Borromean rings
[18]. The natural map from E to Q is a 96-fold orbifold covering (Fig. 3).
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(F

Fig. 2. Borromean rings

(0 0]
(e e}
2:1
o e
(0 0] \ oo
aQ 48 : 1
96 : 1
(o)

Fig. 3. The map from E to Q

Therefore (see [18] and [13]), the group #(S3\B) ~ G of the Borromean rings
acts properly and discontinuously on H? in such a way that H®/G is a
complete, finite volume hyperbolic manifold homeomorphic to the exterior £ of
the Borromean rings. Moreover, G is a subgroup of index 96 of the Picard
group. The volume of Q can be calculated to be

vol(Q) = 0.07633046618143491 . ..
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Therefore, the volume of E is 96 times the volume of Q:
Vol(E) = 7.3277247534177521204 . ..

Due to a celebrated theorem of Mostow, the metric invariants of hyper-
bolic 3-orbifolds are in fact topological invariants, because the hyperbolic
structures of such orbifolds are unique, up to isometry. Thus the volume of E
is a topological invariant of the Borromean rings. This is one of the various
reasons which makes the theory of Thurston enormously important.

Just for the record, the set of tetravalent vertices of R is

(1,1,0,0), (1,0,1,0), (1,0,0,1), (1,0,0,—-1), (1,0,—1,0), (1,—1,0,0)
and the set of trivalent vertices is
(2,1,-1,1), (2,-1,1,1), (2,1,1,-1), (2,1,—1,—1),
(2,1,1,1), (2,-1,1,-1), (2,—-1,-1,1), (2,-1,—-1,-1)

and the parabolic automorphisms of (—1,1,1,1), identifying faces, are

3 20 -2 3 -2 2 0 302 -2
2 —1 0 -2 21 =20 010 0
Lo o 1 o] YT l=2 2 10" TTl201 2
2 2 0 1 0o 0 0 1 20 2 -1

They satisfy the relations of the Wirtinger presentation of the link group G.
Namely:

[x7 [yilvz]] - [yv [Zilax]] = [Zv [xilvy]] =1
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