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ABSTRACT. Using an integral formula on a homogeneous Siegel domain, we give a
necessary and sufficient condition for composition operators on the weighted Bergman
space of a minimal bounded homogeneous domain to be compact in terms of a
boundary behavior of the Bergman kernel.

1. Introduction

Composition operators have been studied on various function spaces of
a complex domain, for example, Hardy spaces, Bergman spaces and Bloch
spaces. In particular, the operators on Bergman spaces have been analysed by
making use of the Bergman kernel. Actually, estimates of the Bergman kernel
enable us to characterize the boundedness and compactness of composition
operators, as well as Toeplitz operators and Hankel operators, on the Bergman
space of the unit disk (for example, see [15]). In this paper, we consider
composition operators on weighted Bergman spaces of a bounded homogeneous
domain.

In 2007, Zhu [16] considered composition operators on the weighted
Bergman space of the unit ball. His results are extended to the case where
the domain is the Harish-Chandra realization of an irreducible bounded
symmetric domain by Lv and Hu [9]. In this paper, we generalize their
works further to weighted Bergman spaces of a minimal bounded homogeneous
domain (for minimal domains, see [8], [10]). Indeed, the unit ball, the polydisk
and a bounded symmetric domain in its Harish-Chandra realization are all
minimal domains.

Let % be a minimal bounded homogeneous domain in C9, dV the
Lebesgue measure on C? and O(%) the space of all holomorphic functions
on %. The Bergman kernel Ky, : % x % — C is the reproducing kernel of the
Bergman space L2(%,dV):= L*(%,dV)NO(%). For BeR, let dVy denote
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the measure on % given by dVj(z) := Ky(z,2)?dV(z). We consider the
weighted Bergman space LI(%,dVy):= LP(U,dVs)NO(U) for 0< p < co.
It is known that there exists a constant &y, such that LZ(%,dVy) is non-
trivial for all p if f > enin. Throughout this paper, we always assume this
non-trivializing condition. Every holomorphic map ¢ : % — % defines a com-
position operator C, on (%), in particular on L2(%,dVp), by C,f := f o ¢.
Using Zhu’s technique (see [16]) together with an integral formula established
in Lemma 5.2, we obtain the following theorem, which is the main theorem of
this paper.

THEOREM A (Theorem 6.1).  Assume that C, is bounded on LI(%,dVy,) for
some q >0 and By > eémin. Then C, is compact on LI(%U,dVy) for any p >0
and B> fy+ e if and only if

Kulp(2),0(2)) _
:H%}IZW =0

Here, ¢4 is the non-negative constant given by (5.1). Similarly to [9] and
[16], the assumption that C, is a bounded operator on LZ(%,dVy,) for some
Bo > emin 1s needed only for the “if” part of Theorem A. The constant &y is
equal to 0 for the case of unit ball, and coincides with the constant % that
appears in the paper [9] for the case of the Harish-Chandra realization of an
irreducible bounded symmetric domain (see section 7).

Zhu proved Theorem A for the case of the unit ball. His method is to
apply Schur’s theorem, in which a key is to find a positive function satisfying
a certain inequality. In our case, Lemma 5.2 will replace Forelli-Rudin in-
equality in order to get such a positive function. In fact, let @ be a biholo-
morphic map from % onto a homogeneous Siegel domain & (see [12]), and
J(®,z') the complex Jacobi matrix of @ at z' € #. Then, we show in Lemma
5.2 that the integral

J |K (2,2 |det J(®,2")| " dvy ()

U

is evaluated, under a convergence condition, as Ky,(z,z)“fﬁ |det J (q5,z)|1+2/f -
up to a positive constant not depending on z.

Before proving Theorem A, we show that the boundedness of C, on
L2(U,dVp) is described in terms of Carleson measures. It is easy to see that
C, is a bounded operator on LZ(%,dVy) if and only if the pull-back measure
du, 5 of dVy induced by ¢ is a Carleson measure for L2(%,dVy) (see section
4.1). Thanks to properties of Carleson measures, we obtain the following
theorem.
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THEOREM B (Theorems 4.3 and 4.5). If C, is a bounded (resp. compact)
operator on LI(U,dVy,) for some q >0 and Py > emin, then C, is a bounded
(resp. compact) operator on LI(U,dVy) for any p >0 and f > p,,.

By Theorem B, the assumption of Theorem A implies that C, is bounded
on LI(%,dVp) for any q¢>0 and f>f, Therefore, we may use the
boundedness of C, on both L2(%,dVs) and L2(%,dVp,) in section 6.

Let us explain the organization of this paper. In section 2, we review
properties of the weighted Bergman space of a minimal bounded homogeneous
domain and composition operators on the space. The estimate of the Bergman
kernel given in Theorem 2.1 plays an important role in this section. In section
3, we get a characterization of Carleson measures and vanishing Carleson
measures for the weighted Bergman space of a minimal bounded homogeneous
domain (Theorems 3.2 and 3.3). By using these theorems, we prove properties
of the boundedness and compactness of C, in section 4 (Theorems 4.3 and 4.5).
In section 5, we show a key equality (Lemma 5.2). This equality enables us to
pursue Zhu’s method developed in [16], and we characterize the compactness of
the composition operator (Theorem A) in section 6. In section 7, Theorem A
is applied to the cases where # is the unit ball, the Harish-Chandra realization
of an irreducible bounded symmetric domain, the polydisk and the represen-
tative domain of the tube domain over Vinberg cone. The last case is an
example of non-symmetric bounded homogeneous domain. These domains are
minimal domains with center 0, and we see that Theorem A actually covers the
previously known first two and the polydisk cases.

2. Preliminaries

2.1. Weighted Bergman spaces of a minimal bounded homogeneous domain.
Let D be a bounded domain in C?. We say that D is a minimal domain with
center ¢ € D if the following condition is satisfied: for every biholomorphism
VY :D— D' with det J(¥,7) =1, we have

Vol(D') > Vol(D).
We know that D is a minimal domain with center ¢ if and only if

1
K ) =——
D(Za ) OI(D)
for any z e D (see [10, Theorem 3.1]). For example, the unit disk D and the
unit ball BY are minimal domains with center 0.
We fix a minimal bounded homogeneous domain % with center r. We
denote by K,g,ﬂ ) the reproducing kernel of L2(%,dVs). It is known that
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Kéglﬂ)(z7 w) = CgKy(z,w)'"™ for some positive constant Cy. For ze, we
denote by k:(ﬁ ) the normalized reproducing kernel of Lg(%,dVﬁ), that is,

1+p
K(ﬁ)(w z) Ky(w,z)
kKB (w) = =220 =\ [Cp| —0 ] (2.1)
: kP Y N\ Ko

For any Borel set £ in %, we define
Volg(E) ::J dvg(w).
E

Let dy(-,-) be the Bergman distance on #. For any ze% and r >0,
let

B(z,r):={weU|dy(z,w) <r}

be the Bergman metric disk with center z and radius r.
In [8], we proved the following theorem.

THEOREM 2.1 ([8, Theorem Al). For any p > 0, there exists C, >0 such
that

Sor all z,aeq with dy(z,a) < p.

From Theorem 2.1, we see that Kj(-,w) is a bounded function on %
for each w e % (see [8, Proposition 6.1]). Since the span of {Kaglﬂ)(-, w)|wea}
is dense in L2(%,dVy), so is the space H* (%) of all bounded holomorphic
functions on %.

Moreover, Theorem 2.1 gives useful estimates. Indeed, we first deduce

< 25 <2 (2.2)
for all z,a e % with dy(z,a) < p. On the other hand, we have

2
C'Kyla,a)”" < ‘K’”(z’ D" Vol(B(a, p)) < CKu(a,a)""

~ |Ky(a,a)

by [13, Lemma 3.3], so that Theorem 2.1 yields

C'Ky(a,a)”" < Vol(B(a,p)) < CKy(a,a)”". (2.3)
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LemMA 2.2. There exists a positive constant C such that
C'Ky(a,a)” P < Voly(B(a, p)) < CKy(a,a) 1P (2.4)
for all ae .
ProOF.  Since

Volg(B(a, p)) = J Ku(w,w)Pdv(w),
B(a,p)

we have
C~'Ky(a,a) " Vol(B(a, p)) < Voly(B(a,p)) < CKy(a,a) " Vol(B(a, p))
by (2.2). This together with (2.3) yields (2.4). O

We now collect some estimates needed later. These are generalizations to
minimal bounded homogeneous domains of Lemmas 1, 2 and 5 respectively in
[14] stated for bounded symmetric domains. First, by (2.1), Lemma 2.2 and
Theorem 2.1, we have the following lemma.

LeMMA 2.3. There exists a positive constant C such that
' <KD (=) Voly(Bla,p)) < C
Jor all ae U and z € B(a,p).
Lemma 2.2 and (2.3) yield the following;
LemMA 2.4. There exists a positive constant C such that

C~! Volg(B(a, p)) < Vols(B(z,p)) < C Vols(B(a,p))
for all ae U and z € B(a,p).

LemMA 2.5. There exists a positive constant C such that

C
1O = o))y, OV 2:5)

for all feOW), p>0 and z€%U.
Proor. By [13, Lemma 3.5], there exists a constant C > 0 such that

(2)F __¢ 2dv (w
IO = ot |y, SOV 0)

CKy(z,z)? )17 "
< VoABC ) |y S OOVs0),
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where the second inequality follows from (2.2). Since

K“Z/(Z’ Z)ﬂ < ¢
Vol(B(z,p)) = Volg(B(z,p))’

we obtain (2.5). O

2.2. Composition operators. In this section, we summarize some properties of
the composition operator. Our reference is the book [15] and the paper [16].
Let ¢ be a holomorphic map from % to %. We define a linear operator C, on
OU) by Cpf :=fop (feO)). Itis known that C, is always bounded on
L2(u,dVy) if % is the unit disk D. However, it is not necessarily bounded for
general domains (see for example [16]).

Let u, 5 be the pull-back measure of dVj induced by ¢, that is,

tp.5(E) == Volg(p™ ! (E))

for any Borel set E in %. Then, C, is a bounded operator on LZ(%,dVy) if
and only if there exists a constant C > 0 such that the estimate

|| L, o) < € [ Lrpavon 26)

holds for any f e LI(%,dVp).
Assume that C, is a bounded operator on Lg(%,dV/;). Then, we
have

Cof(w) =<Ca f KPS 12avyy = S CoK P 12avy (2.7)
for any f e L2(%,dVp). Therefore, we have
CoCof (W) = <f CoK L) > raany

= L/ K (p(w), o)) f (u)dVp(u). (2.8)

We use (2.8) to characterize the compactness of C, in Theorem 6.1 below.
Moreover, we have

CrCof (W) = LCpf, CoRP > 120ary

= L/f((ﬂ(”))Kag,m(w, o(u0))dVy(u)
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by (2.7). The last integral represents the Toeplitz operator T,,, with symbol
Uy p> O that we obtain C;C, =T, ,. The boundedness of Toeplitz operators
are discussed in [13], [15, section 7] and [16].

3. Carleson measures and vanishing Carleson measures

3.1. The Berezin symbol and the averaging function. For a Borel measure u
on %, we define a function g on % by

(=) = | 0 ().
oz/
The function j is called the Berezin symbol of the measure x. Fixing p > 0
once and for all, we set

(o) e MBEp)

:W (ZG‘OZl).

We call j the averaging function of the Borel measure 4. The dependence of /i
on p will not be considered in this paper.

LemMA 3.1. There exists a positive constant C such that

| vorae < c| wireraie

u
for any p>0 and f e O(U).
Proor. By Lemma 2.5, we have

P c P
| verae < | (Volﬂ(Bw)) J, o M(w)) du(z) (1)

for any p >0 and f € O(%). The right hand side of (3.1) is equal to

CJ%J%Vol,;(B(Z,p))lf( W dVp(w)dp(z). (3.2)

Here, we interchange the order of the integrations in (3.2) by using Fubini’s
theorem. Then Lemma 2.4 shows that (3.2) is less than or equal to

c| BLLD| ) ravion).

u Volg(B(w, p))

Now the proof of Lemma 3.1 is complete. O
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3.2. Carleson measures. Let u be a positive Borel measure on . We say
that u is a Carleson measure for L2(%,dVp) if there exists a constant M > 0
such that

| roras < | irerave

J/ J/

for all feLl(%,dVp). It is easy to see that u is a Carleson measure for
L2(U,dVy) if and only if L2(%,dVs) = LI(%,du) and the inclusion map

ip: Lg(U,dVi) — Li(U,dp)

is bounded. The following theorem is a generalization of [14, Theorem 7] to
minimal bounded homogencous domains.

THEOREM 3.2. Let u be a positive Borel measure on U. Then, the
following conditions are all equivalent.
(1) wis a Carleson measure for LL(U,dVp).
(ii) The Berezin symbol [ of p is a bounded function on U.
(i) The averaging function i of w is a bounded function on U.

Proor. First, we prove (i) = (ii). It is known that the Bergman kernel
of a bounded homogeneous domain is zero-free (see [6] or [7, Proposition
3.1]). Therefore, we can define the single-valued holomorphic function func-
tion K¥(-,z)>” on the simply connected domain . Since k\¥()*7? e
L2 (U,dVy) for any z € % and since y is a Carleson measure for L2 (%,dVy),
we have

J/ UeP) () Pdpu(w) < MJ” KD () 2V () = M.
/)( J

Therefore, fi is bounded. Next, we prove (ii) = (iii). Take any we %. By
Lemma 2.3, there exists a positive constant C such that

C' < kP (w)|? Voly(B(z, p)) (3.3)
holds for any w e B(z,p). Integration of (3.3) on B(z,p) by du gives

1(B(z,p))
W = CJ\B(Zﬁp) |k§ﬁ)(W)|2dﬂ(w)_ (3.4)

Therefore, we obtain

A(z) < Ca(z), (3-5)

whence (ii) = (iii) follows. The implication (iii) = (i) holds by Lemma 3.1.
O
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Similarly to [13, Theorem 4.1], we can prove that these conditions
are equivalent to the following condition: (iv) The Toeplitz operator T, is
bounded on L2(%,dVp).

3.3. Vanishing Carleson measures. Suppose that u is a Carleson measure for
L2 (u,dVg). We say that u is a vanishing Carleson measure for L2 (%,dV}) if
we have

k—oo )y

lim L{ | feW)|Pdu(w) =0

whenever {f;} is a bounded sequence in LZ(%,dVp) that converges to 0
uniformly on each compact subset of %.

The following theorem generalizes [14, Theorem 11] to minimal bounded
homogeneous domains.

THEOREM 3.3. Let u be a finite positive Borel measure on AU. Then, the
following conditions are all equivalent.
(i) w is a vanishing Carleson measure for LE(U,dVp).
(ii) a(z) =0 as z — 0.
(iii) fi(z) = 0 as z — 0U.

Proor. First, we prove (i) = (ii). Proceeding in the same way as in
[4, Lemma 1] and [4, Lemma 5], we see that {kz(/j )} converges to 0 uniformly
on compact subsets of % as z — 0%. Therefore, {kz(ﬁ >(~)2/" } is a bounded
sequence in L2 (%,dVy) that converges to O uniformly on each compact
subset of %. Hence, (ii) holds. The implication (ii) = (iii) follows from
(3.5). Finally, we prove (iii) = (i). Take any bounded sequence {f,} in
LP(U,dVg) that converges to 0 uniformly on each compact subset of %.
Take any ¢ > 0. Then, there exists a constant 6 > 0 such that
sup a(2)] <
dist(z, 0%) <o
by (iii). Let %;:={ze % |dist(z,0%) < J}. Since ¥\%s is a compact set,
there exists an integer N such that
sup |/u(2)" <e
ZeU\Us

for any n > N. Now, Lemma 3.1 yields

| th@ras) < c| acinErane)

U

Us

=C<J , ﬂ(Z)\ﬁ(Z)IpdVﬁ(Z)+J ﬂ(2)|fn(2)|pde(z)>. (3.6)
UN\Us
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Since the function £ is continuous on the compact set #\%;, there exists a
constant Ms > 0 such that
sup fi(z) < M.
2697/\%5
Therefore, the first term of (3.6) is bounded by CMye if n > N. On the other
hand, since {f,} is a bounded sequence in L2 (%,dVy), there exists a constant
M >0 such that

| tn@ravye) < m

for all ne N. Therefore, the second term of (3.6) is less than or equal to
CMe. Hence, we obtain

L{ [1:(2))Pdu(z) < C(M + Ms)e

for any n > N. Clearly, this shows that x is a vanishing Carleson measure for
L2 (U,dVp). ]

We can show that these conditions are also equivalent to the following
condition (cf. [13, Theorem 5.1]): (iv) The Toeplitz operator T, is compact on
LX(U,dVp).

4. Relation between Carleson measures and composition operators

4.1. Criterion of boundedness. From (2.6), we see that C, is a bounded
operator on L?(%,dVp) if and only if the pull-back measure x, 4 is a Carleson
measure for L2(%,dVp). By Theorem 3.2, the property of being a Carleson
measure is independent of p. Hence, the boundedness of C, on LZ(%,dVp)
is also independent of p. We gather here boundedness conditions of C, on
L2(u,dVy) as follows.

LemMa 4.1. Let > emin. Then, the following conditions are all equiv-

(i) C, is a bounded operator on LI(U,dVp).
ii e pull-back measure u, 5 is a Carleson measure for /,dVg).
ii) The pull-back p.p is a Carl Sor L2(U,dVy
(iii) u, 5 is a bounded function on .
(iv) #,p is a bounded function on U.
(v) The function
2
Fuple)i= [ )Pl )
B(z,p)

is bounded on .
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Proor. For (v), we just note: (iii) = (v) is trivial and (v) = (iv) follows

from (3.4). O
If C, is bounded, we have the following estimate.

LemMA 4.2, Assume that C, is bounded on LI (U,dVy) for some p > 0 and
p > Py Then there exists a positive constant C such that

Ku(p(z),0(2)) < CKy(z,2)
for any zeU.

ProoF. By Lemma 4.1, it is enough to consider p = 2. By (2.7), we have
* —1/2
C(pkz(ﬁ)(w) = <kz</j)’ C¢Klg7ﬁ)>L2(dV/;) - KJ?(//;) (Za Z) / <C¢K1£Vﬂ)a I<Z<ﬂ> >L2(dV/;)

K (w,0(2))
kP (z, )1

4

=K (z,2) 7 PC, k) (2) =

Therefore, we get

K (p().0(2) _ <KJZ,(¢(2),¢(2))>1+/1. 1)

1€k N L2y KP(,z) Ku(z,2)

Since C, is a bounded operator on L2(%,dVy) and ||kz(ﬁ>||L2(dv,,) =1, the left
hand side of (4.1) is bounded by a positive constant C. O

Tueorem 4.3.  If C, is a bounded operator on LI(%U,dVy,) for some q >0
and By > emin, then C, is a bounded operator on LL(U,dVy) for any p >0 and

B =Py

Proor. The boundedness of C, on LI(%,dVy,) (resp. LL(U,dVy)) is
equivalent to the boundedness of %0 (resp. F, 5) by Lemma 4.1. Therefore,
it is sufficient to prove

Hy 5, (2) = CF, p(2). (4.2)
Since Kz (p(w),p(w)) < CKy(w,w) by Lemma 4.2, we have
dvy,(w) = Ky (w, W) P avy(w) = CKy(p(w), p(w)) Poavy(w).
Hence, we obtain

Ho.p(2)

= Ky(z,2) ") J Ko (2, 0() v (w)

U

> CKy(z,z)" ") j K (2, 000) " Ky (p(w), ()P PodV(w).  (4.3)

U
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By the definition of the pull-back measure, the last term of (4.3) is rewritten
and estimated as

.Bfﬂ()
Ky (W, W)Ka] (Z7 Z)
Kz, )P ( ‘ - dity, p(w)

CKy(z,z _(Hﬁ)J
v(5:2) Ky (2, )

K4

> CKy(z,z) P J |Ky(z, w)] 1P
B(z,p)

ﬁfﬁ()
’ (KFKV;)%? | Z)> ity ) 4

Since w € B(z,p), Theorem 2.1 gives

> C?
Ky(z,w) Ky(z,w)|— 7

Ku(w,w)Ky(z,z) ‘K/]/(W, w) Ky(z,z)
Kz

which makes the right hand side of (4.4) greater than or equal to

CK«zAz,z)*“*@j K (2, W) P, y(w) = CF, (2).
B(z,p)

Hence, (4.2) holds. O

4.2. Criterion of compactness. We say that C, is compact on LZ(%,dVy) if
the image under C, of any bounded subset of LZ(%,dVy) is a relatively com-
pact subset. We can show that C, is compact on L2(%,dVy) if and only if

lim J |Cp fic(W)|PdV(w) =0 (4.5)
k—oo Jgy

holds whenever {f;} is a bounded sequence in L2 (%,dV}) that converges to 0
uniformly on each compact subset of # (for the case = D, see [3, Proposition
3.1]). Since (4.5) is equivalent to

Jim |l y0) = 0
C, is a compact operator on LZ(%,dVp) if and only if u, s is a vanishing
Carleson measure for LZ(%,dVy). This observation together with Theorem
3.3 gives the following compactness conditions of C, on LZ(%,dVy).

LemMmA 4.4. Let > eémn. Then, the following conditions are all equiv-
alent.
(i) C, is a compact operator on LY(U,dVp).
(ii) w,p is a vanishing Carleson measure for LE(U,dVp).
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(iif) Llirpr}” Ky 5(2) = 0.
(iv) 71ir(r}2/ Hy 5(z) = 0.
(v) lim F,g(z) =0.

z—0U

Tueorem 4.5.  If C, is a compact operator on LI(U,dVy,) for some q >0
and fy > emin, then C, is a compact operator on LL(U,dVy) for any p >0 and

B =Py

Proor. By Lemma 4.4, it is enough to prove

lim fipg, () = 0= lim F, () = 0.

z—0U

This follows from (4.2). ]

5. Some equalities

5.1. Equality for a homogeneous Siegel domain. In order to give a compact-
ness condition of the composition operators on L7 (%,dVy) in terms of ¢ and
Ky, we use an integral formula on a homogeneous Siegel domain. First, we
recall notation and properties of homogeneous Siegel domains following [1] and
[6]. Let @ < R" be an open convex cone not containing any straight lines
and F : C" x C" — C" a Hermitian map such that F(u,u) € C1(Q)\{0}, where
Cl(Q) stands for the closure of 2. Then, the Siegel domain 2 is defined by

9:{(5,’7)€Cn x C" %—F(n,n)e!)}.

It is known that every bounded homogeneous domain is holomorphically
equivalent to a homogeneous Siegel domain [12].

Let / be the rank of Q. For 1 < j </, let n; >0,¢q; > 0 and d; < 0 be real
numbers defined in [6] (These notations are also used in [1]. Note that d; in [8]
is —d; in the present notation). We write n for the vector of R’ whose
components are n;. The symbols ¢ and d are used similarly. We see from [1,
Proposition 11.1] that the Bergmaﬁ kernel of & is given by

=7 2d—q
Ka(t.0) = C<52—5 - F(mn’)) (€= (Em.¢ = (&),

where (1)2477 is the compound power function defined in [6, (2.3)]. We put

I’lj .
W = — |1 <<}, 5.1
e mn{yyi g |15 =1) >l

Békollé and Kagou showed the following integral formula.
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Lemma 5.1 ([1, Corollary 1L.4]). For f > emin and o > f + &4, one has

J (Ko (&) Ko () Pav (L) = Colo, B)Ka(E,0) 7,

I

where Cq(a, ) does not depend on (.

5.2. Equality for a minimal bounded homogeneous domain. Let & be a Siegel
domain biholomorphic to % and & a biholomorphic map from % onto 2. To
get a formula for % analogous to Lemma 5.1, we consider the weighted
Bergman space

(9, Ko (6,0 V() = L2, Ko (6,0 T av ()N 0(2).
Actually, we only need the space for p =2. Then we have an isometry
Ly(2,Ko(LO T dV(0) o f = det J(@,)f o b e Li(u,dVy).  (5.2)

We note that the function det J(@®,-) does not vanish on the simply connected
domain %, so that we have a single-valued function det J(®, ~)1+ﬂ . The
following lemma plays a key role to prove our main theorem.

LEMMA 5.2. Let > emin and o> ff+¢&y. Then, one has
J Koz, 2)) 12 |det J(@, )2 av (=)
w

= Co (o, B)Ky(z,2)" P |det J (@, z)| 2P
for any ze U.

Proor. Let {' = &(z'). Since
dV(z') = Ky (@71, @71(C") Pldet J (@71, ) PaV ()
= |det J(@, ()| PR, ) Pav (),

we have

L (Ko (z,2))| | det J(@,2))| " dvy ()

= || Ktz 0 @) et s(@. 07 ()KL V). (53)

By the transformation formula of the Bergman kernel, we have

Ku(z, @7 1) = Ko(P(2), (') det J(@, z) det J (@, 7' ().
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Therefore, the right hand side of (5.3) is equal to
j Ko (@(2), )| ¥ det J(@,2) Ko () v (). (54)
g

By Lemma 5.1, we rewrite (5.4) as
Co (o, B)|det J(®,2)| 22 Koy (z,2)*F
This completes the proof. O

COROLLARY 5.3. Let > émin and o.> f+¢ey. For any z€ U, the func-
tion ¢, defined by

g-(w) 1= Ky (w, 2) /2 det J (B, w) 122/ (we)

is in LX(U,dVy). The norm is given by

2 ary = Cole K (z,2)" P |det J(@,2)] 27,

Proor. Note that g¢. is the product of single-valued functions
K?]/( )(H-oc)/Z and det J( )1+2/)’ oc)/Z We have

19:125(arsy = J Ko (=2, )] " [det T (0, )| 2Ky (v, w) Pl (w).

By Lemma 5.2, this is equal to Co(a, f)Ky(z,2)* P |det J(®,z)|" T2~ O

Corollary 5.3 enables us to find a positive function that satisfies the
condition of Schur’s theorem (see [15, Theorem 3.6]) in section 6.

6. The Main theorem
We are now able to prove our main theorem.

Tueorem 6.1. If C, is bounded on LI(U,dVy,) for some q >0 and
Bo > €min, then the following conditions are equivalent for any p >0 and
ﬁ > ﬁo + &.
(i) C, is a compact operator on LI (U,dVy).
. . K,
P CRIEIN

z—0U Kaz( (Z, Z)

Proor. By Theorem 4.5, we may assume that p=¢ =2. First, we
prove that (i) implies (ii). Assume that C, is a compact operator on
L2(%.,dVp). Then, C, is also compact. Since {k } converges to 0 uni-
formly on compact subsets of % as z — 0%, we have |C, kP H L2avy) — 0 as
z— 0%. From (4.1), we obtain (ii).
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Next, we prove that (i) implies (i). Let S be the operator on L(%,dVy)
defined by

S/ = | KO pD Vs (f € L, aVy).

Since C, is a bounded operator on LZ(%,dVy), we have C,C; =S by
(2.8). Therefore the compactness of C, is equivalent to the compactness of
S. Hence, it is sufficient to prove that St is a compact operator on
L*(U,dVp), where

ST = || 1K 0, 00001V ()

for feL*(%,dVg). For r>0, let %, :={ze|dist(z,0%) <r}. We de-
fine

B
K (z2w) = g, (DIKS (0(2), o)),
K5 (2w) 2= 1, (W)Y (0(2), 0(w)]

K5 (zw) = 20, (20, )KL (0(2), 0(w))]-

We denote by S, the integral operator on L*(%,dVy) with kernel K,
(j=1,2,3). Then, we have

St -8, =Si, + S5 (6.1)

We will prove that S;', and S, , are compact operators on L*(%,dVy) for any
r>0 and that ||S5 ,,|| — 0 as r— 0 through the subsequent three lemmas.
Then letting r — 0 in (6.1), we see that ST is a compact operator on
L>(U,dVy). O

LEMMA 6.2. The operators S;, and S, are compact on L*(U,dVy).

PROOF. It is enough to prove K|, and K, are in L*(% x %, dVy x dVp)
(for example, see [15, Theorem 3.5]). For we %, let

KD 0) = KD O, 0(2)):

Then, K(/Eﬁ )

(- € L;(%,dVy) and we have

1K 172 ey = J\ {J K (9(2), ¢<w>>|2dvﬁ<w>}dvﬁ<z>
UN\U /

g
— L{\% I C'(,,K;(/Z)> ||i2(dyﬁ)dV/;(z). (6.2)
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Since C, is a bounded operator on L?(%,dVy,), C, is bounded on L2(%,dVy)
by Theorem 4.3. Hence, we have

*)
1CoK )

2 B
Loy < CIEL)

2
L2(dVp)
— kP (9(2),0(2)) < CKu(z,2)"*7, (6.3)

where the last inequality follows from Lemma 4.2. Substituting (6.3) to (6.2),
we obtain

1K o <€ [ Kalzn) i)

"‘7/\”]/»'
=C J Ky(z,z)dV(z)
“7/\7]/,

< 0.
Similarly, we have [|K" |12 xz) < - O
LemMA 6.3. For ze U, let
h(z) = Ky(z,2)PPo|det J(®, p(2))| T2
Then, one has

MWW(zD)”"h<Z>. (64)

[ K5 cmnonarn) < G, ) (K122

Proor. For ze %, we have

[ e moarson

= L 20, (2) 2, W) K (0(2), 0(w)) | det J (D, p(w) | PP v, (w).  (6.5)
U
Let us define a holomorphic function g. by
g-(w) == {Ky(w, ()P det J (@, w) TPy 12,

Then, the right hand side of (6.5) is equal to

102 | laslo) PV ) < 24,(2) | |Cog) PV (o).

U,

Since By > émin and B > By + 4, the function g. is in L2(%,dV}p,) by Corollary
5.3. Moreover, since C, is a bounded operator on LZ(%,dVy,) by assumption,
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C, is bounded on L2(%,dVy,) by Theorem 4.3. Therefore, we have

|| &z hO0avsn) < 24, (I Cot- i,
wU

= CX“?/,-(Z)HQZHiZ(dV/yO)' (6.6)

On the other hand, we have
19:172(av,, ) = Ku(0(2), 0(2))" 0 det J(@, p(2)) 207 (6.7)
by Corollary 5.3. Substituting (6.7) to (6.6), we obtain (6.4). O

Finally, the following lemma completes the proof of Theorem 6.1.
LEMMA 6.4. One has ||S;,|| — 0 as r — 0.

Proor. Put

M(r) := sup

zZ€U,

By Lemma 6.3, we have
J K;' (2, w)h(w)dV(w) < CM (r)h(z).
U

Thanks to Schur’s theorem, Sy, is a bounded operator on L*(%,dVp) with
norm not exceeding CM(r). Since we are assuming (ii) of Theorem 6.1, we
obtain M(r) — 0 as r — 0. Hence we have [|S; || — 0 as r — 0. O

7. Examples

7.1. The Harish-Chandra realization of irreducible bounded symmetric domain.
Let © be an irreducible bounded symmetric domain in its Harish-Chandra
realization, r the rank of Q and a, b nonnegative integers defined in [5]. In
this case, we have emin = — 4 and go = ”g;,”, where N :=a(r — 1) + b + 2 is the

genus of Q.

COROLLARY 7.1 (9, Theorem]). Suppose By > —+. If the composition

operator C, is bounded on LI(2,dVy ) for some q >0 and f,+ ”g;” < B, then
C, is compact on LP(Q,dVy) if and only if

 Kolp(),0(2)
L NS

(7.1)
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In particular, for the case Q = Bd, we have epi, = ege = 0 and

__1
a+1°
d! 1
Kgi(zyw)=— ———.
we (2 w) nd (1 =<z, w>)“’+1
Therefore, (7.1) is equivalent to
Lz
im ————
=11 = o(2)]

so we obtain [16, Theorem 4.1].

)

7.2. A non-symmetric minimal homogeneous domain. Finally, we show an
example of a non-symmetric minimal bounded homogeneous domain. For
xeR’ with x; #0, let

01(x) = xi, O (x) :=x2 ——, O3(x) :==x3 — =

and Q:= {xeR’|Q;(x) >0 for 1 < j <3}, which is called the Vinberg cone
([11], [2]). We consider the tube domain Ty := R’ +iQ and its representative
domain %. Then % is a non-symmetric minimal bounded homogencous
domain with center 0 by [7, Proposition 3.8]. In this case, we have / =3
and n = (2,0,0), d = (-2,—3,-3), ¢=(0,0,0). Hence the constants &mi, and
ey are given by emin = —1, ex =1.

For (= ({1,(5,03,04,{5) € Ta, let

= (2 2) {p = <2 2) e Sym(2, C).

Then, the Bergman kernel of Ty satisfies

- c(57) fm(55)

Let ¢ be the Bergman mapping from T, to % at po:= (i,i,i,0,0) (see [7,
(2.4)]). It follows from [8, Theorem 5.3] that

1
Vol(%)

- 2
(1= %1(L)6 () | [{det(l, — 62 %a(E))}

J=1

Ku(0(0),0(l)) =

where %, (m=1,2) denotes the Cayley transform

Cu(Z) = (Z — il,)(Z + il,) " (Z e Mat(m, C)).
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Assume that the composition operator C, is bounded on LJ(%,dV},) for some
g >0 and g, > —%. Applying Theorem A, we have the following; For p > 0
and > fy+1, C, is compact on L2(%,dVy) if and only if

=0.
z—0U Ky (Z, Z)
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