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ABSTRACT. The best constant of L? Sobolev inequality for a function with Neumann
boundary condition is obtained. The best constant is expressed by L7 norm of M-th
order Bernoulli polynomial. For L” Sobolev inequality, the equality holds for a
function which is written by Green function with Neumann boundary value problem
for (—1)M(d/dx)*™.

1. Introduction

Throughout this paper, we assume that p,g > 1 and 1/p+1/g=1. Let

us introduce L? norm
1 1/p
= ([ o)

and the sequence of Sobolev spaces
WX, M, p) = {u|u™ e L?(0,1), u satisfies A(X)} (M=1,2,3,...),

where the condition A(X) assumes
I
AP) uD (1) —uP(0)=0 (0<i<M-1), J u(x)dx =0,
AAP) - (1) +uD(0)=0 (0<i<M—1),

AQC) :u(0) =u(1)=0 (0<i<M-1),

AD) : u?(0) =u®(1)=0 (0<i<|[M-1)/2]),
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ADN) :u®(0)=0 (0<i<[M-1)/2),
uPH(y =0  (0<i<[(M-2)/2]).

It should be noted that if M =1 the boundary conditions for u in A(N) and
for u on x =1 in A(DN) are not required. Now, let us consider L? Sobolev
inequality:

sup u(y)| < Cllut™]|

0<y<l

. (e WX, M,p)). (1.1)

In our previous work, we have obtained the best constant of L” Sobolev
inequality (1.1) in some boundary conditions as follows:

boundary condition of Sobolev space | p=2| 1 < p < oo (general case)
P (Periodic) (6] (1]
AP (Anti Periodic) (6] —
C (Clamped) (5] M =123 [4]
D (Dirichlet) 6] | M=2m 2], M=1,3,5[3]
N (Neumann) [6] this paper
DN (Dirichlet-Neumann) (6] [7]

We note, from this table, the difficulty to obtain the best constant seems to
increase for the case p # 2. Here, we would like to stress that each result for
the case p # 2 was obtained through somewhat different method, since in these
cases, unified approach (maximizing the diagonal value of reproducing kernels;
see [5, 6]) as in the case p =2 does not exist.

In this paper, we treat the case W (N, M, p). To state the conclusion, we
introduce Bernoulli polynomials b;(x) defined by

bo(x) =1
1
bi(x) = by 1 (x), JO B(x)dx=0  (j=1,23,..)
and the auxiliary function b;(a; x) = b;j(x) — b;(«). Finally, we prepare Green
function and its derivative,

6N ) = (112 o, (521 (212 (1)

a)’G(Na m; x, y)

= (—1)"Flp2m2 {—Sgn(x — V)ba—i <|x ; y|> + bam—1 (X 42_ y)] - (L3)

Our conclusion is as follows.
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THEOREM 1.1. There exists a positive constant C which is independent of u
such that L? Sobolev inequality (1.1) holds.
(1) M=2m—-1 (m=1,2,3,...): The best constant is

1

1/q
C(Zm—1>=22"’1|b2ml||q=22'”l(j |bml<x>|"dx) |

0
If we replace C by C(2m—1) in (1.1), then the equality holds for u(x)=
cU(2m — 1;x) where ¢ is an arbitrary constant. U(2m — 1;x) is given by
1
U(2m71;x):J 0yG(N,m; x, y)F(2m — 1; y)dy 0<x<1)
where 0,G(N,m;x, y) is given by (1.3) and

0
F(2m —1;y) =sgn (bzml (g)) bom—1 (%)

(2) M=2m (m=1,2,3,...). The best constant is

q-1
(1.4)

1 1/q
C(2m) = 2 by (e ), = 22 (jo ot x)"dx>

If we replace C by C(2m) in (1.1), then the equality holds for u(x) = cU(2m; x)
where ¢ is an arbitrary comstant. U (2m;x) is given by

1
U(2m;x) = J G(N,m; x, y)F(2m; y)dy 0<x<1)

0
bom (oco; %)
1/2

Ja((—l)"*“bzm(a;x))‘f*ldx - J ((=1) by (2; X)) dx = 0
0 «

where G(N,m;x, y) is given by (1.2) and

F(2m; y) = sgn (me (oco; %) )

o is the unique solution to the equation,

q-1

(1.5)

in the interval 0 <o < 1/2.

2. Proof of Theorem 1.1

To prove Theorem 1.1, we introduce Sobolev space with periodic bound-
ary condition

W (P2, M, p)

2
= {u|u<M> e L7(0,2),u"(2) —u?(0) =0 (0<i< M — 1),J
0

u(x)dx = o}.
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For ue W(P2, M, p), the following conclusion was obtained in [I, Theorem
1.1].

THEOREM 2.1. There exists a positive constant C which is independent of
u such that LP Sobolev inequality

1/p

sup Ju(y)| < C(L %0 (o) ) 1)

0<y<2
holds.
(1) M=2m—-1 (m=1,2,3,...): The best constant is
C(P2;2m — 1) = 22" 1P| by, | .

If we replace C by C(P2;2m—1) in (2.1), then the equality holds for
u(x) = cU(P2,2m — 1;x) where ¢ is an arbitrary constant. U(P2,2m — 1;x)
(0 < x < 2) is given by

2

U(P2,2m — 1;x) :J

(—1)™ sgn(x — )22 2y, ('x - y')mm L)y,
0

2

where F(2m — 1;y) is (1.4).
(2) M=2m (im=1,2,3,...): The best constant is

C(P2;2m) = 2271121 bay (c103 ),

If we replace C by C(P2;2m) in (2.1), then the equality holds for u(x) =
cU(P2,2m;x) where ¢ is an arbitrary constant. U(P2,2m;x) (0 < x <2) is
given by

2
U(P2,2m;x) = J
0

(1122, (552 P )y
where F(2m; y) is (1.5).
To prove Theorem 1.1, we prepare the following lemmas.

LemMma 2.1. For j=0,1,2,..., Bernoulli polynomials have the following
properties.

(1) (1 =x) = (=1)/b(x).
(2)  baj(os 1 — x) = boj(ar; x).

Proor. From the generating function of Bernoulli polynomials,
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we have
© . e(]_x)r ex(_l) ®© . .
bi(1 — x)t/ = — = =) (=1)/b(x)t,
j; J t l(e[_l) (—l) l(e_f_l) Jgo J

that is  (1). Since  byj(o; 1 — x) = byj(1 — x) — baj() = boj(x) — byj(a) =
byi(a;x), we have (2).

LEMmaA 2.2.
(1) F(M;2—y)=(-D"F(M;y)  (0<y<l)
(2) UP2,M;2—x)=UP2,M;x) (0<x<]1)
(3) U@, M;0)=0 (0<i<[(M-2)/2])

Proor. Using Lemma 2.1 (1), we have

F(zm - 172 - y) = sgn<b2m—l (1 _;)) b2m—1 <1 - ;)
q—1
o ) )

=—FQ2m—-1;y).
Using Lemma 2.1 (2), we have
bom (Ofo; 1- %)

F(2m;2 — y) = sgn (me (oco; 1- g))
q—1

= sgn (me <“0§ %)) bam (“0; %) = F(2m; ).

Thus, (1) is obtained. (2) follows from (1). Differentiating U (P2, M; x) 2i + 1
times, inserting x = 0 and using Lemma 2.1, 2.2 (1), we have (3). In fact, for
the case of M =2m,

q—1

q—1

2
U (P2,2m;0) = —J

0

(_1)m+122<m*I*i)bz(m717i>+1 (%)F(zmv y)dy

2
JO (—1)m+122<”17171)b2(m71—i)+1 (1 _ %)F(zm’ 2 — y)dy

2
= JO (=)™ 2210y g) F(2m;n)dn

= — U@ (P2, 2m;0),

so we have U®*+D(P2,2m;0) =0. The case M =2m — 1 is shown similarly.
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ProoF OoF THEOREM 1.1. For any ue W(N, M, p), let us define u(x)
(0<x<2) as

_ o fu(x) 0b<x<l),
u(x)_{u(Z—x) (1<x<2).

Since u e W(N, M, p) satisfies Neumann boundary conditions at x = 0,1, it
is easy to see # is an element of W(P2, M, p). So, applying # to (2.1), we
have

sup [u(y)| = sup [a(y)|
0<y<l 0<y<2

< C(P2, M) [[a™ || 50,0 = 217 CB2, M) ™| o1y (22)

This implies the best constant of (1.1) is equal or less than 2'/7C(P2, M).
Next, we construct the function which attains the equality of (2.2). Let
ip(x) = UP2, M;x) (0 < x<2). Substituting # = into (2.2), from Theo-
rem 2.1, we have the equality in (2.2). Moreover, from Lemma 2.2 (2), @ is
an even function with respect to x = 1. So, u#y satisfies Neumann boundary
condition at x = 1. In addition, from Lemma 2.2 (3), # satisfies Neumann
boundary condition at x =0. Let iy be the restriction of #, on the interval
[0,1]. From the argument above, we see that iy € W (N, M, p) and satisfies
the equality of the following inequality:

o u(y)] <27 CP2, M) |,y (Yue W(N, M, p)).
<y<

Hence, we have proven Theorem 1.1. O
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