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Abstract. We give a mathematical model of n-membered ringed hydrocarbon mole-

cules, and study the topology of a configuration space Cn of the model. Under the

bond angle conditions required for ringed molecules, we prove that Cn is homeomorphic

to ðn� 4Þ-dimensional sphere Sn�4 when n ¼ 5; 6; 7. This result gives an appropriate

explanation of the configuration space of n-membered ringed hydrocarbon molecules

when n ¼ 5; 6.

1. Introduction

Due to [1], representative samples of 5- and 6-membered ringed hydro-

carbon molecules were retrieved from the Cambridge Structural Database. By

principal-component analysis, the configuration space of 5- or 6-membered

ringed hydrocarbon molecules is regarded as the circle S1 or the 2-dimensional

sphere S2, respectively. When nb 7, what shapes become configuration spaces

havn’t been specified.

As a mathematical model of n-membered ringed hydrocarbon molecules,

we consider closed chains in R3 with rigidity ([3], [4], [8], [13]). In Mathe-

matics, the study of configurations of closed chains has been considered from a

topological, an algorithmic or a kinematic viewpoint. See, for example ([2],

[5], [7], [9], [10], [11], [14], [16]).

A closed chain is defined to be a graph in R3 having vertices fv0; v1; . . . ;
vn�1g and bonds fb1; b2; . . . ; bn�1; b0g, where bi connects vi�1 with vi ði ¼ 1;

2; . . . ; n� 1Þ and b0 connects vn�1 with v0. For the sake of simplicity, let bond

vectors vi � vi�1 be denoted by bi ði ¼ 1; 2; . . . ; n� 1Þ and v0 � vn�1 be denoted

by b0.
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We fix y with p
2 < y < p, and put 3 vertices v0 ¼ ð0; 0; 0Þ, vn�1 ¼ ð�1; 0; 0Þ,

vn�2 ¼ ðcos y� 1; sin y; 0Þ. We define a configuration space of closed chains

by the following:

Definition 1. We define fk : ðR3Þn�3 ! R by fkðv1; . . . ; vn�3Þ ¼
1
2 ðkbkk � 1Þ for k ¼ 1; . . . ; n� 2, and gk : ðR3Þn�3 ! R by g1ðv1; . . . ; vn�3Þ ¼
h�b0; b1i� cos y, gkðv1; . . . ; vn�3Þ ¼ h�bkþ1; bkþ2i� cos y for k ¼ 2; . . . ; n� 3,

where h ; i denotes the standard inner product in R3 and the standard norm

kxk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hx; xi

p
. We call y a bond angle.

Then the configuration space Cn is defined by the following;

Cn ¼ fp A ðR3Þn�3 j f1ðpÞ ¼ � � � ¼ fn�2ðpÞ ¼ g1ðpÞ ¼ � � � ¼ gn�3ðpÞ ¼ 0g:

We call fk, gk rigidity maps. Rigidity maps determine bond lengths and angles

of the closed chain in Cn. The closed chains in Cn are equilateral polygons

in R3 with n vertices such that the bond angles are all equal to a given angle y

except for two successive ones.

When n ¼ 5, we assume that y is equal to 7
12 p that is the average of bond

angles of 5-membered ringed hydrocarbon molecules. When n ¼ 6; 7, we

assume that y is equal to tetrahedral angle cos�1 � 1
3

� �
that is the standard

bond angle of the carbon atom. Note that Cn is not the empty set. Cn

actually includes the closed chains in Figs. 7, 8 and 9 of § 3.

The above model gives an appropriate explanation of the result that the

configuration space of n-membered ringed hydrocarbon molecules is regarded

as the ðn� 4Þ-dimensional sphere when n ¼ 5; 6. We obtain the following

theorem:

Theorem 1. The configuration space Cn is homeomorphic to ðn� 4Þ-
dimensional sphere Sn�4 when n ¼ 5; 6; 7.

For nb 8, there exists some bond angle y such that closed chains satisfy

the properties mentioned in § 2 if we choose a bond angle larger than the

tetrahedral angle cos�1ð�1=3Þ. Then there might be a possibility that it serve

as a simulation model of the conformation of the molecule.

However, we are interested in the possibility of approximating larger

macrocyclic molecules by smaller ones (e.g. n ¼ 5; 6; 7) as we did in [3], [4] and

[13].

This article is arranged as follows. In Section 2 we prove preliminary

results for the proof of Theorem 1. In Section 3 we prove Theorem 1.

In the following sections, we assume that y ¼ 7
12 p when n ¼ 5 and that

y ¼ cos�1 � 1
3

� �
when n ¼ 6; 7.
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2. Preliminaries

We need the following lemma in the proof of Theorem 1.

Lemma 1. When n ¼ 5; 6; 7, closed chains in the configuration space Cn

satisfies the following properties (1)–(3):

(1) Any closed chain in Cn does not have the local configurations of successive

three bonds bk, bkþ1 and b2 ðk ¼ 0; 3Þ with the relation bk þ bkþ1 ¼ lb2 for

any nonzero l as in Figs. 1, 2, 3 and 4.

(2) Any closed chain in Cn does not have the local configurations of successive

three bonds bk, bkþ1, bkþ2 with bond angles y and the relation bk ¼ bkþ2 as

in Fig. 5, where all indices are modulo n. In particular, the rotation around

the axis bk does not admit a full 2p-radian roll for k0 1; 2; 3.

We call such local configurations as (1) and (2) the forbidden local

configurations.

(3) All vertices do not be on one plane for each closed chain in Cn.

Proof. (1) First, we give the proof in the case where k ¼ 0 and

l > 0. By a similar argument we can treat the case where k ¼ 3 and

l > 0. We consider a non-closed chain which consists of four bonds bn�1,

b0, b1 and b2. Assume that a part of this chain forms the local configuration

as in Fig. 1. Then, the distance between vn�2 and v2 has the minimal valueffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1� 2cÞ2 þ ð1� 2cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2c

pq
ð> 2Þ, where c ¼ cos y, for n ¼ 5, and

1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
34þ 10

ffiffiffi
6

pp
ð> 2:54Þ for n ¼ 6; 7.

Fig. 1. (1) the forbidden lo-

cal configuration for k ¼ 0 and

l > 0

Fig. 2. (1) the forbidden lo-

cal configuration for k ¼ 3 and

l > 0

Fig. 3. (1) the forbidden lo-

cal configuration for k ¼ 0 and

l < 0

Fig. 4. (1) the forbidden local

configuration for k ¼ 3 and l < 0

Fig. 5. (2) the forbidden local

configuration bk ¼ bkþ2
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For n ¼ 5, we do not get any closed chains in C5 from the above non-

closed chain by adding a bond b3 even if we forget the restriction of the bond

angle at v3.

For n ¼ 6, we do not get any closed chains in C6 from the above non-

closed chain by adding two bonds b3, b4 since the distance between v2 and v4 is

equal to 2
ffiffi
6

p

3 ð< 2Þ by the restriction of the bond angle at v3.

When a non-closed chain consists of three bonds with the length 1 and the

bond angle y, we see that the distance between the end-points has the maximal

value
ffiffiffiffi
57

p

3 ð< 2:52Þ. So, we do not get any closed chains in C7 from the above

non-closed chain by adding three bonds b3, b4, b5.

Hence any closed chain in Cn ðn ¼ 5; 6; 7Þ does not have the local

configurations as in Figs. 1 and 2.

Next, we give the proof in the case where k ¼ 0 and l < 0. By a similar

argument we can treat the case where k ¼ 3 and l < 0.

For n ¼ 5, we consider a non-closed chain which consists of three bonds

b0, b1, and b2. Assume that this chain forms the local configuration as in Fig.

3. The distance between vn�1 and v2 is equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos y

p
� 1 for n ¼ 5.

So, we do not get any closed chains in C5 from the above non-closed chain

by adding two bonds b3, b4 since the distance between v2 and v4 is equal toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos y

p
by the restriction of the bond angle at v3.

For n ¼ 6; 7, we consider a non-closed chain which consists of four bonds

bn�1, b0, b1, and b2. Assume that a part of this chain forms the local config-

uration as in Fig. 3. Then, the distance between vn�2 and v2 has the maximal

value 1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
66� 18

ffiffiffi
2

pp
ð< 1:6Þ for n ¼ 6; 7.

For n ¼ 6, we do not get any closed chains in C6 from the above non-

closed chain by adding two bonds b3, b4 since the distance between v2 and v4 is

equal to 2
ffiffi
6

p

3 ð> 1:6Þ by the restriction of the bond angle at v3.

When a non-closed chain consists of three bonds with the length 1 and the

bond angle y, we see that the distance between the end-points has the minimal

value 5
3 ð> 1:6Þ. So, we do not get any closed chains in C7 from the above

non-closed chain by adding three bonds b3, b4, b5.

Hence any closed chain in Cn ðn ¼ 5; 6; 7Þ does not have the local config-

urations as in Figs. 3 and 4.

(2) For n ¼ 5, we consider a non-closed chain which consists of three

bonds bk�1, bk, and bkþ1. Assume that this chain forms the local configura-

tion as in Fig. 5. The distance between vk�2 and vkþ1 is equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� 4 cos y

p

ð> 2:4Þ for n ¼ 5. So, we do not get any closed chains in C5 from the above

non-closed chain by adding successive two bonds since the distance between the

end-points is at most 2.

For n ¼ 6; 7, we consider a non-closed chain which consists of five bonds
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bk�2, bk�1, bk, bkþ1 and bkþ2. Assume that the part bk�1, bk, bkþ1 of this

chain forms the local configuration as in Fig. 5.

If the bond angles at vk�2 and vkþ1 are y, the distance between the end-

points has the minimal value 3.

For n ¼ 6, we do not get any closed chains in C6 from the above non-

closed chain by adding one bond with the length 1.

For n ¼ 7, we do not get any closed chains in C7 from the above non-

closed chain by adding successive two bonds since the distance between vk�3

and vkþ2 is at most 2.

If the bond angle at one of vk�2 and vkþ1 isn’t y, we have the part of the

non-closed chain, which consists of 4 bonds with the bond angles y. Because

the distance between the end-points in this part has the minimal value 8
3 , we see

that the distance between vk�3 and vkþ2 has the minimal value 5
3 ð> 1:66Þ.

For n ¼ 6, we do not get any closed chains in C6 from the above non-

closed chain by adding one bond with the length 1.

For n ¼ 7, we do not get any closed chains in C7 from the above non-

closed chain by adding successive two bonds since the distance between the

end-points is equal to 2
ffiffi
6

p

3 ð< 1:64Þ by the restriction of the included bond

angle.

Hence any closed chain in Cn ðn ¼ 5; 6; 7Þ does not have the local config-

urations as in Fig. 5.

(3) We assume that all vertices are on one plane for some closed chain.

By fogetting the bond b2 from the closed chain, we have the non-closed

chain with the end points v1, v2. By Lemma 1 (2) we see that the succcessive

three bonds in the non-closed chain form the planar local configuration as in

Fig. 6.

Then we can explicitly calculate of the distance between v1 and v2 in the

non-closed chain. When n ¼ 5, the distance between v1 and v2 is equal to

�2 cos y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos y

p
ð< 0:9Þ. When n ¼ 6, the distance between v1 and v2 is

equal to 1
9 ð< 1Þ. When n ¼ 7, the distance between v1 and v2 is equal to 10

ffiffi
6

p

27

ð< 0:91Þ.
Since the distance between v1 and v2 is shorter than 1, all vertices do not

be on one plane for each closed chain in Cn. r

Fig. 6. the planar local configuration of the succcessive three bonds
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By Lemma 1 we obtain the following proposition:

Proposition 1. The configuration space Cn is an orientable closed ðn� 4Þ-
dimensional submanifold of R3n�9 when n ¼ 5; 6; 7.

Proof. We define F : ðR3Þn�3 ! R2n�5 by F ¼ ð f1; . . . ; fn�2; g1; . . . ; gn�3Þ.
Then Cn ¼ F�1ðfOgÞ for O ¼ ð0; . . . ; 0Þ A R2n�5.

We show that O A R2n�5 is a regular value of F . So, it su‰ces to prove

that the gradient vectors ðgrad f1Þp; . . . ; ðgrad fn�2Þp, ðgrad g1Þp; . . . ; ðgrad gn�3Þp
are linearly independent for any p A F�1ðfOgÞ ¼ Cn, where ðgrad f Þp ¼
qf
qxj

ðpÞ
� �

j
. It is convenient to decompose the gradient vectors of fk and gk into

1� 3 blocks. We have the following forms:

ðgrad f1Þp ¼ ðb1; 0; . . . . . . ; 0Þ;

..

.

ðgrad fkÞp ¼ ð0; . . . ; 0;�bk; bk; 0; . . . ; 0Þ;

..

.

ðgrad fn�2Þp ¼ ð0; . . . . . . ; 0;�bn�2Þ;

ðgrad g1Þp ¼ ð�b0; 0; . . . . . . ; 0Þ;

..

.

ðgrad gkÞp ¼ ð0; . . . ; 0; bkþ2; bkþ1 � bkþ2;�bkþ1; 0; . . . ; 0Þ;

..

.

ðgrad gn�4Þp ¼ ð0; . . . ; 0; bn�2; bn�3 � bn�2Þ;

ðgrad gn�3Þp ¼ ð0; . . . . . . ; 0; bn�1Þ;

where bk denotes the bond vectors of the closed chain corresponding to p A Cn,

0 ¼ ð0; 0; 0Þ.
Assume that the gradient vectors ðgrad f1Þp; . . . ; ðgrad fn�2Þp,

ðgrad g1Þp; . . . ; ðgrad gn�3Þp are linearly dependent. Then ck 0 0 andPn�2
i¼1 ciðgrad fiÞp þ

Pn�3
i¼1 ciþn�2ðgrad giÞp ¼ ð0; . . . ; 0Þ for some k.

Now we will show that all vertices of the closed chain corresponding to p

are on one plane by using Lemma 1 (1), (2) in what follows. Let v0; v1; . . . ;

vn�1 denote the vertices of the closed chain corresponding to p. Since two

successive bond vectors bk, bkþ1 are linearly independent for k0 1; 2, we
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get that c2 0 0. Then the first 1� 3 blocks of gradient vectors implies that

the vertices v0, v1, v2 and vn�1 are on one plane and the second 1� 3 blocks

of gradient vectors implies that the vertices v1, v2, v3 and v4 are on one

plane.

When n ¼ 6; 7, by Lemma 1 (1) the second and third 1� 3 blocks of

gradient vectors implies that cnþ1 0 0. Then the vertices v2, v3, v4 and v5 are

on one plane.

When n ¼ 7, the vertices v1; v2; . . . ; v5 are on one plane by the above

argument.

If b2 ¼Gb4, then bk ¼ �bkþ2 by Lemma 1 (2) and the distance between

v1 and v5 is equal to 2
3 . So, we do not get any closed chains in C7 from

the above non-closed chain by adding successive three bonds since the

distance between the end-points has the minimal value 5
3 . Thus we see that

b2 0Gb4, and get that c3 0 0. Due to the forbidden local configuration of

Fig. 5 in Lemma 1 (2), We have the relation 3b3 � 2b4 þ 3b5 ¼ 0. By using

c3 0 0 and this relation, the third and fourth 1� 3 blocks of gradient vec-

tors implies that c9 0 0. Then the vertices v3, v4, v5 and v6 are on one

plane.

Hence we see that all vertices v0; v1; . . . ; vn�1 are in the plane through v1, v2
and vn�1 for n ¼ 5; 6; 7.

This contradicts Lemma 1 (3). Therefore O A R2n�5 is a regular value

of F and we obtain that Cn is an orientable closed ðn� 4Þ-dimensional sub-

manifold of R3n�9 by the regular value theorem. The proof of Proposition 1 is

completed. r

Remark 1. For nb 8 and y ¼ cos�1 � 1
3

� �
, some closed chains in Cn have

forbidden local configurations of Lemma 1 (1), (2). So, we cannot apply the

proof of Proposition 1 to the nb 8 cases.

3. The proof of Theorem 1

We define h : ðR3Þn�3 ! R by hðv1; . . . ; vn�3Þ ¼ x2ffiffiffiffiffiffiffiffiffiffi
x2
2
þx2

3

p , where v1 ¼
ðx1; x2; x3Þ. Due to [12, p. 25, Remark 1], [15, p. 380, Lemma 1] we have the

extension of Reeb’s theorem that M is homeomorphic to a sphere if M is

a compact manifold and f is a di¤erentiable function on M with only two

critical points.

We show that hjCn is a di¤erentiable function on Cn with only two critical

points. Due to [6] for a function on a manifold embedded in Euclidean space,

p A Cn is a critical point of hjCn for h : ðR3Þn�3 ! R if and only if there exist

ai A R such that ðgrad hÞp ¼
Pn�2

i¼1 aiðgrad fiÞp þ
Pn�3

i¼1 aiþn�2ðgrad giÞp. We

can easily check that ðgrad hÞp ¼ 0;
x2
3

sin3 y
;� x2x3

sin3 y
; 0; . . . ; 0

� �
. Note that the first
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1� 3 block 0;
x2
3

sin3 y
;� x2x3

sin3 y

� �
is orthogonal to b0 and b1. So, we see that

a2 0 0 if ðgrad hÞp ¼
Pn�2

i¼1 aiðgrad fiÞp þ
Pn�3

i¼1 aiþn�2ðgrad giÞp. By the same

argument as the proof of Proposition 1 in § 2, we obtain that the configuration

of the closed chain corresponding to a critical point p satisfies that the vertices

vi ði ¼ 1; . . . ; n� 1Þ are on one plane Spanhb2; b3i ¼ Spanhb2; . . . ; bn�1i.
We transform the closed chains by the congruent transformation that maps

vn�1, vn�2 and vn�3 to ð0; 0; 0Þ, ð�1; 0; 0Þ and ðcos y� 1; sin y; 0Þ in this order,

and we denote the image of vk as wk. This congruent transformation can be

expressed by the composition of a translation and a rotation around z-axis and

a rotation around x-axis. Because the vertices wi ði ¼ 1; . . . ; n� 1Þ are in the

xy-plane, it becomes easy to find the coordinates of the vertices wi concretely.

n ¼ 5:

By the definition of wi, we have the coordinates of vertices:

w2 ¼ ðcos y� 1; sin y; 0Þ;

w3 ¼ ð�1; 0; 0Þ;

w4 ¼ ð0; 0; 0Þ;

where cos y ¼ �
ffiffi
6

p
þ

ffiffi
2

p

4 .

Since w1; . . . ;w4 are in xy-plane, we put w1 ¼ ða; b; 0Þ. By the restric-

tion of the bond length, we see that kw2 � w1k ¼ 1. By the restriction of the

bond angle at w0, we see that kw4 � w1k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos y

p
. Then ðx; yÞ ¼ ða; bÞ

is a solution of a pair of equations: x2 þ y2 ¼ 2� 2 cos y, ðxþ 1� cos yÞ2 þ
ðy� sin yÞ2 ¼ 1. Because of the existence of w0, the coordinate of w1 is

uniquely determined as follows:

a ¼ 1

4
ð�3þ

ffiffiffi
2

p
�

ffiffiffi
6

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�7� 8

ffiffiffi
2

p
þ 8

ffiffiffi
3

p
þ 4

ffiffiffi
6

pq
Þ;

b ¼ ð1� cos yÞaþ 1

2
� cos y:

We put w0 ¼ ðx1; x2; x3Þ. By the restriction of the bond angle at w4,

we see that x1 ¼ �cos y. Then ðy; zÞ ¼ ðx2; x3Þ is a solution of a pair of

equations: cos2 yþ y2 þ z2 ¼ 1, ðaþ cos yÞ2 þ ðb� yÞ2 þ z2 ¼ 1. The coor-

dinate of w0 is determined as follows:

x1 ¼ �cos y;

x2 ¼ ð1� cos yþ a cos yÞ=b;

x3 ¼G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

1 � x2
2

q
:
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n ¼ 6:

Since w1; . . . ;w5 are in xy-plane, we can calculate the coordinate of w2

concretely by the restriction of the bond angle at w3. Note that cos y ¼ �1=3.

We have the coordinates of vertices:

w2 ¼ ð�5=9; 10
ffiffiffi
2

p
=9; 0Þ;

w3 ¼ ðcos y� 1; sin y; 0Þ ¼ ð�4=3; 2
ffiffiffi
2

p
=3; 0Þ;

w4 ¼ ð�1; 0; 0Þ;

w5 ¼ ð0; 0; 0Þ:

Since w1; . . . ;w5 are in xy-plane, we put w1 ¼ ða; b; 0Þ. By the restric-

tion of the bond length, we see that kw2 � w1k ¼ 1. By the restriction of the

bond angle at w0, we see that kw5 � w1k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos y

p
. Then ðx; yÞ ¼ ða; bÞ

is a solution of a pair of equations: x2 þ y2 ¼ 2� 2 cos y, ðxþ 5=9Þ2 þ
ðy� 10

ffiffiffi
2

p
=9Þ2 ¼ 1. Because of the existence of w0, the coordinate of w1 is

uniquely determined as follows:

a ¼ 4

9
; b ¼ 10

ffiffiffi
2

p

9
:

We put w0 ¼ ðx1; x2; x3Þ. By the restriction of the bond angle at w5,

we see that x1 ¼ �cos y. Then ðy; zÞ ¼ ðx2; x3Þ is a solution of a pair of

equations: cos2 yþ y2 þ z2 ¼ 1, ðaþ cos yÞ2 þ ðb� yÞ2 þ z2 ¼ 1. The coor-

dinate of w0 is determined as follows:

x1 ¼ �cos y ¼ 1

3
;

x2 ¼ ð1� cos yþ a cos yÞ=b ¼ 8
ffiffiffi
2

p

15
;

x3 ¼G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

1 � x2
2

q
¼ 2

ffiffiffi
2

p

5
:

For n ¼ 6 the vertex w1 have comparatively simple coordinates.

n ¼ 7:

Since w1; . . . ;w6 are in xy-plane, we can calculate the coordinate of w2, w3

concretely by the restriction of the bond angle at w3, w4. Note that cos y ¼
�1=3. We have the coordinates of vertices:

w2 ¼ ð8=27; 20
ffiffiffi
2

p
=27; 0Þ;

w3 ¼ ð�5=9; 10
ffiffiffi
2

p
=9; 0Þ;
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w4 ¼ ðcos y� 1; sin y; 0Þ ¼ ð�4=3; 2
ffiffiffi
2

p
=3; 0Þ;

w5 ¼ ð�1; 0; 0Þ;

w6 ¼ ð0; 0; 0Þ:

Since w1; . . . ;w6 are in xy-plane, we put w1 ¼ ða; b; 0Þ. By the restric-

tion of the bond length, we see that kw2 � w1k ¼ 1. By the restriction of the

bond angle at w0, we see that kw6 � w1k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos y

p
. Then ðx; yÞ ¼ ða; bÞ

is a solution of a pair of equations: x2 þ y2 ¼ 2� 2 cos y, ðx� 8=27Þ2 þ
ðy� 20

ffiffiffi
2

p
=27Þ2 ¼ 1. Because of the existence of w0, the coordinate of w1 is

uniquely determined as follows:

a ¼ 1

432
ð154þ 5

ffiffiffiffiffiffiffiffiffiffi
6574

p
Þ; b ¼ 1

432
ð385

ffiffiffi
2

p
� 2

ffiffiffiffiffiffiffiffiffiffi
3287

p
Þ:

We put w0 ¼ ðx1; x2; x3Þ. By the restriction of the bond angle at w6,

we see that x1 ¼ �cos y. Then ðy; zÞ ¼ ðx2; x3Þ is a solution of a pair of

equations: cos2 yþ y2 þ z2 ¼ 1, ðaþ cos yÞ2 þ ðb� yÞ2 þ z2 ¼ 1. The coor-

dinate of w0 is determined as follows:

x1 ¼
1

3
;

x2 ¼ ð1� cos yþ a cos yÞ=b ¼ ð�aþ 4Þ=3b;

x3 ¼G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

1 � x2
2

q
:

Thus the vertices v1; v2; . . . ; vn�1 are uniquely determined and just two

positions of the vertex v0 are determined for original closed chains with vertices

fv0; v1; . . . ; vn�1g. Then we have just two configurations of closed chains

corresponding to the critical points. These two are mirror symmetric with

respect to the plane Spanhb2; b3i. Hence we obtain that hjCn has only two

critical points. See Figs. 7, 8, and 9 for the critical configurations. We note

that when n ¼ 6, configurations of closed chains corresponding to critical points

have reflection symmetry in the plane, through v0 and v3, perpendicular to

Spanhb2; b3i as in Fig. 8.

Fig. 7. n ¼ 5 Fig. 8. n ¼ 6 Fig. 9. n ¼ 7
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