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Abstract. The LðaÞ-harmonic function is the solution of the parabolic operator

LðaÞ ¼ qt þ ð�DxÞa. We study a function space ~BBaðsÞ consisting of LðaÞ-harmonic

functions of parabolic Bloch type. In particular, we give a reproducing formula for

functions in ~BBaðsÞ. Furthermore, we study the fractional calculus on ~BBaðsÞ. As an

application, we also give a reproducing formula with fractional orders for functions in
~BBaðsÞ. Moreover, we investigate the dual and pre-dual spaces of function spaces of

parabolic Bloch type.

1. Introduction

The harmonic Bloch space on the upper half-space of Rnþ1 ðnb 1Þ was

studied by Ramey and Yi [7]. Nishio, Shimomura, and Suzuki [5] introduced

the a-parabolic Bloch space on the upper half-space and studied important

properties of the space. It was also shown in [5] that when a ¼ 1=2, the 1=2-

parabolic Bloch space coincides with the harmonic Bloch space of Ramey and

Yi. Hence, investigation of the a-parabolic Bloch space contains that of the

harmonic Bloch space. In this paper, we generalize the a-parabolic Bloch

space, and study properties of its space.

We begin with recalling basic notations. Let H be the upper half-space

of Rnþ1, that is, H :¼ fX ¼ ðx; tÞ A Rnþ1; x ¼ ðx1; . . . ; xnÞ A Rn; t > 0g, and let

qj :¼ q=qxj ð1a ja nÞ and qt :¼ q=qt. Let CðWÞ be the set of all real-valued

continuous functions on a region W, and for a positive integer k, CkðWÞH
CðWÞ denotes the set of all k times continuously di¤erentiable functions on W,

and put CyðWÞ ¼ 7
k
CkðWÞ. The harmonic Bloch space B in [7] is the set of

all harmonic functions u on H with

kukB ¼ juð0; 1Þj þ sup
ðx; tÞ AH

tj‘ðx; tÞuðx; tÞj < y;ð1:1Þ

where ‘ðx; tÞ ¼ ðq1; . . . ; qn; qtÞ denotes the gradient operator on Rnþ1. We also

recall the definition of the a-parabolic Bloch space in [5]. For 0 < aa 1, the
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parabolic operator LðaÞ is defined by

LðaÞ :¼ qt þ ð�DxÞa;

where Dx :¼ q21 þ � � � þ q2n is the Laplacian on the x-space Rn. A function

u A CðHÞ is said to be LðaÞ-harmonic if u satisfies LðaÞu ¼ 0 in the sense of

distributions. (For details, see section 2 of this paper.) The a-parabolic Bloch

space Ba is the set of all LðaÞ-harmonic functions u A C1ðHÞ with

kukBa
¼ juð0; 1Þj þ sup

ðx; tÞ AH
ft1=2aj‘xuðx; tÞj þ tjqtuðx; tÞjg < y;ð1:2Þ

where ‘x also denotes the gradient operator on the x-space Rn. It is shown

in Theorem 7.4 of [5] that Ba is a Banach space under the norm k � kBa
. Fur-

thermore, (2.4) and Theorem 7.4 of [5] imply B1=2 ¼ B. In this paper, we

introduce the following function space of parabolic Bloch type.

Definition 1. Let 0 < aa 1. And we put mðaÞ ¼ min
�
1; 1

2a

�
. Then,

for a real number s > �mðaÞ, let BaðsÞ be the set of all LðaÞ-harmonic functions

u A C 1ðHÞ with the norm

kukBaðsÞ :¼ juð0; 1Þj þ sup
ðx; tÞ AH

tsft1=2aj‘xuðx; tÞj þ tjqtuðx; tÞjg < y:ð1:3Þ

Furthermore, let ~BBaðsÞ be the set of all functions u A BaðsÞ with uð0; 1Þ ¼ 0.

We note that ~BBaðsÞGBaðsÞ=R.

We have an interest in analyses of function spaces BaðsÞ, and our aim of

this paper is the investigation of properties of these spaces. We remark that

the condition s > �mðaÞ in Definition 1 requires that the orders of t in (1.3) are

positive, that is, sþ 1
2a > 0 and sþ 1 > 0. Furthermore, our results of this

paper can be applied to study conjugate functions on the a-parabolic Bloch

space, whose applications will be described elsewhere. We present main results

of this paper.

Theorem 1. Let 0 < aa 1 and s > �mðaÞ. Then, there exists a constant

C ¼ Cðn; a; sÞ > 0 such that

juðx; tÞjaCkukBaðsÞFa;sðx; tÞ

for all u A BaðsÞ and ðx; tÞ A H, where

Fa;sðx; tÞ :¼
1þ jxj�2as þ t�s ð0 > s > �mðaÞÞ
1þ logð1þ jxjÞ þ jlog tj ðs ¼ 0Þ
1þ t�s ðs > 0Þ.

8><
>:

Let dV be the Lebesgue volume measure on H and N0 :¼ NU f0g. The

following theorem is a reproducing formula for functions in ~BBaðsÞ, which is
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given by Theorem 4.5 of this paper. (Actually, our result is more general, see

also Theorem 5.7.)

Theorem 2. Let 0 < aa 1 and s > �mðaÞ. If k;m A N0 satisfy m > s

and k þm > 0, then

uðx; tÞ ¼ 2kþm

Gðk þmÞ

ð
H

Dk
t uðy; sÞom

a ðx; t; y; sÞskþm�1 dVðy; sÞ

for all u A ~BBaðsÞ and ðx; tÞ A H, where G is the gamma function, Dt ¼ �qt, and

the kernel function om
a is defined in section 4.

We also give the definitions of parabolic Bergman spaces, which are closely

related to the function space of parabolic Bloch type. For 1a p < y and

l > �1, the Lebesgue space LpðlÞ :¼ LpðH; tl dVÞ is defined to be the Banach

space of all Lebesgue measurable functions u on H with

kukLpðlÞ :¼
ð
H

juðx; tÞjptl dVðx; tÞ
� �1=p

< y:

The a-parabolic Bergman space bp
a ðlÞ is the set of all LðaÞ-harmonic functions

u on H with u A LpðlÞ. Furthermore, Ly :¼ LyðH; dVÞ is defined to be the

Banach space of all Lebesgue measurable functions u on H with

kukLy :¼ ess sup
H

juj < y;

and let bya be the set of all LðaÞ-harmonic functions u on H with u A Ly. (For

details, see section 2 of this paper and [5].) As an application of Theorem 2,

we obtain the following result.

Theorem 3. Let 0 < aa 1, s > �mðaÞ, and l > �1. Then, ðb1aðlÞÞ
� G

~BBaðsÞ under the pairing h� ; �il;s, where

hu; vil;s :¼
2lþsþ2

Gðlþ sþ 2Þ

ð
H

uðy; sÞDtvðy; sÞslþsþ1 dVðy; sÞ;ð1:4Þ

u A b1aðlÞ; v A ~BBaðsÞ:

We also discuss a pre-dual space of b1aðlÞ. For s > �mðaÞ, a function

space of parabolic little Bloch type Ba;0ðsÞ is the set of all functions u A BaðsÞ
with

lim
ðx; tÞ!qHUfyg

tsft1=2aj‘xuðx; tÞj þ tjqtuðx; tÞjg ¼ 0:ð1:5Þ

Furthermore, let ~BBa;0ðsÞ be the set of all functions u A Ba;0ðsÞ with uð0; 1Þ ¼ 0.

We also give the following result.
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Theorem 4. Let 0 < aa 1, s > �mðaÞ, and l > �1. Then, b1aðlÞG
ð ~BBa;0ðsÞÞ� under the pairing (1.4), that is, hu; vil;s with u A b1aðlÞ and v A ~BBa;0ðsÞ.

We remark that the pairing (1.4) is equal to a natural pairing on a dense

subset of b1aðlÞ. In fact, for a real number h, let

SðhÞ :¼ fu A bya ; ð1þ tþ jxj2aÞn=2aþh
uðx; tÞ is bounded on Hg:

Then, Proposition 6.2 of [3] shows that SðhÞ is a dense subspace of b1aðlÞ when

l > �1 and h > lþ 1. By the similar argument as in the proof of Theorem

6.5 of [3], it is not hard to see that

hu; vil;s ¼
2lþsþ1

Gðlþ sþ 1Þ

ð
H

uðy; sÞvðy; sÞslþs dVðy; sÞ;ð1:6Þ

u A SðhÞ; v A ~BBaðsÞ;

when sb 0 and h > lþ sþ 1 (since sb 0, the condition h > lþ sþ 1 implies

that SðhÞ is dense in b1aðlÞ). Furthermore, when 0 > s > �mðaÞ, the equation

(1.6) also holds under the conditions lþ s > �1 and h > lþ 1.

We describe the construction of this paper. In section 2, we present

preliminary facts. In particular, we recall the explicit definition of the LðaÞ-

harmonic functions and introduce some known results. In section 3, we study

basic properties of ~BBaðsÞ and give the proof of Theorem 1. In section 4, we

give the proof of Theorem 2. Consequently, we show a reproducing formula

for functions in ~BBaðsÞ. In section 5, we study fractional calculus on ~BBaðsÞ.
As an application, we give a generalization of Theorem 2, which is a reproduc-

ing formula with fractional orders for functions in ~BBaðsÞ. In section 6, we give

the proofs of Theorems 3 and 4.

Throughout this paper, C will denote a positive constant whose value is

not necessary the same at each occurrence; it may vary even within a line.

2. Preliminaries

In this section, we recall basic properties concerning the LðaÞ-harmonic

functions. (For details, see [5].) We begin with describing about the operator

ð�DxÞa. Since the case a ¼ 1 is trivial, we only describe the case 0 < a < 1.

Let Cy
c ðHÞHCðHÞ be the set of all infinitely di¤erentiable functions on

H with compact support. Then, ð�DxÞa is the convolution operator defined

by

ð�DxÞacðx; tÞ :¼ �Cn;a lim
d#0

ð
jyj>d

ðcðxþ y; tÞ � cðx; tÞÞjyj�n�2a
dyð2:1Þ
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for all c A Cy
c ðHÞ and ðx; tÞ A H, where Cn;a ¼ �4ap�n=2Gððnþ 2aÞ=2Þ=Gð�aÞ

> 0. Let ~LLðaÞ :¼ �qt þ ð�DxÞa be the adjoint operator of LðaÞ. Then, a func-

tion u A CðHÞ is said to be LðaÞ-harmonic if u satisfies LðaÞu ¼ 0 in the sense

of distributions, that is,
Ð
H
ju � ~LLðaÞcjdV < y and

Ð
H
u � ~LLðaÞc dV ¼ 0 for all

c A Cy
c ðHÞ. By (2.1) and the compactness of suppðcÞ (the support of c),

there exist 0 < t1 < t2 < y and a constant C > 0 such that

suppð~LLðaÞcÞHS ¼ Rn � ½t1; t2�ð2:2Þ

and

j~LLðaÞcðx; tÞjaCð1þ jxjÞ�n�2a for ðx; tÞ A S:ð2:3Þ

Hence, the condition
Ð
H
ju � ~LLðaÞcjdV < y for all c A Cy

c ðHÞ is equivalent to

the following: for any 0 < t1 < t2 < y,ð t2
t1

ð
R n

juðx; tÞjð1þ jxjÞ�n�2a
dxdt < y:ð2:4Þ

We also note that

qjð�DxÞac ¼ ð�DxÞaqjc and qtð�DxÞac ¼ ð�DxÞaqtcð2:5Þ

for all c A Cy
c ðHÞ.

We describe the fundamental solution of LðaÞ. For x A Rn, let

W ðaÞðx; tÞ :¼
1

ð2pÞn
ð
R n

expð�tjxj2a þ ix � xÞdx ðt > 0Þ

0 ðta 0Þ;

8><
>:

where x � x denotes the inner product on Rn and jxj ¼ ðx � xÞ1=2. The function

W ðaÞ is the fundamental solution of LðaÞ and it is LðaÞ-harmonic on H. We

note that

W ðaÞ > 0 on H and

ð
Rn

W ðaÞðx; tÞdx ¼ 1 for all 0 < t < y:ð2:6Þ

Furthermore, W ðaÞ A CyðHÞ. The following lemma is Lemma 2.4 of [5].

Lemma 2.1 ([5, Lemma 2.4]). Let 0 < aa 1 and 1a pay. If f A
CðRnÞVLpðRnÞ, then for every x A Rn,

lim
s!þ0

ð
R n

f ðx� yÞW ðaÞðy; sÞdy ¼ f ðxÞ:

We also present the following lemma, which is Theorem 4.1 of [5] and Lemma

3.1 of [8].
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Lemma 2.2 (Theorem 4.1 of [5] and Lemma 3.1 of [8]). Let 0 < aa 1,

1a p < y, and l > �1. Then, every u A bp
a ðlÞ satisfies the following Huygens

property, that is,

uðx; tþ sÞ ¼
ð
R n

uðx� y; tÞW ðaÞðy; sÞdy ¼
ð
Rn

uðy; tÞW ðaÞðx� y; sÞdyð2:7Þ

holds for all x A Rn, 0 < s < y, and 0 < t < y. Furthermore, every u A bya
also satisfies (2.7).

Since W ðaÞ A CyðHÞ, the Huygens property implies that bp
a ðlÞHCyðHÞ. We

also remark that a function satisfying the Huygens property is LðaÞ-harmonic,

because W ðaÞ is LðaÞ-harmonic on H. For a multi-index g ¼ ðg1; . . . ; gnÞ A Nn
0 ,

let qg
x :¼ q

g1
1 . . . qgn

n . The following estimate is Lemma 1 of [6]: For a multi-

index g A Nn
0 and an integer k A N0, there exists a constant C ¼ Cðn; a; g; kÞ > 0

such that

jqg
xq

k
t W

ðaÞðx; tÞjaCðtþ jxj2aÞ�ððnþjgjÞ=2aþkÞð2:8Þ

for all ðx; tÞ A H. When ðg; kÞ ¼ ð0; 0Þ, Lemma 3.1 of [5] gives the following

estimate: there exists a constant C ¼ Cðn; aÞ > 0 such that

W ðaÞðx; tÞaCtðtþ jxj2aÞ�ðn=2aþ1Þð2:9Þ

for all ðx; tÞ A H. Furthermore, the following estimate is Lemma 3.3 of [8]

and Theorem 5.4 of [5]: For 1a p < y and l > �1 there exists a constant

C ¼ Cðn; a; p; l; g; kÞ > 0 such that

jqg
xq

k
t uðx; tÞjaCkukLpðlÞt

�ðjgj=2aþkÞ�ðn=2aþlþ1Þð1=pÞð2:10Þ

for all u A bp
a ðlÞ and ðx; tÞ A H. Furthermore, there exists a constant C ¼

Cðn; a; g; kÞ > 0 such that

jqg
xq

k
t uðx; tÞjaCkukLy t

�ðjgj=2aþkÞð2:11Þ

for all u A bya and ðx; tÞ A H.

The following lemma is Lemma 5 of [6]. We use this in our later

arguments.

Lemma 2.3 ([6, Lemma 5]). Let y; c A R. If y > �1 and y� cþ n
2a þ 1

< 0, then there exists a constant C ¼ Cðn; a; y; cÞ > 0 such thatð
H

sy

ðtþ sþ jx� yj2aÞc
dVðy; sÞ ¼ Cty�cþn=2aþ1

for all ðx; tÞ A H.
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3. Basic properties of BaðsÞ

In this section, we study basic properties of BaðsÞ. We begin with

showing the following lemma.

Lemma 3.1. Let 0 < a < 1 and suppose that a function u A C1ðHÞ is LðaÞ-

harmonic. Then the following statements hold.

(1) If qju satisfies the condition (2.4), then qju is also LðaÞ-harmonic.

(2) If qtu satisfies the condition (2.4), then qtu is also LðaÞ-harmonic.

Proof. (1) If u satisfies the condition (2.4) and qju also satisfies the

condition (2.4), then by the Fubini theorem and integrating by parts with

respect to the variable xj, (2.3) and (2.5) imply that

ð
H

qju � ~LLðaÞc dV ¼ �
ð
H

u � ~LLðaÞðqjcÞdV ¼ 0

for all c A Cy
c ðHÞ. Thus, qju is LðaÞ-harmonic. (2) Similarly, if qtu satisfies

the condition (2.4), then the LðaÞ-harmonicity of qtu follows from (2.2) and

(2.5). r

For a real number db 0 and a function u on H, let udðx; tÞ ¼ uðx; tþ dÞ
for ðx; tÞ A H. Basic properties of functions in BaðsÞ are given in the follow-

ing. In particular, (1) of Theorem 3.2 is Theorem 1 of section 1.

Theorem 3.2. Let 0 < aa 1 and s > �mðaÞ. Then, the following state-

ments hold.

(1) There exists a constant C ¼ Cðn; a; sÞ > 0 such that

juðx; tÞjaCkukBaðsÞFa;sðx; tÞð3:1Þ

for all u A BaðsÞ and ðx; tÞ A H, where

Fa;sðx; tÞ :¼
1þ jxj�2as þ t�s ð0 > s > �mðaÞÞ
1þ logð1þ jxjÞ þ jlog tj ðs ¼ 0Þ
1þ t�s ðs > 0Þ:

8><
>:ð3:2Þ

(2) If u A BaðsÞ, then

lim
s!þ0

ð
R n

uðx� y; tÞW ðaÞðy; sÞdy ¼ uðx; tÞ

for all ðx; tÞ A H.

(3) Every u A BaðsÞ satisfies the Huygens property (2.7).
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(4) Let ðg; kÞ A Nn
0 �N0nfð0; 0Þg. If u A BaðsÞ, then u belongs to CyðHÞ

and qg
xq

k
t u is LðaÞ-harmonic. Furthermore, there exists a constant C ¼

Cðn; a; s; g; kÞ > 0 such that

jqg
xq

k
t uðx; tÞjaCt�ðjgj=2aþkþsÞkukBaðsÞð3:3Þ

for all u A BaðsÞ and ðx; tÞ A H.

(5) The space BaðsÞ is a Banach space under the norm (1.3).

Proof. (1) Let c > 0 be arbitrary real number. Then, for u A BaðsÞ and

ðx; tÞ A H, we obtain

juðx; tÞja juð0; 1Þj þ
ð c
1

jqtuð0; sÞjds
����

����þ
ð1
0

jxj � j‘xuðrx; cÞjdrþ
ð t
c

jqtuðx; sÞjds
����

����
a kukBaðsÞ 1þ

ð c
1

s�s�1 ds

����
����þ jxjc�s�1=2a þ

ð t
c

s�s�1 ds

����
����

� �

aCkukBaðsÞð1þ Ix;sðcÞÞ;

where

Ix;sðcÞ :¼
jlog cj þ jxjc�1=2a þ jlog tj ðs ¼ 0Þ
c�sð1þ jxjc�1=2aÞ þ t�s ðs0 0Þ:

�

Since c > 0 is arbitrary, we can put c ¼ ð1þ jxjÞ2a. Then there exists a

constant C > 0 such that

Ix;sðcÞaC

1þ jxj�2as þ t�s ð0 > s > �mðaÞÞ
1þ logð1þ jxjÞ þ jlog tj ðs ¼ 0Þ
1þ t�s ðs > 0Þ:

8><
>:

Thus we obtain the estimate (3.1).

(2) Let u A BaðsÞ. Also, let ðx; tÞ A H and e > 0 be fixed. Then, there

exists a real number d > 0 such that juðx� y; tÞ � uðx; tÞj < e for all y A Rn

with jyj < d. Therefore, (2.6), (3.1), and (2.9) imply that

ð
R n

uðx� y; tÞW ðaÞðy; sÞdy� uðx; tÞ
����

����
a e

ð
jyj<d

W ðaÞðy; sÞdyþ CkukBaðsÞ

ð
jyjbd

ðFa;sðx� y; tÞ þ 1ÞW ðaÞðy; sÞdy

a eþ Cs

ð
jyjbd

Fa;sðx� y; tÞ þ 1

jyjnþ2a
dy:
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Suppose that 0 > s > �mðaÞ. Then, (3.2) implies that Fa;sðx� y; tÞa
Cð1þ jyj�2asÞ for all y A Rn. Therefore, we obtain

lim
s!þ0

ð
Rn

uðx� y; tÞW ðaÞðy; sÞdy� uðx; tÞ
����

����a e:

The proof of the case sb 0 is similar to that of 0 > s > �mðaÞ.
(3) Let u A BaðsÞ and s > 0 be fixed. Then, by the definition of the

norm (1.3), we have qju
s=2 A Ly. Therefore, qju

s=2 satisfies the condition (2.4).

Furthermore, (1) of Theorem 3.2 implies that limjxj!y us=2ðx; tÞð1þ jxjÞ�n�2a

¼ 0 for each t > 0. Thus, by (1) of Lemma 3.1, we have qju
s=2 A bya . Since

every element in bya satisfies the Huygens property by Lemma 2.2, we

obtain

qjuðx; tþ sÞ ¼ qju
s=2ðx; tþ s=2Þ ¼

ð
R n

qju
s=2ðx� y; s=2ÞW ðaÞðy; tÞdy

¼
ð
R n

qjuðx� y; sÞW ðaÞðy; tÞdy

for all ðx; tÞ A H. Hence, for x ¼ ðx1; . . . ; xnÞ A Rn and x 0
j A R, put

x 0 ¼ ðx1; . . . ; xj�1; x
0
j ; xjþ1; . . . ; xnÞ;

then we have

uðx; tþ sÞ � uðx 0; tþ sÞ ¼
ð
R n

ðuðx� y; sÞ � uðx 0 � y; sÞÞW ðaÞðy; tÞdy:

Therefore, the function

vðx; t; sÞ :¼ uðx; tþ sÞ �
ð
Rn

uðx� y; sÞW ðaÞðy; tÞdyð3:4Þ

is a constant with respect to the variable xj ð1a ja nÞ. By a similar argu-

ment with respect to s, the function v is also a constant with respect to the

variable s. Since for each fixed s > 0 the function vð�; �; sÞ is LðaÞ-harmonic by

(3.4), we have qtv ¼ qtvþ ð�DxÞav ¼ 0. Therefore, v is a constant, and which

is equal to limt!þ0 vðx; t; sÞ ¼ 0 by (2) of Theorem 3.2.

(4) Let u A BaðsÞ and ðg; kÞ A Nn
0 �N0nfð0; 0Þg. Then, by (3) of Theo-

rem 3.2, u belongs to CyðHÞ and qg
xq

k
t u is LðaÞ-harmonic. Let ðy; sÞ A H.

Put g 0 ¼ ðg1; . . . ; gj�1; gj � 1; gjþ1; . . . ; gnÞ, where g ¼ ðg1; . . . ; gnÞ with gj 0 0.

Then, since qju
s=2 A bya by the definition of (1.3), the estimate (2.11) implies that
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jqg
xq

k
t uðy; sÞj ¼ jqg 0

x q
k
t ðqjus=2Þðy; s=2ÞjaCs�ðjg 0 j=2aþkÞ sup

ðx; tÞ AH
jqjus=2ðx; tÞj

aCs�ðjgj=2aþkþsÞ sup
ðx; tÞ AH

ðtþ s=2Þsþ1=2ajqjuðx; tþ s=2Þj

aCs�ðjgj=2aþkþsÞkukBaðsÞ:

By a similar argument with respect to t, we also have the estimate (3.3).

(5) Let fulg be a Cauchy sequence in BaðsÞ. Then, by (1) of Theorem

3.2, fulðx; tÞg is a Cauchy sequence in R. Thus, we define a function u on

H such that uðx; tÞ ¼ liml!y ulðx; tÞ for each ðx; tÞ A H. Moreover, by (4) of

Theorem 3.2, fqjulðx; tÞg and fqtulðx; tÞg are Cauchy sequences with respect to

the locally uniform topology on each domain Rn � ½t0;yÞ with t0 > 0. Hence,

u belongs to C1ðHÞ. Let x A Rn, 0 < s < y, and 0 < t < y be fixed. Then,

by (3) of Theorem 3.2, we have

ulðx; tþ sÞ ¼
ð
R n

ulðx� y; tÞW ðaÞðy; sÞdyð3:5Þ

for each l. Since fulg is a Cauchy sequence in BaðsÞ, (3.1) implies that

julðx� y; tÞjaCFa;sðx� y; tÞ for all l A N and y A Rn. Suppose that 0 > s >

�mðaÞ. Then, (2.9) and (3.2) show that

julðx� y; tÞW ðaÞðy; sÞjaC
1þ jyj�2as

1þ jyjnþ2a
ð3:6Þ

for all l A N and y A Rn. Since the right-hand side of (3.6) is integrable with

respect to y, (3.5) and the Lebesgue dominated convergence theorem imply

that u satisfies the Huygens property. Hence, u is LðaÞ-harmonic. Further-

more, we show kul � ukBaðsÞ ! 0 and u A BaðsÞ. In fact, since fulg is a

Cauchy sequence in BaðsÞ, for every e > 0 there exists l0 A N such that

kul � ul 0 kBaðsÞ < e for all l; l 0 b l0. Therefore, if l; l 0 b l0, then

julð0; 1Þ � ul 0 ð0; 1Þj

þ tsft1=2aj‘xulðx; tÞ � ‘xul 0 ðx; tÞj þ tjqtulðx; tÞ � qtul 0 ðx; tÞjg < e

for all ðx; tÞ A H. Since ul 0 ð0; 1Þ ! uð0; 1Þ and qjul 0 ðx; tÞ ! qjuðx; tÞ, qtul 0 ðx; tÞ
! qtuðx; tÞ for each ðx; tÞ A H, we obtain

julð0; 1Þ � uð0; 1Þj þ tsft1=2aj‘xulðx; tÞ � ‘xuðx; tÞj þ tjqtulðx; tÞ � qtuðx; tÞjga e

for all ðx; tÞ A H. Hence, it follows that kul � ukBaðsÞ a e for all lb l0. Also,

we have u ¼ u� ul0 þ ul0 A BaðsÞ. The proof of the case sb 0 is similar to

that of 0 > s > �mðaÞ. This completes the proof. r
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Remark 3.3. It is well-known that W ð1=2Þ is the Poisson kernel (see (2.4)

of [5]). Hence, (3) of Theorem 3.2 implies that every u A B1=2ðsÞ is harmonic

on H. Conversely, every harmonic functions which satisfy the condition (1.3)

is Lð1=2Þ-harmonic on H.

4. Reproducing formulae on BaðsÞ

We study reproducing formulae on BaðsÞ. Let g A Nn
0 and m A N0.

Then, a function og;m
a on H �H is defined by

og;m
a ðx; t; y; sÞ ¼ qg

xD
m
t W

ðaÞðx� y; tþ sÞ � qg
xD

m
t W

ðaÞð�y; 1þ sÞð4:1Þ

for ðx; tÞ; ðy; sÞ A H, where Dt ¼ �qt. In particular, we shall write om
a ¼ o0;m

a .

We shall give reproducing formulae on BaðsÞ using the kernel function om
a .

First, we present estimates of the function og;m
a . The following lemma is (2) of

Proposition 3.1 of [3].

Lemma 4.1 ([3, (2) of Proposition 3.1]). Let 0 < aa 1, g A Nn
0 , and m A N0.

Then, for every ðx; tÞ A H, there exists a constant C ¼ Cðn; a; g;m; x; tÞ > 0 such

that

jog;m
a ðx; t; y; sÞjaCð1þ sþ jyj2aÞ�ðnþjgjÞ=2a�m�mðaÞ

for all ðy; sÞ A H.

We give the following estimates, which are Lipschitz type estimates of

functions in BaðsÞ.

Lemma 4.2. Let 0 < aa 1, s > �mðaÞ, g A Nn
0 , and k A N0. Then, the

following statements hold.

(1) For every real number M > 1, there exists a constant C ¼
Cðn; a; g; k;M; sÞ > 0 such that

jqg
xD

k
t uðx; tþ sÞ � qg

xD
k
t uð0; 1þ sÞj

aCkukBaðsÞ
jxj

ð1þ sÞðjgjþ1Þ=2aþkþs
þ jt� 1j
ð1þ sÞjgj=2aþkþ1þs

 !

for all u A BaðsÞ, ðx; tÞ A Rn � ½M�1;M�, and sb 0.

(2) For every ðx; tÞ A H, there exists a constant C ¼ Cðn; a; g; k; x; t; sÞ > 0

such that

jqg
xD

k
t uðx; tþ sÞ � qg

xD
k
t uð0; 1þ sÞjaCkukBaðsÞð1þ sÞ�jgj=2a�k�mðaÞ�s

for all u A BaðsÞ and sb 0.
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Proof. (1) By (4) of Theorem 3.2, we have

jqg
xD

k
t uðx; tþ sÞ � qg

xD
k
t uð0; 1þ sÞj

a jqg
xD

k
t uðx; tþ sÞ � qg

xD
k
t uð0; tþ sÞj þ jqg

xD
k
t uð0; tþ sÞ � qg

xD
k
t uð0; 1þ sÞj

a

ð1
0

jxj � j‘xq
g
xD

k
t uðrx; tþ sÞjdrþ

ð t
1

jqg
xD

kþ1
t uð0; tþ sÞjdt

����
����

aCkukBaðsÞ
jxj

ð1þ sÞðjgjþ1Þ=2aþkþs
þ jt� 1j
ð1þ sÞjgj=2aþkþ1þs

 !

for all u A BaðsÞ, ðx; tÞ A Rn � ½M�1;M�, and sb 0.

(2) The desired estimate immediately follows from (1) of Lemma 4.2.

r

The following lemma is important for the proof of our reproducing

formulae on BaðsÞ.

Lemma 4.3. Let 0 < aa 1, s > �mðaÞ, u A BaðsÞ, ðx; tÞ A H, and let

c1; c2 > 0 be real numbers. Then, the following statements hold.

(1) For any 0 < e < mðaÞ, there exists a constant C ¼ Cðn; a; s; eÞ > 0 such

that

juðy; sÞjaCkukBaðsÞMa;s; eðy; sÞ

for all ðy; sÞ A H, where

Ma;s; eðy; sÞ :¼
ð1þ sþ jyj2aÞ�s ð0 > s > �mðaÞÞ
ð1þ sþ jyj2aÞe þ s�e ðs ¼ 0Þ
1þ s�s ðs > 0Þ:

8><
>:ð4:2Þ

(2) If k;m A N0, then for every d > 0 and every y A Rn,

lim
s!y

Dk
t u

dðy; c1sÞom
a ðx; t; y; c2sÞskþm ¼ 0:ð4:3Þ

Furthermore, if k;m A N0 satisfy k þm > 0, then

ð
H

jDk
t u

dðy; c1sÞom
a ðx; t; y; c2sÞjskþm�1 dVðy; sÞ < y:ð4:4Þ

(3) If k;m A N0 satisfy m > s and k þm > 0, then there exist a constant

C ¼ Cðn; a; s; k;m; c1; c2Þ > 0 and a function Ga;s;k;m on H such that

jDk
t u

dðy; c1sÞom
a ðx; t; y; c2sÞjaCGa;s;k;mðy; sÞð4:5Þ
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for all ðy; sÞ A H and 0 < da 1, and such thatð
H

Ga;s;k;mðy; sÞskþm�1 dVðy; sÞ < y:ð4:6Þ

Proof. (1) By (1) of Theorem 3.2, we have

juðy; sÞjaCkukBaðsÞFa;sðy; sÞ

for all ðy; sÞ A H, where Fa;s is the function defined in (3.2). If 0 > s > �mðaÞ,
then we get

Fa;sðy; sÞ ¼ 1þ jyj�2as þ s�s
aCð1þ sþ jyj2aÞ�s

for all ðy; sÞ A H. Next, let s ¼ 0. Then, taking a constant e with 0 < e <

mðaÞ, we also get

Fa;sðy; sÞ ¼ 1þ logð1þ jyjÞ þ jlog sj

aCð1þ jyj2ae þ se þ s�eÞaCðð1þ sþ jyj2aÞe þ s�eÞ

for all ðy; sÞ A H. Since the case s > 0 is trivial, we obtain the desired result.

(2) Let d > 0 be fixed. Suppose k ¼ 0 and m A N0. Then, by (1) of

Lemma 4.3, we have

judðy; c1sÞjaCMa;s; eðy; c1sþ dÞ

for all ðy; sÞ A H. If 0 > s > �mðaÞ, then we have

Ma;s; eðy; c1sþ dÞ ¼ ð1þ c1sþ dþ jyj2aÞ�s
aCð1þ sþ jyj2aÞ�sð4:7Þ

for all ðy; sÞ A H. Next, let s ¼ 0 and 0 < e < mðaÞ. Then, we also have

Ma;s; eðy; c1sþ dÞ ¼ ð1þ c1sþ dþ jyj2aÞe þ ðc1sþ dÞ�eð4:8Þ

aCðð1þ sþ jyj2aÞe þ s�eÞ

for all ðy; sÞ A H. Thus, if we put

Ea;s; eðy; sÞ :¼
ð1þ sþ jyj2aÞ�s ð0 > s > �mðaÞÞ
ð1þ sþ jyj2aÞ e þ s�e ðs ¼ 0Þ
1 ðs > 0Þ;

8><
>:

then Lemma 4.1 implies that for every d > 0 there exists a constant C > 0 such

that

judðy; c1sÞom
a ðx; t; y; c2sÞjsm aCsmEa;s; eðy; sÞð1þ c2sþ jyj2aÞ�n=2a�m�mðaÞ

aCsmEa;s; eðy; sÞð1þ sþ jyj2aÞ�n=2a�m�mðaÞ
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for all ðy; sÞ A H. Therefore, (4.3) is obtained. Furthermore, if m0 0, then

(4.4) follows from Lemma 2.3.

Suppose k A N and m A N0. Then, (4) of Theorem 3.2 implies that

jDk
t u

dðy; c1sÞjaCðc1sþ dÞ�ðkþsÞkukBaðsÞð4:9Þ

for all ðy; sÞ A H. Since �1a�mðaÞ < s, there exists a real number y such

that

0bmðaÞ � 1 > y > �minf0; sg � 1b�1:

Therefore, by Lemma 4.1, we have

jDk
t u

dðy; c1sÞom
a ðx; t; y; c2sÞjskþm

aCðc1sþ dÞ�ðk�1Þþyðc1sþ dÞ�ðsþ1þyÞð1þ c2sþ jyj2aÞ�n=2a�m�mðaÞ
skþm

aCsyþ1þmð1þ sþ jyj2aÞ�n=2a�m�mðaÞ

for all ðy; sÞ A H. Hence, (4.3) is obtained, and (4.4) also follows from Lemma

2.3.

(3) Suppose k ¼ 0. Let s > 0. Then, we have

Ma;s; eðy; c1sþ dÞ ¼ 1þ ðc1sþ dÞ�s
aCð1þ s�sÞð4:10Þ

for all ðy; sÞ A H and d > 0. Thus, (4.7), (4.8), (4.10), and Lemma 4.1 imply

that

judðy; c1sÞom
a ðx; t; y; c2sÞjaCMa;s; eðy; sÞð1þ sþ jyj2aÞ�n=2a�m�mðaÞ

for all ðy; sÞ A H and 0 < da 1, where s > �mðaÞ and C is a constant

independent of d. Hence, by the conditions m A N and m > s, Lemma

2.3 implies that Ga;s;0;mðy; sÞ :¼ Ma;s; eðy; sÞð1þ sþ jyj2aÞ�n=2a�m�mðaÞ satisfies

(4.6).

Suppose k A N. Then, since k þ s > 0, (4.9) implies that

jDk
t u

dðy; c1sÞjaCðc1sþ dÞ�ðkþsÞkukBaðsÞ aCs�ðkþsÞ

for all ðy; sÞ A H and d > 0. Therefore, Lemma 4.1 also implies that

Ga;s;k;mðy; sÞ :¼ s�ðkþsÞð1þ sþ jyj2aÞ�n=2a�m�mðaÞ satisfies (4.5). Furthermore,

by the conditions m > s and s > �mðaÞ, Lemma 2.3 implies that Ga;s;k;m also

satisfies (4.6). r

We give a reproducing formula for ud with u A BaðsÞ and d > 0.
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Proposition 4.4. Let 0 < aa 1, s > �mðaÞ, and d > 0. If k;m A N0

satisfy k þm > 0, then

udðx; tÞ � udð0; 1Þð4:11Þ

¼ ðc1 þ c2Þkþm

Gðk þmÞ

ð
H

Dk
t u

dðy; c1sÞom
a ðx; t; y; c2sÞskþm�1 dVðy; sÞ

for all u A BaðsÞ, ðx; tÞ A H, and real numbers c1; c2 > 0.

Proof. We remark that the integrand in the right-hand side of the

equality (4.11) belongs to L1ðH; dVÞ by (4.4).

First, we show (4.11) with k A N and m ¼ 0. Since Dk
t u

d A bya for every

k A N, Lemma 2.2 implies thatð
H

Dk
t u

dðy; c1sÞo0
aðx; t; y; c2sÞsk�1 dVðy; sÞð4:12Þ

¼
ðy
0

ð
Rn

Dk
t u

dðy; c1sÞ

� ðW ðaÞðx� y; tþ c2sÞ �W ðaÞð�y; 1þ c2sÞÞdysk�1 ds

¼
ðy
0

ðDk
t u

dðx; tþ ðc1 þ c2ÞsÞ �Dk
t u

dð0; 1þ ðc1 þ c2ÞsÞÞsk�1 ds:

We prove that the right-hand side of (4.12) is equal to GðkÞ
ðc1þc2Þk

ðudðx; tÞ � udð0; 1ÞÞ
by induction on k. Let k ¼ 1. Then, (2) of Lemma 4.2 implies that the right-

hand side of (4.12) with k ¼ 1 is equal to ðc1 þ c2Þ�1ðudðx; tÞ � udð0; 1ÞÞ. As-

sume that the right-hand side of (4.12) is equal to GðkÞ
ðc1þc2Þk

ðudðx; tÞ � udð0; 1ÞÞ.
Then, integrating by parts, we haveðy

0

ðDkþ1
t udðx; tþ ðc1 þ c2ÞsÞ �Dkþ1

t udð0; 1þ ðc1 þ c2ÞsÞÞsk dsð4:13Þ

¼ �ðc1 þ c2Þ�1½ðDk
t u

dðx; tþ ðc1 þ c2ÞsÞ

�Dk
t u

dð0; 1þ ðc1 þ c2ÞsÞÞsk�y0

þ ðc1 þ c2Þ�1
k

ðy
0

ðDk
t u

dðx; tþ ðc1 þ c2ÞsÞ

�Dk
t u

dð0; 1þ ðc1 þ c2ÞsÞÞsk�1 ds:

By (2) of Lemma 4.2 and the assumption of induction, the first term and

the second term of the right-hand side of (4.13) are equal to 0 and
Gðkþ1Þ

ðc1þc2Þkþ1
ðudðx; tÞ � udð0; 1ÞÞ, respectively.
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Next, we show (4.11) with k A N0 and m A N by induction on m. Let

m ¼ 1. If k ¼ 0, then integrating by parts, we haveð
H

udðy; c1sÞo1
aðx; t; y; c2sÞdVðy; sÞ

¼
ð
R n

ðy
0

udðy; c1sÞo1
aðx; t; y; c2sÞdsdy

¼ � 1

c2

ð
R n

½udðy; c1sÞo0
aðx; t; y; c2sÞ�

y
0 dy

� c1

c2

ð
Rn

ðy
0

Dtu
dðy; c1sÞo0

aðx; t; y; c2sÞdsdy

¼ � 1

c2

ð
R n

lim
s!y

udðy; c1sÞo0
aðx; t; y; c2sÞdy

þ 1

c2

ð
Rn

uðy; dÞðW ðaÞðx� y; tÞ �W ðaÞð�y; 1ÞÞdy

� c1

c2

ð
H

Dtu
dðy; c1sÞo0

aðx; t; y; c2sÞdVðy; sÞ:

Therefore, (4.3), (3) of Theorem 3.2, and (4.11) with k ¼ 1 and m ¼ 0 imply

that ð
H

udðy; c1sÞo1
aðx; t; y; c2sÞdVðy; sÞ

¼ 1

c2
ðudðx; tÞ � udð0; 1ÞÞ � c1

c2ðc1 þ c2Þ
ðudðx; tÞ � udð0; 1ÞÞ

¼ 1

c1 þ c2
ðudðx; tÞ � udð0; 1ÞÞ:

If kb 1, then (4.3) and (4.11) with m ¼ 0 imply thatð
H

Dk
t u

dðy; c1sÞo1
aðx; t; y; c2sÞsk dVðy; sÞ

¼
ð
R n

ðy
0

Dk
t u

dðy; c1sÞo1
aðx; t; y; c2sÞsk dsdy

¼ � 1

c2

ð
R n

½Dk
t u

dðy; c1sÞo0
aðx; t; y; c2sÞsk�

y
0 dy

� c1

c2

ð
R n

ðy
0

Dkþ1
t udðy; c1sÞo0

aðx; t; y; c2sÞsk dsdy
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þ k

c2

ð
R n

ðy
0

Dk
t u

dðy; c1sÞo0
aðx; t; y; c2sÞsk�1 dsdy

¼ � c1Gðk þ 1Þ
c2ðc1 þ c2Þkþ1

ðudðx; tÞ � udð0; 1ÞÞ þ kGðkÞ
c2ðc1 þ c2Þk

ðudðx; tÞ � udð0; 1ÞÞ

¼ Gðk þ 1Þ
ðc1 þ c2Þkþ1

ðudðx; tÞ � udð0; 1ÞÞ:

Let m A N be fixed, and assume that the equality (4.11) holds for all

k A N0. Then, (4.3) and the assumption imply thatð
H

Dk
t u

dðy; c1sÞomþ1
a ðx; t; y; c2sÞskþm dVðy; sÞ

¼ � 1

c2

ð
R n

½Dk
t u

dðy; c1sÞom
a ðx; t; y; c2sÞskþm�y0 dy

� c1

c2

ð
R n

ðy
0

Dkþ1
t udðy; c1sÞom

a ðx; t; y; c2sÞskþm dsdy

þ k þm

c2

ð
R n

ðy
0

Dk
t u

dðy; c1sÞom
a ðx; t; y; c2sÞskþm�1 dsdy

¼ � c1Gðk þmþ 1Þ
c2ðc1 þ c2Þkþmþ1

ðudðx; tÞ � udð0; 1ÞÞ

þ ðk þmÞGðk þmÞ
c2ðc1 þ c2Þkþm

ðudðx; tÞ � udð0; 1ÞÞ

¼ Gðk þmþ 1Þ
ðc1 þ c2Þkþmþ1

ðudðx; tÞ � udð0; 1ÞÞ:

Hence, this completes the proof. r

We give a reproducing formula for u A BaðsÞ. The following theorem is

the main result of this section, which gives Theorem 2.

Theorem 4.5. Let 0 < aa 1 and s > �mðaÞ. If k;m A N0 satisfy m > s

and k þm > 0, then

uðx; tÞ � uð0; 1Þ ¼ ðc1 þ c2Þkþm

Gðk þmÞ

ð
H

Dk
t uðy; c1sÞom

a ðx; t; y; c2sÞskþm�1 dVðy; sÞ

for all u A BaðsÞ, ðx; tÞ A H, and real numbers c1; c2 > 0.

Proof. By (3) of Lemma 4.3 and Proposition 4.4, the theorem imme-

diately follows from the Lebesgue dominated convergence theorem. r
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5. Reproducing formulae by fractional derivatives on BaðsÞ

In this section, we give reproducing formulae by fractional derivatives on
~BBaðsÞ. First, we recall the definitions of the fractional integral and di¤eren-

tial operators for functions on Rþ ¼ ð0;yÞ. (For details, see [2].) For a real

number k > 0, let

FC�k :¼ fj A CðRþÞ; bk 0 > k s:t: jðtÞ ¼ Oðt�k 0 Þðt ! yÞg:ð5:1Þ

For a function j A FC�k, we can define the fractional integral D�k
t j of j by

D�k
t jðtÞ :¼ 1

GðkÞ

ðy
0

tk�1jðtþ tÞdt; t A Rþ:ð5:2Þ

In particular, put FC0 :¼ CðRþÞ and D0
t j :¼ j. Moreover, let

FCk :¼ fj; ddke
t j A FC�ðdke�kÞg;ð5:3Þ

where dt ¼ d=dt and dke is the smallest integer greater than or equal to k.

Then, we can also define the fractional derivative Dk
t j of j A FCk by

Dk
t jðtÞ :¼ D

�ðdke�kÞ
t ðð�dtÞdkejÞðtÞ; t A Rþ:ð5:4Þ

Clearly, when k A N0, the operator Dk
t coincides with the ordinary di¤erential

operator ð�dtÞk. Some basic properties of the fractional di¤erential operators

are the following.

Lemma 5.1 (Proposition 2.1 of [2] and Proposition 2.2 of [3]). For real

numbers k; n > 0, the following statements hold.

(1) If j A FC�k, then D�k
t j A CðRþÞ.

(2) If j A FC�k�n, then D�k
t D�n

t j ¼ D�k�n
t j.

(3) If d k
t j A FC�n for all integers 0a ka dke � 1 and d

dke
t j A

FC�ðdke�kÞ�n, then Dk
t D

�n
t j ¼ D�n

t Dk
t j ¼ Dk�n

t j.

(4) If d
kþdne
t j A FC�ðdne�nÞ for all integers 0a ka dke � 1, d

dkeþl
t j A

FC�ðdke�kÞ for all integers 0a la dne � 1, and d
dkeþdne
t j A FC�ðdke�kÞ�ðdne�nÞ,

then Dk
t D

n
t j ¼ Dkþn

t j.

(5) If d
dke
t j A FC�dke and lim

t!y
d k
t jðtÞ ¼ 0 for all integers 0a ka dke � 1,

then D�k
t Dk

t j ¼ j.

Here, we give some examples of fractional derivatives of elementary

functions.

Example 5.2. Let k > 0 be a real number. Then, the following statements

hold.

(1) For every real number n, we have Dn
t e

�kt ¼ kne�kt for all t A Rþ.

(2) For every real number n > �k, we have Dn
t t

�k ¼ GðkþnÞ
GðkÞ t�k�n for all

t A Rþ.
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We present some properties of fractional derivatives of fundamental solu-

tion W ðaÞ. By (2.8), we note that for each x A Rn, the function W ðaÞðx; �Þ
belongs to FCk for k > � n

2a . The following lemma is Theorem 3.1 of [2].

Lemma 5.3 (Theorem 3.1 of [2]). Let 0 < aa 1, and let g A Nn
0 be a multi-

index and n a real number such that n > � n
2a . Then, the following statements

hold.

(1) The derivatives qg
xD

k
t W

ðaÞðx; tÞ and Dk
t q

g
xW

ðaÞðx; tÞ can be defined, and

the equation qg
xD

n
t W

ðaÞðx; tÞ ¼ Dn
t q

g
xW

ðaÞðx; tÞ holds. Furthermore, there exists

a constant C ¼ Cðn; a; g; nÞ > 0 such that

jqg
xD

n
t W

ðaÞðx; tÞjaCðtþ jxj2aÞ�ððnþjgjÞ=2aþnÞ

for all ðx; tÞ A H.

(2) If a real number k satisfies the condition kþ n > � n
2a , then the

derivative Dk
t q

g
xD

n
t W

ðaÞðx; tÞ is well-defined, and

Dk
t q

g
xD

n
t W

ðaÞðx; tÞ ¼ qg
xD

kþn
t W ðaÞðx; tÞ:

(3) The derivative qg
xD

n
t W

ðaÞðx; tÞ is LðaÞ-harmonic on H.

We also give basic properties of fractional derivatives of functions in

BaðsÞ.

Proposition 5.4. Let 0 < aa 1, s > �mðaÞ, and let g A Nn
0 be a multi-

index and k a real number such that k ¼ 0 or k > maxf0;�sg. If u A BaðsÞ,
then the following statements hold.

(1) The derivatives qg
xD

k
t uðx; tÞ and Dk

t q
g
xuðx; tÞ can be defined, and the

equation qg
xD

k
t uðx; tÞ ¼ Dk

t q
g
xuðx; tÞ holds. Furthermore, if ðg; kÞ0 ð0; 0Þ, then

there exists a constant C ¼ Cðn; a; s; g; kÞ > 0 such that

jqg
xD

k
t uðx; tÞjaCt�ðjgj=2aþkþsÞkukBaðsÞ

for all ðx; tÞ A H.

(2) If n ¼ 0 or n > maxf0;�sg, then

Dn
t q

g
xD

k
t uðx; tÞ ¼ qg

xD
nþk
t uðx; tÞð5:5Þ

Furthermore, if n < 0, then (5.5) also holds whenever n < s and nþ k >

maxf0;�sg.
(3) The derivative qg

xD
k
t u is LðaÞ-harmonic on H.

Proof. (1) Let k > maxf0;�sg. Then, by (4) of Theorem 3.2, we have

jDdke
t uðx; tÞjaCt�ðdkeþsÞ, because dke A N. Since k > �s, D

dke
t uðx; �Þ belongs

to FC�ðdke�kÞ for every x A Rn. Thus, Dk
t uðx; tÞ is well-defined. Similarly,

Dk
t q

g
xuðx; tÞ is well-defined, and di¤erentiating through the integral, we obtain

qg
xD

k
t u ¼ D

�ðdke�kÞ
t qg

xD
dke
t u ¼ D

�ðdke�kÞ
t D

dke
t qg

xu ¼ Dk
t q

g
xu:

73Parabolic Bloch type



Therefore, qg
xD

k
t u is well-defined and qg

xD
k
t u ¼ Dk

t q
g
xu. Furthermore, (4) of

Theorem 3.2 and (2) of Example 5.2 imply that

jqg
xq

k
t uðx; tÞj ¼ jD�ðdke�kÞ

t qg
xD

dke
t uðx; tÞj

aCðD�ðdke�kÞ
t t�ðjgj=2aþdkeþsÞÞkukBaðsÞ ¼ Ct�ðjgj=2aþkþsÞkukBaðsÞ:

(2) By (1) of Proposition 5.4, it su‰ces to show that Dn
tD

k
t q

g
xu ¼

Dnþk
t qg

xu. We may suppose k; n0 0. Assume that the real number n > 0

satisfies the condition n > �s. We claim that (4) of Lemma 5.1 can be applied

to qg
xu. In fact, jDm

t q
g
xuðx; tÞjaCt�ðjgj=2aþmþsÞ for all integers mb 1 by (1)

of Proposition 5.4. Thus, the condition k > �s implies that D
lþdke
t qg

xuðx; �Þ A
FC�ðdke�kÞ for all integers lb 0, and the assumption n > �s implies that

D
dneþk
t qg

xuðx; �Þ A FC�ðdne�nÞ for all integers kb 0. Also, the condition nþ k >

�s implies that D
dneþdke
t qg

xuðx; �Þ A FC�ðdne�nÞ�ðdke�kÞ. Hence, we can apply (4)

of Lemma 5.1 to qg
xu, and we obtain Dn

tD
k
t q

g
xu ¼ Dnþk

t qg
xu.

Assume n < 0. If n < s and nþ k > maxf0;�sg, then n1 :¼ �n > 0 and

k1 :¼ nþ k > 0. Also, we have n1 > �s, k1 > �s, and n1 þ k1 > �s. There-

fore, the above argument implies that

Dn
tD

k
t q

g
xu ¼ Dn

tD
n1þk1
t qg

xu ¼ Dn
tD

n1
t Dk1

t qg
xu ¼ Dn

tD
�n
t Dnþk

t qg
xu:

Since (5) of Lemma 5.1 can be applied to Dnþk
t qg

xu by the condition nþ k >

maxf0;�sg, we obtain Dn
tD

�n
t Dnþk

t qg
xu ¼ Dnþk

t qg
xu.

(3) Since when k A N0, the assertion was already obtained by (4) of

Theorem 3.2, we assume that k B N0. Let ðg; kÞ0 ð0; 0Þ. And let c A Cy
c ðHÞ.

Then, by (2.2) and (2.3), there exist 0 < t1 < t2 < y and C > 0 such that

j~LLðaÞcðx; tÞjaCð1þ jxjÞ�n�2a � w½t1; t2�ðtÞ

for all ðx; tÞ A H, where w½t1; t2� is the characteristic function of the interval

½t1; t2�. Therefore, by (4) of Theorem 3.2, we have

ðy
0

tdke�k�1

ð
H

jDdke
t qg

xuðx; tþ tÞ~LLðaÞcðx; tÞjdVðx; tÞdt

aC

ðy
0

tdke�k�1

ð t2
t1

ð
R n

ðtþ tÞ�ðjgj=2aþdkeþsÞð1þ jxjÞ�n�2a
dxdtdt

aC

ðy
0

tdke�k�1ð1þ tÞ�ðjgj=2aþdkeþsÞ
dt < y:

Since qg
xD

k
t u ¼ Dk

t q
g
xu, the Fubini theorem implies qg

xD
k
t u is LðaÞ-harmonic.

r
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It is known that the parabolic Bergman functions satisfy the following

reproducing formulae, which are shown in Theorem 5.2 of [2].

Lemma 5.5 (Theorem 5.2 of [2]). Let 0 < aa 1, 1a p < y, and l > �1.

If real numbers k and n satisfy k > � lþ1
p

and n > lþ1
p
, then

uðx; tÞ ¼ 2kþn

Gðkþ nÞ

ð
H

Dk
t uðy; sÞDn

t W
ðaÞðx� y; tþ sÞskþn�1 dVðy; sÞð5:6Þ

for all u A bp
a ðlÞ and ðx; tÞ A H. Furthermore, (5.6) also holds for n ¼ lþ 1

when p ¼ 1.

We shall give reproducing formulae by fractional derivatives on ~BBaðsÞ,
which are generalizations of Theorem 2 in section 1. First, we generalize the

function defined in (4.1) as follows. For a multi-index g A Nn
0 and a real

number n > � n
2a , Lemma 5.3 implies that a function og; n

a on H �H can be

defined by

og; n
a ðx; t; y; sÞ ¼ qg

xD
n
t W

ðaÞðx� y; tþ sÞ � qg
xD

n
t W

ðaÞð�y; 1þ sÞ

for all ðx; tÞ; ðy; sÞ A H. We shall also write on
a ¼ o0; n

a . We give basic proper-

ties of the function og; n
a .

Lemma 5.6. Let 0 < aa 1, s > �mðaÞ, g A Nn
0 , and n > � n

2a . Then, the

following statements hold.

(1) For every ðx; tÞ A H, there exists a constant C ¼ Cðn; a; g; n; x; tÞ > 0

such that

jog; n
a ðx; t; y; sÞjaCð1þ sþ jyj2aÞ�ðnþjgjÞ=2a�n�mðaÞ

for all ðy; sÞ A H.

(2) If r > �1 and h :¼ jgj
2a þ n� r� 1 > �mðaÞ, then there exists a con-

stant C ¼ Cðn; a; g; n; rÞ > 0 such that

ð
H

jog; n
a ðx; t; y; sÞjsr dVðy; sÞaCFa;hðx; tÞ

for all ðx; tÞ A H, where the function Fa;h is defined in (3.2).

(3) If
nþjgj
2a þ nþmðaÞ > s, then for every ðx; tÞ A H, the function

og; n
a ðx; t; � ; �Þ belongs to ~BBa;0ðsÞ.

Proof. The assertion (1) is (2) of Proposition 3.1 of [3]. (2) Let c > 0

be an arbitrary real number. Then, (1) of Lemma 5.3 and Lemma 2.3 imply

that
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ð
H

jog; n
a ðx; t; y; sÞjsr dVðy; sÞð5:7Þ

a

ð
H

jqg
xD

n
t W

ðaÞðx� y; tþ sÞ � qg
xD

n
t W

ðaÞðx� y; cþ sÞjsr dVðy; sÞ

þ
ð
H

jqg
xD

n
t W

ðaÞðx� y; cþ sÞ � qg
xD

n
t W

ðaÞð�y; cþ sÞjsr dVðy; sÞ

þ
ð
H

jqg
xD

n
t W

ðaÞð�y; cþ sÞ � qg
xD

n
t W

ðaÞð�y; 1þ sÞjsr dVðy; sÞ

a

ð t
c

ð
H

jqg
xD

nþ1
t W ðaÞðx� y; tþ sÞjsr dVðy; sÞdt

����
����

þ
ð1
0

jxj
ð
H

j‘xq
g
xD

n
t W

ðaÞðrx� y; cþ sÞjsr dVðy; sÞdr

þ
ð c
1

ð
H

jqg
xD

nþ1
t W ðaÞð�y; tþ sÞjsr dVðy; sÞdt

����
����

aC

ð t
c

tr�jgj=2a�n dt

����
����þ jxjcr�ðjgjþ1Þ=2a�nþ1 þ

ð c
1

tr�jgj=2a�n dt

����
����

� �

¼ C

ð t
c

t�h�1 dt

����
����þ jxjc�h�1=2a þ

ð c
1

t�h�1 dt

����
����

� �
:

Assume h ¼ 0, thenð
H

jog; n
a ðx; t; y; sÞjsr dVðy; sÞaCðIxðcÞ þ jlog tjÞ;

where IxðcÞ ¼ jlog cj þ jxjc�1=2a. Thus, as in the proof of (1) of Theorem 3.2,

putting c ¼ ð1þ jxjÞ2a, we obtainð
H

jog; n
a ðx; t; y; sÞjsr dVðy; sÞaCð1þ logð1þ jxjÞ þ jlog tjÞ:

Assume h0 0, then (5.7) impliesð
H

jog; n
a ðx; t; y; sÞjsr dVðy; sÞaCð1þ Jx;hðcÞ þ t�hÞ;

where Jx;hðcÞ ¼ c�h þ jxjc�h�1=2a. Therefore, the same argument as in the

proof of (1) of Theorem 3.2 shows the desired estimates.

(3) Let ðx; tÞ A H be fixed. Then, by (3) of Lemma 5.3, the function

og; n
a ðx; t; � ; �Þ is LðaÞ-harmonic. Furthermore, (1) of Lemma 5.6 implies that

for j ¼ 1; . . . ; n,

jqyjog; n
a ðx; t; y; sÞjaCð1þ sþ jyj2aÞ�ðnþjgjþ1Þ=2a�n�mðaÞ
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and

jDso
g; n
a ðx; t; y; sÞjaCð1þ sþ jyj2aÞ�ðnþjgjÞ=2a�n�1�mðaÞ

for all ðy; sÞ A H. Hence, we obtain the function og; n
a ðx; t; � ; �Þ belongs to

~BBa;0ðsÞ. r

We define an auxiliary function on R, which is used later. For n A R, let

NðnÞ ¼ dne ðnb 0Þ
0 ðn < 0Þ:

�

Now, we give reproducing formulae by fractional derivatives on BaðsÞ.

Theorem 5.7. Let 0 < aa 1 and s > �mðaÞ. If real numbers k A Rþ and

n A R satisfy k > �s and n > s, then

uðx; tÞ � uð0; 1Þ ¼ 2kþn

Gðkþ nÞ

ð
H

Dk
t uðy; sÞon

aðx; t; y; sÞskþn�1 dVðy; sÞð5:8Þ

for all u A BaðsÞ and ðx; tÞ A H. If k ¼ 0 and n > maxf0; sg, then (5.8) also

holds.

Proof. Let u A BaðsÞ and ðx; tÞ A H. And, let k A Rþ and n A R be real

numbers with k > �s and n > s.

Suppose first that k B N and n B N0. Then, the definitions of the fractional

derivative (5.2) and (5.4) imply that

ð
H

Dk
t uðy; sÞon

aðx; t; y; sÞskþn�1 dVðy; sÞð5:9Þ

¼
ð
H

1

Gðdke � kÞ

ðy
0

t
dke�k�1
1 D

dke
t uðy; sþ t1Þdt1

� 1

GðNðnÞ � nÞ

ðy
0

t
NðnÞ�n�1
2 oNðnÞ

a ðx; t; y; sþ t2Þdt2skþn�1 dVðy; sÞ

¼
ð
H

1

Gðdke � kÞ

ðy
0

t
dke�k�1
1 D

dke
t uðy; ð1þ t1ÞsÞdt1

� 1

GðNðnÞ � nÞ

ðy
0

t
NðnÞ�n�1
2 oNðnÞ

a ðx; t; y; ð1þ t2ÞsÞdt2

� sdkeþNðnÞ�1 dVðy; sÞ:

Furthermore, (4) of Theorem 3.2 and Lemma 4.1 imply that
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ð
H

ðy
0

t
dke�k�1
1 jDdke

t uðy; ð1þ t1ÞsÞjdt1

�
ðy
0

t
NðnÞ�n�1
2 joNðnÞ

a ðx; t; y; ð1þ t2ÞsÞjdt2sdkeþNðnÞ�1 dVðy; sÞ

aC

ð
H

ðy
0

t
dke�k�1
1

ðð1þ t1ÞsÞdkeþs
dt1

�
ðy
0

t
NðnÞ�n�1
2

ð1þ ð1þ t2Þsþ jyj2aÞn=2aþNðnÞþmðaÞ dt2s
dkeþNðnÞ�1 dVðy; sÞ

¼ C

ðy
0

t
dke�k�1
1

ð1þ t1Þdkeþs
dt1

ðy
0

t
NðnÞ�n�1
2

ð1þ t2Þ�sþNðnÞ dt2

�
ð
H

s�sþNðnÞ�1

ð1þ sþ jyj2aÞn=2aþNðnÞþmðaÞ dVðy; sÞ:

Since k > �s and n > s, we have

ðy
0

t
dke�k�1
1

ð1þ t1Þdkeþs
dt1 < y

and ðy
0

t
NðnÞ�n�1
2

ð1þ t2Þ�sþNðnÞ dt2 < y;

respectively. Moreover, by the conditions n > s and s > �mðaÞ, Lemma 2.3

implies that

ð
H

s�sþNðnÞ�1

ð1þ sþ jyj2aÞn=2aþNðnÞþmðaÞ dVðy; sÞ < y:

Hence, by the Fubini theorem, (5.9) and Theorem 4.5 show that

ð
H

Dk
t uðy; sÞon

aðx; t; y; sÞskþn�1 dVðy; sÞ

¼ 1

Gðdke � kÞGðNðnÞ � nÞ

ðy
0

t
dke�k�1
1

ðy
0

t
NðnÞ�n�1
2

�
ð
H

D
dke
t uðy; ð1þ t1ÞsÞoNðnÞ

a ðx; t; y; ð1þ t2ÞsÞsdkeþNðnÞ�1 dVðy; sÞdt1dt2
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¼ 1

Gðdke � kÞGðNðnÞ � nÞ

ðy
0

t
dke�k�1
1

ðy
0

t
NðnÞ�n�1
2

� Gðdke þNðnÞÞ
ð2þ t1 þ t2ÞdkeþNðnÞ ðuðx; tÞ � uð0; 1ÞÞdt1dt2

¼ Gðkþ nÞ
2kþn

ðuðx; tÞ � uð0; 1ÞÞ:

Next, we remark that the proof can be done similarly when k A N or

n A N0. Thus, we omit it. (When k A N and n A N0, the assertion of the

theorem follows from Theorem 4.5.)

Finally, we assume that k ¼ 0 and n > maxf0; sg. When k ¼ 0 and n A N,

the assertion of the theorem follows from Theorem 4.5. Therefore, we suppose

k ¼ 0 and n B N. Sinceð
H

uðy; sÞon
aðx; t; y; sÞsn�1 dVðy; sÞð5:10Þ

¼
ð
H

uðy; sÞ 1

Gðdne � nÞ

�
ðy
0

tdne�n�1odne
a ðx; t; y; ð1þ tÞsÞdtsdne�1 dVðy; sÞ;

it su‰ces to show that we can apply the Fubini theorem to the right-hand side

of the equality (5.10). Since n > 0, we can choose a constant e with 0 < e <

minfn;mðaÞg. Then, (1) of Lemma 4.3 implies that juðy; sÞjaCMa;s; eðy; sÞ for
all ðy; sÞ A H, where Ma;s; e is the function defined in (4.2). Therefore, Lemma

4.1 shows thatð
H

juðy; sÞj
ðy
0

tdne�n�1jodne
a ðx; t; y; ð1þ tÞsÞjdtsdne�1 dVðy; sÞð5:11Þ

aC

ð
H

Ma;s; eðy; sÞ

�
ðy
0

tdne�n�1

ð1þ ð1þ tÞsþ jyj2aÞn=2aþdneþmðaÞ dts
dne�1 dVðy; sÞ

¼ C

ðy
0

tdne�n�1

ð1þ tÞdne
ð
H

Ma;s; eðy; ð1þ tÞ�1
sÞsdne�1

ð1þ sþ jyj2aÞn=2aþdneþmðaÞ dVðy; sÞdt:

If 0 > s > �mðaÞ, then the right-hand side of the equality (5.11) is less than or

equal to

C

ðy
0

tdne�n�1

ð1þ tÞdne
dt

ð
H

sdne�1

ð1þ sþ jyj2aÞn=2aþdneþmðaÞþs
dVðy; sÞ;ð5:12Þ
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and by the conditions n > 0 and �mðaÞ � s < 0, Lemma 2.3 implies that (5.12)

is finite. If s ¼ 0, then the right-hand side of the equality (5.11) is less than or

equal to

C

ðy
0

tdne�n�1

ð1þ tÞdne
dt

ð
H

sdne�1

ð1þ sþ jyj2aÞn=2aþdneþmðaÞ�e
dVðy; sÞð5:13Þ

þ C

ðy
0

tdne�n�1

ð1þ tÞdne�e
dt

ð
H

sdne�1�e

ð1þ sþ jyj2aÞn=2aþdneþmðaÞ dVðy; sÞ:

Here, the first term of (5.13) is finite because n > 0 and �mðaÞ þ e < 0, and the

second term of (5.13) is finite because n� e > 0 and �e�mðaÞ < 0, respec-

tively. If s > 0, then the right-hand side of the equality (5.11) is less than or

equal to

C

ðy
0

tdne�n�1

ð1þ tÞdne
dt

ð
H

sdne�1

ð1þ sþ jyj2aÞn=2aþdneþmðaÞ dVðy; sÞð5:14Þ

þ C

ðy
0

tdne�n�1

ð1þ tÞdne�s
dt

ð
H

sdne�1�s

ð1þ sþ jyj2aÞn=2aþdneþmðaÞ dVðy; sÞ;

and thus the first term of (5.14) is finite by the conditions n > 0 and �mðaÞ < 0,

and the second term of (5.14) is finite by the conditions n� s > 0 and

�s�mðaÞ < 0, respectively. Hence, this completes the proof of the theorem.

r

As an application of the reproducing formula, we give estimates of the

normal derivative norms on ~BBaðsÞ. The following operator is important for

our estimates and is also used in the next section. For 0 < aa 1, k > � n
2a ,

and r A R, the integral operator Pk;r
a is defined by

Pk;r
a f ðx; tÞ :¼

ð
H

f ðy; sÞok
a ðx; t; y; sÞsr dVðy; sÞð5:15Þ

for ðx; tÞ A H, whenever the integral is well-defined. We need the following.

Theorem 5.8. Let 0 < aa 1 and s > �mðaÞ. Then, for every real num-

ber n > 0, Pnþs; n�1
a is a bounded linear operator from Ly onto ~BBaðsÞ.

Proof. Let f A Ly and ðx; tÞ A H. Then, by (1) of Lemma 5.6

and Lemma 2.3, Pnþs; n�1
a f ðx; tÞ is well-defined. Furthermore, we show

Pnþs; n�1
a f A ~BBaðsÞ and there exists a constant C > 0 independent of f such
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that kPnþs; n�1
a f kBaðsÞ aCk f kLy . In fact, by (2) of Lemma 5.6, for every

0 < t1 < t2 < y, we have

ð t2
t1

ð
R n

jPnþs; n�1
a f ðx; tÞjð1þ jxjÞ�n�2a

dxdt

aCk f kLy

ð t2
t1

ð
R n

Fa;sðx; tÞð1þ jxjÞ�n�2a
dxdt < y;

where Fa;s is the function defined in (3.2). Therefore, Pnþs; n�1
a f satisfies the

condition (2.4). Thus, by the definition of ok
a ðx; t; y; sÞ, Pnþs; n�1

a f is LðaÞ-

harmonic and Pnþs; n�1
a f ð0; 1Þ ¼ 0. Moreover, Lemma 2.3 implies

jqjPnþs; n�1
a f ðx; tÞjaCt�ðsþ1=2aÞk f kLy

and

jqtPnþs; n�1
a f ðx; tÞjaCt�ðsþ1Þk f kLy :

Hence, we have Pnþs; n�1
a f A ~BBaðsÞ and kPnþs; n�1

a f kBaðsÞ aCk f kLy .

Let u A ~BBaðsÞ. Then, (4) of Theorem 3.2 implies t1þsDtu A Ly. By

Theorem 5.7 with k ¼ 1, we have u ¼ 21þnþs

Gð1þnþsÞP
nþs; n�1
a ðt1þsDtuÞ. Thus,

Pnþs; n�1
a is onto. r

We give estimates of the normal derivative norms on ~BBaðsÞ.

Theorem 5.9. Let 0 < aa 1 and s > �mðaÞ. Then, for every real num-

ber k > maxf0;�sg, there exists a constant C ¼ Cðn; a; s; kÞ > 0 independent of

u such that

C�1kukBaðsÞ a ktkþsDk
t ukLy aCkukBaðsÞ

for all u A ~BBaðsÞ.

Proof. Let k > maxf0;�sg be a real number and u A ~BBaðsÞ. Then, (1)

of Proposition 5.4 implies that

ktkþsDk
t ukLy aCkukBaðsÞ:

Furthermore, by Theorem 5.7, we have u ¼ 21þkþs

Gð1þkþsÞP
1þs;0
a ðtkþsDk

t uÞ. There-

fore, Theorem 5.8 with n ¼ 1 implies that

kukBaðsÞ ¼ CkP 1þs;0
a ðtkþsDk

t uÞkBaðsÞ aCktkþsDk
t ukLy :

This completes the proof. r
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6. Dual spaces

In this section, we give the proofs of Theorems 3 and 4. We begin with

recalling the definition of the integral pairing (1.4) on b1aðlÞ � ~BBaðsÞ. For

u A b1aðlÞ and v A ~BBaðsÞ, the integral pairing hu; vil;s in (1.4) is defined by

hu; vil;s ¼
2lþsþ2

Gðlþ sþ 2Þ

ð
H

uðy; sÞDtvðy; sÞslþsþ1 dVðy; sÞ:

By the definition, we clearly have there exists a constant C > 0 such that

jhu; vil;sjaCkukL1ðlÞkvkBaðsÞð6:1Þ

for all u A b1aðlÞ and v A ~BBaðsÞ.

Theorem 6.1. Let 0 < aa 1, s > �mðaÞ, and l > �1. Then, ðb1aðlÞÞ
� G

~BBaðsÞ under the pairing

FvðuÞ :¼ hu; vil;s; u A b1aðlÞ;

where Fv is the linear functional on b1aðlÞ induced by v A ~BBaðsÞ. Furthermore,

there exists a constant C ¼ Cðn; a; s; lÞ > 0 independent of v such that

C�1kvkBaðsÞ a kFvkaCkvkBaðsÞ

for all v A ~BBaðsÞ.

Proof. For every v A ~BBaðsÞ, we define a mapping i by iðvÞ ¼ Fv. Then,

the inequality (6.1) implies that i : ~BBaðsÞ ! ðb1aðlÞÞ
� and kFvkaCkvkBaðsÞ.

We show that i is injective. Thus, we assume that v A ~BBaðsÞ and Fv ¼
iðvÞ ¼ 0. Then, by (2) of Lemma 5.6, olþsþ1

a ðx; t; � ; �Þ belongs to b1aðlÞ for

each ðx; tÞ A H. Therefore, by Theorem 5.7, we obtain

vðx; tÞ ¼ 2lþsþ2

Gðlþ sþ 2Þ

ð
H

Dtvðy; sÞolþsþ1
a ðx; t; y; sÞslþsþ1 dVðy; sÞ

¼ Fvðolþsþ1
a ðx; t; � ; �ÞÞ ¼ 0

for each ðx; tÞ A H. Hence, i is injective.

We show that for each F A ðb1aðlÞÞ
�, there exists v A ~BBaðsÞ such that

iðvÞ ¼ F and kvkBaðsÞ aCkFk. Therefore, let F A ðb1aðlÞÞ
�. Then, the Hahn-

Banach theorem and the Riesz representation theorem imply that there exists a

function f A Ly such that

FðuÞ ¼
ð
H

uðy; sÞ f ðy; sÞsl dVðx; tÞ

82 Yôsuke Hishikawa and Masahiro Yamada



for all u A b1aðlÞ and k f kLy ¼ kFk. Put v :¼ Plþsþ1;l
a f . Then, Theorem 5.8

implies that v A ~BBaðsÞ and kvkBaðsÞ aCkFk. We claim iðvÞ ¼ F. Indeed,

di¤erentiating through the integral, we have

Dtvðx; tÞ ¼ DtP
lþsþ1;l
a f ðx; tÞ ¼

ð
H

f ðy; sÞDlþsþ2
t W ðaÞðx� y; tþ sÞsl dVðy; sÞ:

Therefore, the Fubini theorem and Lemma 5.5 imply that

hu; vil;s ¼
2lþsþ2

Gðlþ sþ 2Þ

ð
H

uðx; tÞDtvðx; tÞtlþsþ1 dVðx; tÞ

¼ 2lþsþ2

Gðlþ sþ 2Þ

ð
H

uðx; tÞ
ð
H

f ðy; sÞDlþsþ2
t W ðaÞðx� y; tþ sÞ

� sl dVðy; sÞtlþsþ1 dVðx; tÞ

¼
ð
H

2lþsþ2

Gðlþ sþ 2Þ

ð
H

uðx; tÞDlþsþ2
t W ðaÞðx� y; tþ sÞ

� tlþsþ1 dVðx; tÞ f ðy; sÞsl dVðy; sÞ

¼
ð
H

uðy; sÞ f ðy; sÞsl dVðy; sÞ ¼ FðuÞ

for all u A b1aðlÞ. This completes the proof. r

Next, we give the proof of Theorem 4. Let C0ðHÞ be the set of all

continuous functions which vanish continuously at qH U fyg. We need the

following lemma.

Lemma 6.2. Let 0 < aa 1, s > �mðaÞ, and n > 0. Then,

~BBa;0ðsÞ ¼ fu A ~BBaðsÞ; tsþ1Dtu A C0ðHÞg ¼ fPnþs; n�1
a f ; f A C0ðHÞg:

Proof. We show the first equality. Take u A ~BBaðsÞ with tsþ1Dtu A
C0ðHÞ. Then, di¤erentiating through the integral (5.8) with k ¼ 1 and n ¼
sþ 1, we have

qjuðx; tÞ ¼
2sþ2

Gðsþ 2Þ

ð
H

Dtuðy; sÞqjDsþ1
t W ðaÞðx� y; tþ sÞssþ1 dVðy; sÞ:

For given e > 0, there exists a compact subset KHH such that jssþ1Dtuðy; sÞj
< e for all ðy; sÞ A HnK . Therefore, we obtain
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tsþ1=2ajqjuðx; tÞjð6:2Þ

aCtsþ1=2ae

ð
HnK

jqjDsþ1
t W ðaÞðx� y; tþ sÞjdVðy; sÞ

þ Ctsþ1=2akukBaðsÞ

ð
K

jqjDsþ1
t W ðaÞðx� y; tþ sÞjdVðy; sÞ:

The first term of the right-hand side of (6.2) is less than Ce by (1) of Lemma

5.3 and Lemma 2.3. Furthermore, (1) of Lemma 5.3 implies that the second

term of the right-hand side of (6.2) tends to 0 as ðx; tÞ ! qH U fyg. It follows

that u A ~BBa;0ðsÞ. The converse inclusion is trivial by the definition of ~BBa;0ðsÞ.
We show the second equality. Take f A C0ðHÞ, and put u ¼ Pnþs; n�1

a f .

Then, Theorem 5.8 implies u A ~BBaðsÞ. For given e > 0, there exists a compact

subset KHH such that j f ðy; sÞj < e for all ðy; sÞ A HnK . Thus, di¤erentiating

through the integral, we have

tsþ1jDtuðx; tÞja tsþ1e

ð
HnK

jDnþsþ1
t W ðaÞðx� y; tþ sÞjsn�1 dVðy; sÞ

þ tsþ1k f kLy

ð
K

jDnþsþ1
t W ðaÞðx� y; tþ sÞjsn�1 dVðy; sÞ:

Therefore, by the similar argument as above, we obtain tsþ1Dtu A C0ðHÞ. We

can easily show the converse inclusion by Theorem 5.7. This completes the

proof. r

We shall show an extended version of Theorem 4.

Theorem 6.3. Let 0 < aa 1, s > �mðaÞ, and l > �1. Then, b1aðlÞG
ð ~BBa;0ðsÞÞ� under the pairing

CuðvÞ ¼ hu; vil;s; v A ~BBa;0ðsÞ;

where Cu is the linear functional on ~BBa;0ðsÞ induced by u A b1aðlÞ.
Furthermore, there exists a constant C ¼ Cðn; a; s; lÞ > 0 independent of u such

that

C�1kukL1ðlÞ a kCukaCkukL1ðlÞ

for all u A b1aðlÞ.

Proof. For every u A b1aðlÞ, we define a mapping p by pðuÞ ¼ Cu. Then,

the inequality (6.1) implies that jCuðvÞjaCkukL1ðlÞkvkBaðsÞ for all v A ~BBa;0ðsÞ.
Thus, we can consider p : b1aðlÞ ! ð ~BBa;0ðsÞÞ� and we also have kCuka
CkukL1ðlÞ.
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We show that p is injective. We assume that u A b1aðlÞ and Cu ¼ pðuÞ ¼ 0.

Then, by (3) of Lemma 5.6, olþsþ1
a ðx; t; � ; �Þ belongs to ~BBa;0ðsÞ for each

ðx; tÞ A H. Therefore, by Lemma 5.5, we obtain

uðx; tÞ ¼ 2lþsþ2

Gðlþ sþ 2Þ

ð
H

uðy; sÞDlþsþ2
t W ðaÞðx� y; tþ sÞslþsþ1 dVðy; sÞ

¼ 2lþsþ2

Gðlþ sþ 2Þ

ð
H

uðy; sÞDto
lþsþ1
a ðx; t; y; sÞslþsþ1 dVðy; sÞ

¼ Cuðolþsþ1
a ðx; t; � ; �ÞÞ ¼ 0

for each ðx; tÞ A H. Hence, p is injective.

We show that for each C A ð ~BBa;0ðsÞÞ�, there exists u A b1aðlÞ such that

pðuÞ ¼ C and kukL1ðlÞ aCkCk. Let C A ð ~BBa;0ðsÞÞ�. We define a mapping L

by

Lð f Þ ¼ 2lþsþ2

Gðlþ sþ 2ÞCðPlþsþ1;l
a f Þ; f A C0ðHÞ:

Then, Theorem 5.8 and Lemma 6.2 imply that L is a bounded linear functional

on C0ðHÞ and kLkaCkCk. Thus, the Riesz representation theorem shows

that there exists a bounded signed measure m on H such that

Lð f Þ ¼
ð
H

f ðx; tÞdmðx; tÞ; f A C0ðHÞ

and kmk ¼ kLk. We define a function u on H by

uðy; sÞ ¼
ð
H

Dlþsþ2
t W ðaÞðx� y; tþ sÞtsþ1 dmðx; tÞ:

Then, (1) of Lemma 5.3 and Lemma 2.3 imply that

kukL1ðlÞ a

ð
H

ð
H

jDlþsþ2
t W ðaÞðx� y; tþ sÞjsl dVðy; sÞtsþ1 djmjðx; tÞ

aC

ð
H

t�ðsþ1Þtsþ1 djmjðx; tÞ ¼ Ckmk:

Hence, we have kukL1ðlÞ aCkmk ¼ CkLkaC 0kCk and u A b1aðlÞ. We assert

pðuÞ ¼ C . In fact, take v A ~BBa;0ðsÞ. Then, since

v ¼ 2lþsþ2

Gðlþ sþ 2Þ
Plþsþ1;l

a ðtsþ1DtvÞ

by Theorem 5.7, the definition of L implies
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CðvÞ ¼ 2lþsþ2

Gðlþ sþ 2ÞCðPlþsþ1;l
a ðtsþ1DtvÞÞ ¼ Lðtsþ1DtvÞ

¼
ð
H

tsþ1Dtvðx; tÞdmðx; tÞ:

On the other hand, the definition of u and the Fubini theorem show that

hu; vil;s ¼
2lþsþ2

Gðlþ sþ 2Þ

ð
H

uðy; sÞDtvðy; sÞslþsþ1 dVðy; sÞ

¼ 2lþsþ2

Gðlþ sþ 2Þ

ð
H

ð
H

Dtvðy; sÞDlþsþ2
t W ðaÞðx� y; tþ sÞ

� slþsþ1 dVðy; sÞtsþ1 dmðx; tÞ:

Since Theorem 5.7 again implies

2lþsþ2

Gðlþ sþ 2Þ

ð
H

Dtvðy; sÞDlþsþ2
t W ðaÞðx� y; tþ sÞslþsþ1 dVðy; sÞ

¼ Dt

2lþsþ2

Gðlþ sþ 2Þ

ð
H

Dtvðy; sÞolþsþ1
a ðx; t; y; sÞslþsþ1 dVðy; sÞ

� �

¼ Dtvðx; tÞ;

we obtain hu; vil;s ¼ CðvÞ. It follows that pðuÞ ¼ C . r
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