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ABSTRACT. The L®-harmonic function is the solution of the parabolic operator
L™ =0, 4+ (=4,)". We study a function space %,(c) consisting of L(*-harmonic
functions of parabolic Bloch type. In particular, we give a reproducing formula for
functions in %7“(0). Furthermore, we study the fractional calculus on %,(s). As an
application, we also give a reproducing formula with fractional orders for functions in
@a(a). Moreover, we investigate the dual and pre-dual spaces of function spaces of
parabolic Bloch type.

1. Introduction

The harmonic Bloch space on the upper half-space of R"*! (n > 1) was
studied by Ramey and Yi [7]. Nishio, Shimomura, and Suzuki [5] introduced
the a-parabolic Bloch space on the upper half-space and studied important
properties of the space. It was also shown in [5] that when o = 1/2, the 1/2-
parabolic Bloch space coincides with the harmonic Bloch space of Ramey and
Yi. Hence, investigation of the o-parabolic Bloch space contains that of the
harmonic Bloch space. In this paper, we generalize the a-parabolic Bloch
space, and study properties of its space.

We begin with recalling basic notations. Let H be the upper half-space
of R""! that is, H := {X = (x,) e R""';x = (x1,...,x,) eR", > 0}, and let
0j:=0/0x; (1 <j<n)and 0,:=0/0t. Let C(2) be the set of all real-valued
continuous functions on a region Q, and for a positive integer k, CK(Q)
C(2) denotes the set of all k times continuously differentiable functions on Q,
and put C*(Q) = (), C¥(2). The harmonic Bloch space # in [7] is the set of
all harmonic functions u on H with

(1.1) [ull 5 = [u(0, 1) + sup 2|V yu(x,1)] < oo,
(x,0)eH
where V(. y = (01,...,0,,0,) denotes the gradient operator on R"'. We also

recall the definition of the a-parabolic Bloch space in [5]. For 0 < a <1, the
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parabolic operator L(*) is defined by
L(“) =0+ (_Ax)xa

where A, := 0] +---+ 02 is the Laplacian on the x-space R”. A function
ue C(H) is said to be L®-harmonic if u satisfies L*®u =0 in the sense of
distributions. (For details, see section 2 of this paper.) The a-parabolic Bloch
space %, is the set of all L*-harmonic functions u e C'(H) with

(1.2)  ully, = |u(0,1)] +( sup {2V (e, 1)] + tlou(x, 1)]} < oo,

x,t)eH

where V, also denotes the gradient operator on the x-space R”. It is shown
in Theorem 7.4 of [5] that 4, is a Banach space under the norm || - ||, . Fur-
thermore, (2.4) and Theorem 7.4 of [5] imply %), = %. In this paper, we
introduce the following function space of parabolic Bloch type.

DeriNITION 1. Let 0 <o < 1. And we put m(x) =min{l,5.}. Then,
for a real number o > —m(«), let 4,(c) be the set of all L*)-harmonic functions
ue C'(H) with the norm
(1.3)  lull g,y = [0, 1)+ sup 17{e">|Vulx, )| + 1] 0u(x, 1)]} < oo

(x,0)eH
Furthermore, let 4,(c) be the set of all functions u € %,(s) with u(0,1) = 0.
We note that %,(0) = %,(0)/R.

We have an interest in analyses of function spaces %,(g), and our aim of
this paper is the investigation of properties of these spaces. We remark that
the condition ¢ > —m(a) in Definition 1 requires that the orders of 7 in (1.3) are
positive, that is, a—l—z—la >0 and o+ 1>0. Furthermore, our results of this
paper can be applied to study conjugate functions on the a-parabolic Bloch
space, whose applications will be described elsewhere. We present main results
of this paper.

THEOREM 1. Let 0 <a <1 and o > —m(a). Then, there exists a constant
C=C(n,o,0) >0 such that

|M(X, l)| < CHu||%,((a)F“~,0'(x’ l)

for all ue B,(o) and (x,t) € H, where

1+ x| +1° (0> 0> —m(x))
Fyo(x,0) :=q 1 +log(l + |x|) + |log ] (o0 =0)
1417 (o> 0).

Let dV be the Lebesgue volume measure on H and Ny :=NU{0}. The
following theorem is a reproducing formula for functions in %,(g), which is
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given by Theorem 4.5 of this paper. (Actually, our result is more general, see
also Theorem 5.7.)

THEOREM 2. Let 0 <a <1 and o> —m(a). If k,meNy satisfy m>o
and k+m > 0, then

2k+m

u(x,t) = T

Tm)JH Dru(y, ) (x,t; y,5)s 1 dV (y,s)

for all ue B,(c) and (x,t) € H, where I' is the gamma function, 9, = —0,, and

the kernel function w]' is defined in section 4.

We also give the definitions of parabolic Bergman spaces, which are closely
related to the function space of parabolic Bloch type. For 1 < p < oo and
4> —1, the Lebesgue space L?(/) := LP(H,t* dV) is defined to be the Banach
space of all Lebesgue measurable functions u on H with

1/p
ull Loz = (JH lu(x, 0)|Pt* dV (x, l)) < 0.

The a-parabolic Bergman space b”(Z) is the set of all L(*)-harmonic functions
u on H with ue L?(1). Furthermore, L™ := L*(H,dV) is defined to be the
Banach space of all Lebesgue measurable functions # on H with

||| ;- == esssup|u| < o0,
H
and let 5 be the set of all L*-harmonic functions u on H with ue L*. (For

details, see section 2 of this paper and [5].) As an application of Theorem 2,
we obtain the following result.

THEOREM 3. Let 0 <a <1, 0> —m(a), and > —1. Then, (b}(1))" =
#,(0) under the pairing {-,-, ,, where

2/l+a+2
I'lA+o+2)
uebl(2), ve B,(0).

(14) oy, = j u(y )20y, 8)s7 AV (y,5),
H

We also discuss a pre-dual space of b!(1). For o> —m(a), a function
space of parabolic little Bloch type %, ¢(o) is the set of all functions u € %,(0)
with

1. li of1/20 - —0.

(L.5) (x,t)%lﬁrll-’llU{oo}t {t7\Vu(x,t)| + t|0u(x, 1)} =0

Furthermore, let 4, o(c) be the set of all functions u € %, ¢(a) with u(0,1) = 0.
We also give the following result.
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THEOREM 4. Let 0 <a <1, o> —m(x), and A>—1. Then, bl(}) =
(B.,0(c))" under the pairing (1.4), that is, {u,v; , with u € by (1) and v € B,,0(c).

We remark that the pairing (1.4) is equal to a natural pairing on a dense
subset of b!(/). In fact, for a real number 7, let

S(n) = {ueb®; (1 + 1+ |x*)""*u(x,1) is bounded on H}.

Then, Proposition 6.2 of [3] shows that S(7) is a dense subspace of b} (1) when
A>—1 and n > A+ 1. By the similar argument as in the proof of Theorem
6.5 of [3], it is not hard to see that

2/1+J+1

(16) <u7 U>/l,o' = T

mJH u(y, $)o(y,5)5* dV(y,5),

ue S, ve B,(0),

when ¢ > 0 and # > A+ o+ 1 (since o > 0, the condition # > A+ ¢ + 1 implies
that S(z) is dense in b!(4)). Furthermore, when 0 > & > —m(a), the equation
(1.6) also holds under the conditions A+¢ > —1 and > 1+ 1.

We describe the construction of this paper. In section 2, we present
preliminary facts. In particular, we recall the explicit definition of the L(*-
harmonic functions and introduce some known results. In section 3, we study
basic properties of %,(c) and give the proof of Theorem 1. In section 4, we
give the proof of Theorem 2. Consequently, we show a reproducing formula
for functions in %,(s). In section 5, we study fractional calculus on %,(c).
As an application, we give a generalization of Theorem 2, which is a reproduc-
ing formula with fractional orders for functions in %,(¢). In section 6, we give
the proofs of Theorems 3 and 4.

Throughout this paper, C will denote a positive constant whose value is
not necessary the same at each occurrence; it may vary even within a line.

2. Preliminaries

In this section, we recall basic properties concerning the L(*-harmonic
functions. (For details, see [5].) We begin with describing about the operator
(—4,)". Since the case o =1 is trivial, we only describe the case 0 < a < I.
Let C*(H) < C(H) be the set of all infinitely differentiable functions on
H with compact support. Then, (—4,)" is the convolution operator defined
by

(2.1)  (=4)Y(x, 1) :=—=Cyy lgﬂ)l J ‘>5(¢(X+ o) — x, )|y "2y
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for all Y € C*(H) and (x,t) € H, where C, , = —4*7~">I'((n+ 22)/2)/I"(—)
>0. Let L® := -0, 4 (—4,)” be the adjoint operator of L(*). Then, a func-
tion u e C(H) is said to be L®-harmonic if u satisfies L*®u =0 in the sense
of distributions, that is, [, |u-L®y|dV < oo and [,u- L@y dV =0 for all
Y e Cr(H). By (2.1) and the compactness of supp(y) (the support of ),
there exist 0 < #; < t, < oo and a constant C > 0 such that

(2.2) supp(LWy) = S = R" x [11, 12]
and
(2.3) IL@y(x,0)] < C(1+|x) ™"  for (x,1)€S.

Hence, the condition [, [u- L@y|dV < oo for all y € C*(H) is equivalent to
the following: for any 0 < #; < £, < o0,

(2.4) Jh J u(x,)l(1+ |x|) " dxdt < 0.

151

We also note that

(2'5) 6](_Ax)“‘p = (_Ax)“ajl// and al(_Ax)alp = (_Ax)aat‘//

for all Y e C*(H).
We describe the fundamental solution of L®. For xeR”", let

1 o
o | xPE  ix- de (1>0)

0 (1<0),

W (x, 1) =

where x - ¢ denotes the inner product on R” and |&] = (& - é)l/ 2. The function

W@ is the fundamental solution of L® and it is L®-harmonic on H. We
note that

(26) W® >0 onH and J W@ (x,0)dx =1 for all 0 << oo.

Furthermore, W* e C*(H). The following lemma is Lemma 2.4 of [5].
LemMa 2.1 ([5, Lemma 2.4]). Let 0<oa<1 and 1<p<oo. If fe
C(R")NLP(R"), then for every x e R",

fim | = WO )y = S ().

s—+0 R

We also present the following lemma, which is Theorem 4.1 of [5] and Lemma
3.1 of [8].
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LemMA 2.2 (Theorem 4.1 of [5] and Lemma 3.1 of [8]). Let 0 <oa <1,
l <p<oo,and > —1. Then, every u € b’ (1) satisfies the following Huygens
property, that is,

27) ulx,t+s) = J

u(x — y, )W (p, 5)dy = J u(y, )W (x — y,5)dy
R" R”

holds for all xeR", 0 <s< oo, and 0 <t < co. Furthermore, every ucb,
also satisfies (2.7).

Since W e C*(H), the Huygens property implies that b”(1) = C*(H). We
also remark that a function satisfying the Huygens property is L(*-harmonic,
because W is L®-harmonic on H. For a multi-index y = (y,,...,7,) € N{,
let 07:=0;"...d!». The following estimate is Lemma 1 of [6]: For a multi-
index y € Nj and an integer k € Ny, there exists a constant C = C(n,a,9,k) > 0
such that

(2.8) 10705 W) (x,1)| < C(1 + |x|?) " (rHlD/224h)

for all (x,7) e H. When (y,k) = (0,0), Lemma 3.1 of [5] gives the following
estimate: there exists a constant C = C(n,a) > 0 such that

(2.9) W (x,1) < Cr(t + |x|*) =/

for all (x,7) e H. Furthermore, the following estimate is Lemma 3.3 of [§]
and Theorem 5.4 of [5]: For 1 < p < oo and 4 > —1 there exists a constant
C=C(n,a,p,A 7y, k) >0 such that

(2.10) 010 u(x, 0] < Clu gy~ /20~ 02401

for all uebd?(1) and (x,f) e H. Furthermore, there exists a constant C =
C(n,a,y,k) >0 such that

(2.11) 010k u(x, )] < Clu o~ 01240

for all ueb,” and (x,7) € H.
The following lemma is Lemma 5 of [6]. We use this in our later
arguments.

Lemma 2.3 ([6, Lemma 5]). Let 0,ceR. If 0> —1 and 0 —c+4;+1
< 0, then there exists a constant C = C(n,0,0,c) > 0 such that

0
J s —dV(y,s) = Ct0—ctn/2+1
H(t+ s+ |x— y[7)

Sor all (x,t) e H.
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3. Basic properties of %,(0)

In this section, we study basic properties of %,(c). We begin with
showing the following lemma.

LemMa 3.1. Let 0 < o < 1 and suppose that a function ue C'(H) is L*-
harmonic. Then the following statements hold.

(1) If du satisfies the condition (2.4), then du is also L*)-harmonic.

(2) If du satisfies the condition (2.4), then Ou is also L*-harmonic.

Proor. (1) If u satisfies the condition (2.4) and d;u also satisfies the
condition (2.4), then by the Fubini theorem and integrating by parts with
respect to the variable x;, (2.3) and (2.5) imply that

J Qu-LOy dv = —J u- L9 0)dV =0
H H

for all y € C*(H). Thus, du is L™-harmonic. (2) Similarly, if d,u satisfies
the condition (2.4), then the L(*-harmonicity of d,u follows from (2.2) and
(2.5). O

For a real number 6 > 0 and a function u on H, let u®(x,t) = u(x,t+9)
for (x,7) € H. Basic properties of functions in %,(o) are given in the follow-
ing. In particular, (1) of Theorem 3.2 is Theorem 1 of section 1.

THEOREM 3.2. Let 0 <o <1 and o > —m(«). Then, the following state-
ments hold.
(1) There exists a constant C = C(n,a,0) >0 such that

(3-1) u(x, )| < Cllull g, (6 Fa 0 (%, 7)

for all ue B,(c) and (x,t) € H, where

—200

1+ [x| +t° (0>0>-—m(x))
(3.2) Foo(x,t) =4 1+log(l + |x|) + [log?] (6=0)
14170 (6>0).

(2) If ue %,(0), then

lim J u(x — y, )W (p, 5)dy = u(x, 1)

s—-+0

Sfor all (x,t)e H.
(3) Every ue %,(0) satisfies the Huygens property (2.7).
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(4) Let (y,k) e Ny x No\{(0,0)}. If ue B,(c), then u belongs to C*(H)
and 970%u is L"-harmonic. Furthermore, there exists a constant C =
C(n,o,0,y,k) >0 such that

(3-3) j020fu(x, 1)) < Co By,

Sor all ue %,(c) and (x,t) € H.
(5) The space %,(o) is a Banach space under the norm (1.3).

Proor. (1) Let ¢ > 0 be arbitrary real number. Then, for u € %,(¢) and

(x,1) € H, we obtain

1
ju(x, 1] < [u(0,1)] + +j x| - Vs, )l +
0

J 10,u(0, 5)|ds
1

c
B(0) (1 + Jl s~ ds

= C||u||:/‘27((7)(1 + Ix,4(¢)),

t
J |0u(x,s)|ds

c
t
J s ds
c

)

< u + e 4

where

Loty = {lomel £ gl (0=0
WO (1 +|x|e V) 4t (0 #0).

Since ¢ >0 is arbitrary, we can put ¢ = (I +|x[)**. Then there exists a
constant C > 0 such that

1+ x| +1° (0> 0> —m(a))
I s(c) < Cq 1+ log(l+ |x]) + |log #] (o=0)
14170 (o> 0).

Thus we obtain the estimate (3.1).

(2) Let ue #,(0). Also, let (x,f) e H and ¢ > 0 be fixed. Then, there
exists a real number ¢ > 0 such that |u(x — y,¢) —u(x,?)| <e¢ for all yeR”"
with |y| <d. Therefore, (2.6), (3.1), and (2.9) imply that

J Cu(x =y, )W (y,s)dy — u(x, 1)

saj W<°‘><y,s>dy+C||u||W>J (Fuolx — 3.0) + )W (3, )dy
[y|<o )

|y =6

FCX.G’(-X_ y7[) + 1
|y|l1+2ot

<ée+ CSJ

[y[=0
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Suppose that 0> o > —m(x). Then, (3.2) implies that F,,(x— y,1) <
C(1+ |y|™*) for all yeR". Therefore, we obtain

lim
s—+0

|, ute =y 0w 51y — uton)| <

The proof of the case ¢ >0 is similar to that of 0 > g > —m(a).

(3) Let ue %,(0) and s> 0 be fixed. Then, by the definition of the
norm (1.3), we have dju*/?> e L*. Therefore, 0;u*/? satisfies the condition (2.4).
Furthermore, (1) of Theorem 3.2 implies that limjy .., u*/(x, )(1 + |x[) ">
=0 for each ¢ > 0. Thus, by (1) of Lemma 3.1, we have du®/> € b). Since
every element in b,  satisfies the Huygens property by Lemma 2.2, we
obtain

Qulx, 1+ 5) = Q> (x, 1+ 5/2) = J &u (x — y,s/2) W (v, 1)dy

= J du(x — p, )W (y, t)dy

for all (x,7) e H. Hence, for x = (xy,...,x,) € R" and x]f e R, put

/ !
X = (xla"'axi—lvxj7xj+17"';xn)7

then we have

ulx,t+s) —u(x't+s) = JRn(u(x —y,8) —u(x’ — 3, ) ) WP (y, 1)dy.

Therefore, the function

(3.4) o(x,t,8) == u(x,t+s) — J u(x — y,s) Wy, 0)dy

is a constant with respect to the variable x; (1 < j<n). By a similar argu-
ment with respect to s, the function v is also a constant with respect to the
variable 5. Since for each fixed s > 0 the function v(-,-,s) is L*-harmonic by
(3.4), we have d,v = 0,v+ (—=4,)"v = 0. Therefore, v is a constant, and which
is equal to lim, ¢ v(x,¢,s) =0 by (2) of Theorem 3.2.

(4) Let ue %,(0) and (y,k) e Nj x No\{(0,0)}. Then, by (3) of Theo-
rem 3.2, u belongs to C*(H) and 070u is L*-harmonic. Let (y,s)e H.
Put 9" =y, 2157 — L Vjsts -5 ¥0), Where y=(yy,...,p,) with y; #0.
Then, since d;u*/? € b by the definition of (1.3), the estimate (2.11) implies that
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[020fu(y,9)| = 107 07 (9u*?) (,5/2)| < CS‘(‘V"/Z“”‘)( up, |0u? (x, 1)
X, 1) €

< Cs~I25H549) sup (14 5/2) 2 du(x, t + 5/2)]
(x,0)eH

< Cy ke
By a similar argument with respect to 7, we also have the estimate (3.3).
(5) Let {us} be a Cauchy sequence in %,(s). Then, by (1) of Theorem
3.2, {u/(x,1)} is a Cauchy sequence in R. Thus, we define a function u on
H such that u(x,t) = lim/ u,(x,t) for each (x,7) € H. Moreover, by (4) of
Theorem 3.2, {0;u/(x, 1)} and {0u,(x,t)} are Cauchy sequences with respect to
the locally uniform topology on each domain R” x [y, o) with z, > 0. Hence,
u belongs to C'(H). Let xeR", 0 <s< o0, and 0 << oo be fixed. Then,
by (3) of Theorem 3.2, we have

(3.5) us(x,t+s) = J ur(x — y, )W (y,5)dy

for each /. Since {u,} is a Cauchy sequence in %,(g), (3.1) implies that
lus(x — y,t)] < CF, (x — y,¢) for all /e N and y e R". Suppose that 0 > g >
—m(a). Then, (2.9) and (3.2) show that

|—2om'

1+|y

(3.6) jus(x = y, )W (y,9)| < € =y
1+ ]yl

for all /e N and y e R". Since the right-hand side of (3.6) is integrable with
respect to y, (3.5) and the Lebesgue dominated convergence theorem imply
that u satisfies the Huygens property. Hence, u is L®-harmonic. Further-
more, we show |u; —ul|, , — 0 and ue #,(c). In fact, since {u/} is a
Cauchy sequence in %,(c), for every & >0 there exists /p €N such that
lur —us|l g,y <& for all £,/ = ¢y, Therefore, if ¢,/ > ¢y, then

|ur(0,1) —u,(0,1)]
+ t”{tl/2“|VXu/(x, 1) = Vuy (x,0)| + t|0us(x, 1) — Oy (x,1)|} < &

for all (x,#) e H. Since u,(0,1) — u(0,1) and dju, (x,t) — dju(x,t), s (x,1)
— Ou(x,t) for each (x,7) € H, we obtain

s (0,1) — u(0,1)] + t"{t1/2“|qu/(x7 1) = Vu(x, t)] + t|0us(x,t) — du(x, 1)|} <e¢

for all (x,7) e H. Hence, it follows that [u; — ul| 5, < e forall £ > /. Also,
we have u = u — uy, + uy, € B,(0). The proof of the case ¢ > 0 is similar to
that of 0 > ¢ > —m(a). This completes the proof. O
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REMARK 3.3. It is well-known that W (1/?) is the Poisson kernel (see (2.4)
of [5]). Hence, (3) of Theorem 3.2 implies that every u € %, ,(c) is harmonic
on H. Conversely, every harmonic functions which satisfy the condition (1.3)
is L(!/?-harmonic on H.

4. Reproducing formulae on %,(o)

We study reproducing formulae on %,(s). Let yeNj and m e Ny.
Then, a function w)"” on H x H is defined by

41)  of"(x,19,5) = AL W D (x = y,t+5) = 07 W (—y, 1 +5)

o

for (x,1),(y,s) € H, where 9, = —0,. In particular, we shall write @ = %".

We shall give reproducing formulae on %,(c) using the kernel function w}'.
First, we present estimates of the function w}™. The following lemma is (2) of
Proposition 3.1 of [3].

Lemma 4.1 ([3, (2) of Proposition 3.1]). Let 0 < o <1, y € Ny, and m € N.
Then, for every (x,t) € H, there exists a constant C = C(n,o,p,m,x,t) > 0 such
that

|07 (x, 5 p,5)| < C(1 4 54 | y| )~ oD 2mmmm)
for all (y,s) e H.

We give the following estimates, which are Lipschitz type estimates of
functions in %,(a).

Lemma 42. Let 0<a <1, 0> —m(a), yeNy, and k e No. Then, the
following statements hold.

(1) For every real number M > 1, there exists a constant C =
C(nya,p,k,M,0) >0 such that

107D *u(x, t 4 5) — 079%u(0,1 + )|

< Cllu

, |x] L=
B(0) (1+S)(\y\+l)/21+k+a (1+S)|y\/20(+k+1+(7

for all ue #,(0), (x,t) eR" x [M~', M|, and s > 0.
(2) For every (x,t) € H, there exists a constant C = C(n,a,7,k,x,t,6) >0
such that

10175 u(x, 1+ 5) — 0125u(0,1 +5)| < Cllull 5, (1 +5) " VZH00

Sfor all ue AB,(c) and s > 0.
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Proor. (1) By (4) of Theorem 3.2, we have
07T u(x, t +5) — 07D%u(0,1 + 5)|

<015 u(x,t+s) — 07 DFu(0, 1+ )| + [072Fu(0,t + s) — 37D Fu(0,1 + )|

I ‘
< J x| - |VX6§@fu(rx,t+s)|dr+U 1072 (0, 7 + 5)|dt
0 1

= B,(a) (1 +S)(\y\+1)/2a+k+o (1 +S)\7|/20£+k+l+a

for all ue %,(c), (x,t) eR" x [M~', M], and 5 > 0.
(2) The desired estimate immediately follows from (1) of Lemma 4.2.

O

The following lemma is important for the proof of our reproducing
formulae on 4%,(a).

LemmA 4.3, Let O0<oa<1, 0> -m(a), ue %,(0), (x,t)e H, and let
c1,¢c2 > 0 be real numbers. Then, the following statements hold.

(1)  For any 0 < ¢ < m(a), there exists a constant C = C(n,a,0,¢) > 0 such
that

u(p,8)| < Cllull g,(0) Mao.2(:5)
Sor all (y,s) e H, where

(1+s+y*)~7 (0> 0> —m(x))
(4.2) My o(y,8) =9 (14+s+|y*) +s5¢ (6=0)
14577 (6>0).

(2) If k,me Ny, then for every 6 >0 and every yeR”",

(43) lim Z%u°(y, c18) 0! (x, t; y, ¢28)s* " = 0.

§—00

Furthermore, if k,m e Ny satisfy k+m > 0, then

(4.4) JH

(3) If k,m e Ny satisfy m > o and k+m > 0, then there exist a constant
C=C(n,o,0,k,m,c1,c2) >0 and a function Gy g xm on H such that

TR (p, 1) 0! (X, £; ¥, 28)|s* L @V (p,5) < 0.

(45) |°@tku(;(y7 CIS)CU;”(X, t; Y, CZS)| < CGO(,(T,k,m(y7S)
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Sor all (y,s)e H and 0 <9 <1, and such that
(4.6) J Grokom(3, )81 dV () < 0.
H

Proor. (1) By (1) of Theorem 3.2, we have

u(y,5)| < Cllull g,(0) Fr.o(2,5)

for all (y,s) € H, where F, , is the function defined in (3.2). If 0 > o > —m(a),
then we get

Fuo(y,8) =1+ [y +57 < C(1+s+|y*) 7"

for all (y,s) e H. Next, let ¢ =0. Then, taking a constant ¢ with 0 <¢ <
m(o), we also get

Fy0(y,s) =1+ log(1 + [y|) + |log s|
SCOA+ " 45 +57) < C((1+ s+ y*) +579)

for all (y,s) e H. Since the case g > 0 is trivial, we obtain the desired result.
(2) Let 0 >0 be fixed. Suppose k=0 and meNy. Then, by (1) of
Lemma 4.3, we have

[’ (p,c15)| < CM,, 4 o(y, c15 +96)
for all (y,s)e H. If 0> o> —m(a), then we have
(47)  M,q.(y,cis+0) = +es+06+|y*) 7 < CA+s+y*)°
for all (y,s)e H. Next, let 0 =0 and 0 <& <m(x). Then, we also have
(4.8) My o(y,c15+0) = (1+c1s+0 + [y*) + (c1s +9)~°
< C((1+s+ 9 +579)

for all (y,s) e H. Thus, if we put

(I4s+[¥*)° (0>06>—m(a))
Eroe(3:8) =4 (14+s5s+ [y +s5¢ (6=0)
1 (6> 0),

then Lemma 4.1 implies that for every J > 0 there exists a constant C > 0 such
that

—n/2u—m—m(a)

|u‘s(y, c18)wy (x, 6, y,¢28) 8" < CS"Ey 5.0(,8)(1 + cos + \y|2‘“)

< CS"Ey6.0(p,8)(1 + s+ | ) /2
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for all (y,s) e H. Therefore, (4.3) is obtained. Furthermore, if m # 0, then
(4.4) follows from Lemma 2.3.
Suppose k€N and m e Ny. Then, (4) of Theorem 3.2 implies that

(4.9) |74’ (v, e15)] < Clers +0) ™ ull

for all (y,s) e H. Since —1 < —m(a) < o, there exists a real number 6 such
that

0=m(ax) —1>60>-min{0,06} — 1 > —1.
Therefore, by Lemma 4.1, we have

|Z5u0 (y, e18)! (x, 1; p, cas) |sFH"

< C(CIS+(5)—(k—l)+(9(cls+5)—(J+l+9)(l +oers+ |y|2y)—n/21—m—m((x)sk+m

< CS0+1+m(1 45+ |y|2oc)fn/29<7mfm(oc)

for all (y,s) e H. Hence, (4.3) is obtained, and (4.4) also follows from Lemma
2.3.
(3) Suppose k=0. Let ¢ >0. Then, we have

(4.10) M, oe(y,c15+0) =1+ (c1s+0) 7 < C(1+s57)

for all (y,s) e H and 6 > 0. Thus, (4.7), (4.8), (4.10), and Lemma 4.1 imply
that

[ (v, €180 (X, 85 , €28)| < CMiy g, (y,5)(1 45 4 [y ) /2 mm
for all (y,s)e H and 0<0 <1, where ¢ > —m(x) and C is a constant
independent of J. Hence, by the conditions meN and m > o, Lemma
2.3 implies that G, g.0m(y,5) = My so(,8)(1 454 |p|**) /2" " satisfies
(4.6).

Suppose k€ N. Then, since k + ¢ > 0, (4.9) implies that

\D*u0 (y, c15)| < C(cls+(5)_(k+")\|u||%(a> < g~ (k+o)

for all (y,s)eH and ¢ >0. Therefore, Lemma 4.1 also implies that
Gooom(,8) i= s (1 45+ |y|2*) 2 mem®) - gatisfies (4.5).  Furthermore,
by the conditions m > ¢ and ¢ > —m(a), Lemma 2.3 implies that G, ; k. also
satisfies (4.6). O

We give a reproducing formula for #° with u e %4,(s) and 6 > 0.
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ProPOSITION 4.4. Let 0 <a<1, o> —-m(a), and 6 >0. If k,meN
satisfy k+m > 0, then

4.11) ' (x,1) —u®(0,1)

k+m
- %J T (y, 19)0) (x, 8 p, ¢28)s " dV (p,5)
H

Sor all ue B,(a), (x,t) € H, and real numbers ci,cy > 0.

Proor. We remark that the integrand in the right-hand side of the
equality (4.11) belongs to L'(H,dV) by (4.4).

First, we show (4.11) with ke N and m = 0. Since Z*u’ e b for every
k eN, Lemma 2.2 implies that

(4.12) J @fu‘s(y,cls)wg(x, 1y, ¢5)s*! dV(y,s)
H

[ [ atwtnen

0

X (WO (x = y, 1+ 2s) = WO (=, 1 + cas))dys™! ds

- J (D5 (%, 1+ (€1 + ¢2)s) — DD (0,1 + (e + ¢2)s))s* " ds.
0

We prove that the right-hand side of (4.12) is equal to % (u(x,t) — u(0,1))
c1+e

by induction on k. Let k =1. Then, (2) of Lemma 4.2 implies that the right-
hand side of (4.12) with k = 1 is equal to (¢; +¢2) ' (u’(x, 1) —u’(0,1)). As-
sume that the right-hand side of (4.12) is equal to %(u‘s(x, ) —u’(0,1)).
Then, integrating by parts, we have

(4.13) J (DKM (x, t + (1 + 2)s) — XU (0,1 4 (¢1 4 ¢2)s))s* ds
0

= —(c1 4 &) (LKl (x, 1+ (c1 + 2)s)

— Z5°(0,1 + (e + ¢2)5))s*]y
o0

+ (1 + cz)_lkJ (QZtku‘s(x, 1+ (c1 4 ¢2)s)
0

— Z%°(0,1 + (e + ¢2)s))s* " ds.

By (2) of Lemma 4.2 and the assumption of induction, the first term and
the second term of the right-hand side of (4.13) are equal to 0 and

% (u®(x,t) — u®(0,1)), respectively.
Cc1+C2
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Next, we show (4.11) with ke Ny and m € N by induction on m. Let
m=1. If k=0, then integrating by parts, we have

J ué(y7 CIS)CO; (xv [; Y, CZS)dV(yv S)
H

0
:J J u(y, c19)wl(x, t; v, ca8)dsdy
" Jo

1 .
= - [ué(ya Cls)wg(xa t; Y, CZS)](())Cdy
CZuR”
‘1 ” P 0
- D (.V?cls)wo((x? I8 y;CZS)dey
2 Jr" Jo
1 0
= ——| lim u’(y,c18)0)(x, £ p, c29)dy
CZ R” §—00
1 , y
o) u(y,8) (WP (x = p,1) = W (=, 1))dy
c .
—é G’ (y, c18)02(x,t; p, cas)dV (p, s).
H

Therefore, (4.3), (3) of Theorem 3.2, and (4.11) with k=1 and m = 0 imply
that

j W (3, 1500l (x, £y, e28)dV (3, )
H

e __a
— W)~ w0, 1) ~

S (u®(x, 1) — u’(0,1)).

c1+ e

(ué(x7 [) - ué(oa 1))

If k> 1, then (4.3) and (4.11) with m =0 imply that
J @tku‘s(y, cls)a); (x, 8y, czs)sk dV(y,s)
H

o0
:J J Tiu’(p, c18)wy(x, 1; y, c25)s* dsdy

rs|_.

J (D5’ (, e15) 03 (x, 8, y, c25)s¥] i dy

J J 25 (y, ers)wf (x, 1, ¢29)s* dsdy
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k [e¢]
Jrfj J TR (p, 1) 00 (x, t; y, ¢25)s* ! dsdy

(&) 0

:—Muéx —4%(0.1 L(k)u‘;x —u%(0,1
62(01+6‘2)k“( (0 =6 ))JrCz(ClJrCz)k( ) =)
r'k+1 5

_ (qi;,ll(ué(x, £ — (0, 1)).

Let me N be fixed, and assume that the equality (4.11) holds for all
k €Np. Then, (4.3) and the assumption imply that

J 4 (3, 1)l (x, 1, c28)s 7 AV (v, )
H

1 5 «
T _J 128 (p,cr5)ey (x, 6 3, ¢25)s ] dy

C1 @ .
- C—J J TN (y, ers)™(x, £ p, cas)s* M dsdy
2 n 0

k o0
LT mJ J TR (p, 1) 0! (x, t; y, ¢28)s* T dsdy
(&) 7 Jo
altk+m+1) 5
=y (W (x,1) — u’(0, 1))
62(61 —+ 62)

L (ktm)r <k):l,f7 Y.~ w0 (0.1))

Cz(Cl )

_W(ua(x, £) — u(0,1)).

Hence, this completes the proof. O

We give a reproducing formula for u € %4,(0). The following theorem is
the main result of this section, which gives Theorem 2.

THEOREM 4.5. Let 0 <o <1 and 6 > —m(a). If k,m e Ny satisfy m > o
and k+m > 0, then

(Cl + Cz)k+m

u(x, ) —u(0,1) = Thrm)

j Truly, 1)l (x, 15 v, as)s 1 dV (v, )
H

Jor all ue B,(c), (x,t) € H, and real numbers ci,cy > 0.

ProoF. By (3) of Lemma 4.3 and Proposition 4.4, the theorem imme-
diately follows from the Lebesgue dominated convergence theorem. O
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5. Reproducing formulae by fractional derivatives on %,(o)

In this section, we give reproducing formulae by fractional derivatives on
%,(c). First, we recall the definitions of the fractional integral and differen-
tial operators for functions on Ry = (0,00). (For details, see [2].) For a real
number x > 0, let

(5.1) FE = {pe C(R,);I' > K s.t. p(t) = O™ ) (1 — o0)}.
For a function ¢ € %", we can define the fractional integral &, "¢ of ¢ by

> —K o 1 * Kk—1
(5.2) 977p(t) = W Jo ™ (T + t)dr, teR,.

In particular, put #%°:= C(R,) and Z2°¢p :=¢. Moreover, let
(5.3) FE* = {p;d"1p e 76~ (K19},

where d; = d/dt and [i] is the smallest integer greater than or equal to x.
Then, we can also define the fractional derivative ;¢ of ¢ € %" by

(5.4) aE0(t) == 2,7 (~d)p)(r),  teR,.

Clearly, when x € Ny, the operator &, coincides with the ordinary differential
operator (—d,)". Some basic properties of the fractional differential operators
are the following.

Lemma 5.1 (Proposition 2.1 of [2] and Proposition 2.2 of [3]). For real
numbers i,v > 0, the following statements hold.

(1) If pe F€7", then 2 "p e C(R,).

2) If e FC€ ", then 2,29 = 2, ¢.

() If drpeF%6™ for all integers 0<k<[x]—1 and d,w¢e
TG0 then GXG V9 = D7D p = D5 .

@4 I d My e 76~ for all integers 0 <k < k] —1, d" e
FZ6 9 for all integers 0 < ¢ < [v] — 1, and d/*1""p e K10~
then 9199 = 2" p.

(5) Ifd"pe 76 ¥ and lim d*p(1) = 0 for all integers 0 < k < [«] — 1,
then 29 ¢ = ¢. o

Here, we give some examples of fractional derivatives of elementary
functions.

EXAMPLE 5.2. Let k > 0 be a real number. Then, the following statements
hold.

(1) For every real number v, we have %)e ™ =r"e™ for all teR,.

(2) For every real number v> —k, we have 2t™" :%t”‘"’ for all
teR,.
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We present some properties of fractional derivatives of fundamental solu-
tion W® . By (2.8), we note that for each xeR”, the function W(x,-)
belongs to #%"* for kx > —5-. The following lemma is Theorem 3.1 of [2].

LemMA 5.3 (Theorem 3.1 of [2]). Let 0 < o < 1, and let y € Njf be a multi-
index and v a real number such that v > —5-. Then, the following statements
hold.

(1) The derivatives 0'%* W (x,t) and 2¥07 W) (x,t) can be defined, and
the equation 079 W'® (x,t) = 20" W (x,t) holds. Furthermore, there exists
a constant C = C(n,o,p,v) > 0 such that

QLYW 1)| < C+ ) (0

Sfor all (x,t)e H.
(2) If a real number K satisfies the condition K+ v >
derivative 91079 W ) (x,t) is well-defined, and

G DWW (x,0) = TG WD (x,1).

then the

_n
200

(3) The derivative 0] W ) (x,t) is L) -harmonic on H.

We also give basic properties of fractional derivatives of functions in
By(0).

PROPOSITION 5.4. Let 0 <a <1, 0> —m(a), and let y e Nj be a multi-
index and x a real number such that k =0 or k > max{0,—c}. If ue %,(0),
then the following statements hold.

(1) The derivatives 0.2 u(x,t) and 2, 0%u(x,t) can be defined, and the
equation 072 u(x,t) = 270 u(x,t) holds. Furthermore, if (y,x) # (0,0), then
there exists a constant C = C(n,a,0,y,k) > 0 such that

017 fulx, 1)] < Com V2|,
Sor all (x,t) e H.
(2) If v=0 or v>max{0,—a}, then
(5.5) D0 D u(x,t) = 019 u(x, t)
Furthermore, if v <0, then (5.5) also holds whenever v <o and v+ x>

max{0, —c}.
(3) The derivative 0’%*u is L™ -harmonic on H.

Proor. (1) Let k¥ > max{0,—o}. Then, by (4) of Theorem 3.2, we have
12! u(x, )| < Cr~(¥149) because [x] eN. Since x> —a, Zu(x,-) belongs
to 76~ "I7) for every xeR". Thus, Z*u(x,t) is well-defined. Similarly,
1 0%u(x,t) is well-defined, and differentiating through the integral, we obtain

0195 =2, "1 019 = 97 g = gralu.
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Therefore, 022, u is well-defined and 0/9fu = 2;0u. Furthermore, (4) of

X

Theorem 3.2 and (2) of Example 5.2 imply that

0ro%u(x, | = |2, (e]=r) 019, u(x,t
X7t

IA

C(@ ([x]- K) —(yl/20+[x] +a))||uH Cl‘_(

(2) By (1) of Proposition 5.4, it suffices to show that 22, 0/u =
9!"0%u. We may suppose «,v #0. Assume that the real number v >0
satisfies the condition v > —g. We claim that (4) of Lemma 5.1 can be applied
to 0/u. In fact, |2/"0%u(x,?)| < Ct~WI/2+m+9) for all integers m > 1 by (1)
of Proposition 5.4. Thus, the condition x > —¢ implies that & JH[" Olu(x,-) €
F (g ([¥1=) for all mtegers ¢ >0, and the assumption v > —¢ implies that
2" olu(x, ) e FE V] ") for all integers k > 0. Also, the condition v + x >
—o implies that 9[‘ W (x,-) e #~M==(¥I=9 " Hence, we can apply (4)
of Lemma 5.1 to d’u, and we obtain 2,2, 0u = 2,;0’u.

Assume v < 0. If v<o and v+ x > max{0, —a}, then v; := —v > 0 and
K1 :=v+x>0. Also, we have v{ > —0g, k1 > —0, and v + k1 > —o. There-
fore, the above argument implies that

DD = DD = DD D= DD, D0 .

Since (5) of Lemma 5.1 can be applied to 2,7 0/u by the condition v+ x >
max{0, —g}, we obtain 2,9,y 0lu =20 lu.

(3) Since when x €Ny, the assertion was already obtained by (4) of
Theorem 3.2, we assume that « ¢ No. Let (y,x) # (0,0). And let y € C*(H).
Then, by (2.2) and (2.3), there exist 0 < #; < f, < o0 and C > 0 such that

LW (x, 1) < C(L+ |x) ™" 14,1 (1)

for all (x,7) e H, where x, , is the characteristic function of the interval
[t1,72]. Therefore, by (4) of Theorem 3.2, we have

J Pl J 21 07u(x, £+ T)L D (x, 1)[dV (x, 1)de
0 H

[oe] 1)
< CJ T(ﬂfkfl‘[ J ([+ T)f(\y|/2a+]'x]+(r)<l + |x|)7"72“dxdtd‘c
0 n "

< CJ v k=1 )W IR ) g o,
0

Since 0’%Fu = 2rdu, the Fubini theorem implies 0’%u is L*-harmonic.

O
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It is known that the parabolic Bergman functions satisfy the following
reproducing formulae, which are shown in Theorem 5.2 of [2].

LeEmMA 5.5 (Theorem 5.2 of [2]). Let 0<a<1,1<p< o0, and 1> —1.

If real numbers k and v satisfy k > —% and v > ;'Jprl, then
2 K vy (o) Kx+v—1
(56) M(X,Z):m Hgtu(yvs)gtW (x—y,t+s)s dV(y,S)

Sfor all ueb(A) and (x,t) e H. Furthermore, (5.6) also holds for v=1+1
when p = 1.

We shall give reproducing formulae by fractional derivatives on Q“(o),
which are generalizations of Theorem 2 in section 1. First, we generalize the
function defined in (4.1) as follows. For a multi-index ye Nj and a real
number v > —4-, Lemma 5.3 implies that a function w}" on H x H can be
defined by

@l (x, 8 p,8) = 01D W (x — y,t+5) — L2 W (=p,1 + )

0,v
Pl

for all (x,7),(y,s) € H. We shall also write w) =
ties of the function w’.

We give basic proper-

LemMmA 5.6. Let 0 <o <1, 0> —m(a), ye Ny, and v> —3-.  Then, the
following statements hold.

(1) For every (x,t)€ H, there exists a constant C = C(n,o,7,v,x,t) >0
such that

03 (x, 1 ,5)| < C(1t- s+ || ) 02t

Sor all (y,s) e H.
2) If p>—1 and n:= %+ v—p—1>—m(a), then there exists a con-
stant C = C(n,a,p,v,p) > 0 such that

J)MF@mxﬁde%QSC&ALﬂ
H

Sor all (x,t) e H, where the function F,, is defined in (3.2).
3 If %yl+ v+m(a) >0, then for every (x,t)e H, the function
" (x,t;-,-) belongs to Byo(c).

ProoF. The assertion (1) is (2) of Proposition 3.1 of [3]. (2) Let ¢ >0
be an arbitrary real number. Then, (1) of Lemma 5.3 and Lemma 2.3 imply
that
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(5.7) J |2 (x, 8 p,8)|s” dV(p,s)
H

< J |0§9;’W(°‘>(x —y,t+s)— 0.9 W<°‘>(x — e+ 9)|s” dV(y,s)
H

+J x—y,c+s) 6§@}’W(“)(—y,c+s)|s/’ dv(y,s)
H

+j|wglv (=y,c+5) = D Wy, 1 1 5)|s” dV(.5)
H

<jj 1D W (x — y, 7+ 5)|s? AV (3, 5)de
cJH
1
+J |x J \V0l9; W (rx—y,c+s)|s’ dV(y,s)dr
0
+LJ|@@?WWMWJ+Qde%wm
< C( T/’ W25y de| 4 |x|er= (11221 _~_U01p|7/2av dr)
1

:C<JT”_ld7:

Assume # = 0, then

c
+ |x|c_'7_l/2°‘ + U 1 de
1

)

j|@%w»@de%wsaua+Mym
H

where I,(c) = [log ¢| + |x|c™'/>*.  Thus, as in the proof of (1) of Theorem 3.2,
putting ¢ = (1 + |x|)**, we obtain

w2 (x, 6 p,8)|s” dV(p,s) < C(1 +log(l + |x|) + |log 7]).
H
Assume 7 # 0, then (5.7) implies
J lw ¥ (x, 8 p,8)|s” dV(py,s) < C(1 + Jy(c) +177),
H

where Jy ,(¢) = ¢+ |x|c7""1/?*.  Therefore, the same argument as in the
proof of (1) of Theorem 3.2 shows the desired estimates.

(3) Let (x,7) e H be fixed. Then, by (3) of Lemma 5.3, the function
@?'(x,t;-,-) is L®-harmonic. Furthermore, (1) of Lemma 5.6 implies that
for j=1,...,n,

10,00 (x, 15 y,5)| < C(1+ 5+ | y|?*) D2
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and

D507 (3,85 p,5)| < C(1+ 5+ || )~ D 2emv=1mm)

for all (y,s)e H. Hence, we obtain the function w!’(x,f;-,-) belongs to

@1,0(0). O

We define an auxiliary function on R, which is used later. For v e R, let

vl (v=0)
'M(V)_{o (v < 0).

Now, we give reproducing formulae by fractional derivatives on %,(a).

THEOREM 5.7. Let 0 < a <1 and 6 > —m(o). If real numbers x € Ry and
veR satisfy k > —c and v > o, then

2K+v

(58)  ulx.0) = u(0.1) = pr—y

j TEu(y, )02 (%, 1; y, )5 dV (3, 5)
H

Sor all ue B,(o) and (x,t) e H. If k =0 and v > max{0,c}, then (5.8) also
holds.

Proor. Let u€ %,(o) and (x,7) € H. And, let x e Ry and v e R be real
numbers with ¥ > —¢ and v > a.

Suppose first that x« ¢ N and v ¢ Ny. Then, the definitions of the fractional
derivative (5.2) and (5.4) imply that

(5.9) j TEu(y, $)02 (%, 1 y, )5 dV (3, 5)
H

1 * [K]—rk—1 5 [K]

R 2, 'u(y,s+ 11)dt
Jyrma=l, & A s e
1 « N (v)—v—1 N (v) K+v—1
EICED)

! J‘30 [K]—r—1 o [K]
eI 2, 'u(y, (1 +11)s)dr
JHF(fK]—K) 0 ooy ( 1)s)dr
1 * N (v)—v—1 ¥ (v)
Ty 2 e s (4 v
x IO gy (p)s).

Furthermore, (4) of Theorem 3.2 and Lemma 4.1 imply that
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o0
JH L N2 u(y, (14 1))l

o0

« Ti,t,/‘(v)—\r—l |w&t(v) (x’ ty, (1 + TZ)S)|dr2sﬁd+4/u(‘:)71 dV(y, S)

0
0 ,Ljidfkfl
<C J I—W dr,
a#Jo ((1471)s)
o N (v)—v—1
[ = - dros O gy (p,s)
Jo (1 + (1 4 Tz)S + |y|21)n/2a+¢1' (v)+m(x)
I o W)
JO (] + Tl)[K]+g 0 (1 + _L_z)faﬁ/l (v)
s—a+,/1/”'(v)— 1
x dV(y,s).

Ju (1 +s+ |y|Za)n/2o<+u~t"(v)+m(a)

Since ¥ > —o and v > g, we have

0 T!’K]—K—l
— _dn <o
0 (1+T1)M—‘+U

and
T o 4% < 0,
0 (14719770
respectively. Moreover, by the conditions v > ¢ and ¢ > —m(a), Lemma 2.3
implies that

S*ﬂJr,,»"’”( )—1 ( )
- dVi(y,s) < oo.
JH (1 +5+ |y|2¢)n/2a+./t (v)+m(a)

Hence, by the Fubini theorem, (5.9) and Theorem 4.5 show that

j FEu(y, )l (x, 1 3, 5)5 dV (3, 5)
H

_ 1 ] —k—1 V(v)—v—1
_F(M—K)F(W(V)—V)Jo ! Jo :

) J IMu(y, (1 + 1)), O (x, 1y, (1 + 12)s)s O qv(y, 5)dr de,
H
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_ 1 T[K] —r—1 TJ’ (v)—v-1
_F([K]—K)F(JV(V)—V)JO 1 L 2
I'([x] +A7(v))
2+ +Tz)( K]+ (v)

:fgg;Man—umJ»

Next, we remark that the proof can be done similarly when ke N or
veNy. Thus, we omit it. (When k€N and ve Ny, the assertion of the
theorem follows from Theorem 4.5.)

Finally, we assume that x = 0 and v > max{0,6}. When x =0 and ve N,

the assertion of the theorem follows from Theorem 4.5. Therefore, we suppose
k=0 and v¢ N. Since

(5.10) j u(y, )0l (x, 1 v, 55" dV (1, 5)
H

(u(x,t) — u(0,1))dr dt,

1
J, 9 T =)

J ol x5 v, (14 D)s)des T dv (3,),
0

it suffices to show that we can apply the Fubini theorem to the right-hand side
of the equality (5.10). Since v > 0, we can choose a constant ¢ with 0 < ¢ <
min{v,m(«)}. Then, (1) of Lemma 4.3 implies that |u(y,s)| < CM, ;.(y,s) for
all (y,s) € H, where M, , . is the function defined in (4.2). Therefore, Lemma
4.1 shows that

(5.11) JH|u<y7s>|fr‘ ol (x, 15y, (14 0)5)|dzs 1 dV(,5)

<C| Mys.:(y,s)
H

y o0 T(V-‘—V_z:c n/2:x+"v-‘ de \/ dV(y, )
o (I+(1+7)s+[y™)

=C dV(y,s)dr.

C [ Mueelnt 05l
0 (1 —|—’L')’—1“ H(l +s+ |y‘2(x)n/2a+]'v‘\+m(u)
If 0 > ¢ > —m(a), then the right-hand side of the equality (5.11) is less than or

equal to

av(y,s),

(5.12) ch R J sM
. T -
0 (1 + ‘L') v] H (1 s+ |y‘2u{)ﬂ/20€+"V“+l’H(O{)+G’
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and by the conditions v > 0 and —m(a) — ¢ < 0, Lemma 2.3 implies that (5.12)
is finite. If o = 0, then the right-hand side of the equality (5.11) is less than or
equal to

o0 ‘l,'M7v71 SM*I
(5.13) cj 7,511] , 4V (y,s)
0 (1 + ‘L') v] u (1 +s+ |y|23<)n/2a+|’f\+m(oc)—s
o0 Tvafl S[ﬂflf
—+ CJ er dvi(y,s).
0 (1 + ‘L') [v]—e u (1 +s+ |y|2a)n/21+[1']+111(01) ( )

Here, the first term of (5.13) is finite because v > 0 and —m(a) + ¢ < 0, and the
second term of (5.13) is finite because v —¢& >0 and —e —m(a) < 0, respec-
tively. If ¢ > 0, then the right-hand side of the equality (5.11) is less than or
equal to

(5.14) CJOC Ri. J st dv(y,s)
' ! ; ;8
0 (1 + ‘L')[V] H (1 s+ |y|2a>n/2a<+M+m(a)

0 ,L.(ﬂfvfl s[ﬂflfo
+ |, g | . 0

and thus the first term of (5.14) is finite by the conditions v > 0 and —m(«) < 0,
and the second term of (5.14) is finite by the conditions v—o¢ >0 and
—o —m(a) < 0, respectively. Hence, this completes the proof of the theorem.

O

As an application of the reproducing formula, we give estimates of the
normal derivative norms on ,@a(a). The following operator is important for
our estimates and is also used in the next section. For 0 <a <1, x > —4,
and p € R, the integral operator /1" is defined by

(5.15) T50f (x, 1) = J S0 8)@(x, 5 3,)s” dV (3,5)
H

for (x,t) € H, whenever the integral is well-defined. We need the following.

THEOREM 5.8. Let 0 <o <1 and o > —m(a). Then, for every real num-
ber v>0, )" is a bounded linear operator from L* onto %,(c).

Proor. Let feL® and (x,f)e H. Then, by (1) of Lemma 5.6
and Lemma 2.3, I1)*'"!f(x,f) is well-defined. Furthermore, we show
"' € ,(c) and there exists a constant C >0 independent of f such



Parabolic Bloch type 81

that ||H;+r7.,v—1f|e%<o_) < C||fllp=. In fact, by (2) of Lemma 5.6, for every
0< 1t <t < oo, we have

15!
[ [ el 1) asar

131

5]

< Il |

n

J Foc,a'(x, t)(l + |x|)_n_2adxdt < 00,
R"

where F, , is the function defined in (3.2). Therefore, I7)""~!f satisfies the
condition (2.4). Thus, by the definition of wX(x,t;y,s), M """ f is L®-
harmonic and 77)*%"~'£(0,1) =0. Moreover, Lemma 2.3 implies
O (x, 0] < T2 £
and
01 (x, 1) < Coo TV f o
Hence, we have I71)*%""!f € #,(s) and IIH;”’V*lfH%(g) < C|lf |l -

Let ue %B,(c). Then, (4) of Theorem 3.2 implies '*°ZueL”. By

Theorem 5.7 with k=1, we have u:%ﬂgw”’_l(r””@,u). Thus,

17;*"’”’1 is onto. O
We give estimates of the normal derivative norms on %,(c).

THEOREM 5.9. Let 0 <o <1 and o > —m(a). Then, for every real num-
ber k > max{0, —c}, there exists a constant C = C(n,a,0,x) > 0 independent of
u such that

CMlull g,y < 72 ull o < Cllutl g,
for all ue B,(o).

PrOOF. Let x > max{0,—c} be a real number and u € %,(s). Then, (1)
of Proposition 5.4 implies that

17 Zul| . < Cllull -

o ltnto
I'(14+x+0)

Furthermore, by Theorem 5.7, we have u =
fore, Theorem 5.8 with v =1 implies that

o0+ g y).  There-

lull g, i) = CIF (DU ) < CllET D]l o

This completes the proof. O
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6. Dual spaces

In this section, we give the proofs of Theorems 3 and 4. We begin with
recalling the definition of the integral pairing (1.4) on b}(1) x 4,(s). For
uebl(2) and ve A,(c), the integral pairing {(u,v); , in (1.4) is defined by

2 to+2

u, U>A,a = m

| wrezatpss ot aviy.s)
H
By the definition, we clearly have there exists a constant C > 0 such that

(6.1) |<us 035,61 < Cllull 13y llv]

for all ueb)(2) and ve B,(o).

B,(0)

THEOREM 6.1. Let 0 <o <1, 6 > —m(x), and > —1. Then, (b}(1))" =
B, (c) under the pairing

@, (u) := u,v), ., uebl(h),

where @, is the linear functional on bl() induced by v e B,(c). Furthermore,
there exists a constant C = C(n,a,0,1) > 0 independent of v such that

CHoll g0 < 1Dl < Clloll,0)
for all ve B,(0).

ProoF. For every v € %,(0), we define a mapping by 1(v) = @,. Then,
the inequality (6.1) implies that 1 : %,(s) — (b.(1))* and 1Do]| < Clloll 4,0

We show that 1 is injective. Thus, we assume that v e %,(¢) and @, =
1(v) =0. Then, by (2) of Lemma 5.6, w/**!(x,t;-,-) belongs to bl(1) for
each (x,7) e H. Therefore, by Theorem 5.7, we obtain

2/1+J+2

W= Fare )

J Fo(y, ) (x, 1, y, )5 dV(p,5)
H

o

— gpv(w‘)&a—}—l (X, t-, )) =0

o

for each (x,7) e H. Hence, 1 is injective.

We show that for each @ e (b.(1))", there exists ve %,(s) such that
1(v) = @ and [[v||, ) < C[|®||. Therefore, let @ e (b}(%))*. Then, the Hahn-
Banach theorem and the Riesz representation theorem imply that there exists a
function f € L* such that

D(u) = jH u(y, )/ (3.8)s" dV(x, 1)
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for all uebl(4) and ||f]|,;. = ||®||. Put v:= II*°*1%f  Then, Theorem 5.8
implies that ve %,(0) and ||v]|,, < C[|?|. We claim i(v) = @. Indeed,
differentiating through the integral, we have

Fo(x,1) = DA77 (x,0) = J T)DI2W O (x =yt +5)s" AV (p,9).
H

Therefore, the Fubini theorem and Lemma 5.5 imply that

u, vy, , = ﬁj u(x, ) w(x, )t dV (x, 1)
7 T'A+0+2) )y

e R L L Al
I'(A+0+2) ) H
X st dV (y, )t dV (x, 1)

to+2
= LJ u(x, )2 W@ (x — p,t +5)
ul(A+a+2) )y

X LAV (6,0 f (9,5)5" dV (v, )

= Hu(y’ s)f(y,s)s’l dV(y,s) = ®(u)

for all ueb!(4). This completes the proof. O

Next, we give the proof of Theorem 4. Let Cy(H) be the set of all
continuous functions which vanish continuously at dH U{c}. We need the
following lemma.

LEmMMA 6.2. Let 0 <a <1, 0> —m(a), and v>0. Then,
By.0(0) = {ue By(0); 1" D e Co(H)} = {IT}77"7'f; f € Co(H)}.

ProOF. We show the first equality. Take ue %,(c) with “"'Que
Co(H). Then, differentiating through the integral (5.8) with x =1 and v =
o+ 1, we have

2a+2

Oiu(x,t) = T

Tz)JH Gy, )77 W (x =yt +5)s7 dV (p,s).

For given ¢ > 0, there exists a compact subset K = H such that |s°*'Z,u(y,s)|
< ¢ for all (y,s) e H\K. Therefore, we obtain
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(62) M |u(x, 1)

< Ct”“/z“aj 0,27 W@ (x — y, t+5)|dV (y,5)
H\K

+ Ct7 2 ul g, JK 10,27 W (x =yt +9)|dV (p,s).

The first term of the right-hand side of (6.2) is less than Ce by (1) of Lemma
5.3 and Lemma 2.3. Furthermore, (1) of Lemma 5.3 implies that the second
term of the right-hand side of (6.2) tends to 0 as (x,¢) — dHU{c0}. It follows
that u € %, 0(c). The converse inclusion is trivial by the definition of %, ¢(a).

We show the second equality. Take f € Cy(H), and put u = I1)7%""f.
Then, Theorem 5.8 implies u € 4,(c). For given & > 0, there exists a compact
subset K = H such that |f(y,s)| < ¢ for all (y,s) e H\K. Thus, differentiating
through the integral, we have

(G u(x, )| < r”“sj WO (x =y, 14 )" dV (3,9)
H\K

e j WO (x =yt 4 8)ls™ AV (3,).
K

Therefore, by the similar argument as above, we obtain t*"'Z,u e Co(H). We
can easily show the converse inclusion by Theorem 5.7. This completes the
proof. ]

We shall show an extended version of Theorem 4.
THEOREM 6.3. Let 0 <a <1, o> —m(a), and 2> —1. Then, bl(}) =
(B,0(0))" under the pairing
YIM(U) = <ua U>La’7 ve @1,0(0%

where W, is the linear functional on @%0(0) induced by ue b;(i).
Furthermore, there exists a constant C = C(n,o,0,1) > 0 independent of u such
that

C M lull gy < 1l < Cllutll g
for all uebl(A).

Proor. For every u € b! (1), we define a mapping = by n(u) = ¥,. Then,
the inequality (6.1) implies that |%#,(v)| < Cllul|1( 0]l 4, for all ve By.0(0).
Thus, we can consider 7:b.(1) — (%,0(c))" and we also have |¥,| <
Cllall 1 s-
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We show that 7 is injective. We assume that « € b} (1) and ¥, = n(u) = 0.
Then, by (3) of Lemma 5.6, w/t"*!(x,t;-,-) belongs to %,0(s) for each
(x,t) € H. Therefore, by Lemma 5.5, we obtain

u(x,t) = 4A i J u(y, )2 W O (x — ot 4 5)sT AV () s)
’ IrA+o+2))y 7771 ’ ’
:—/1 i J u(y, )20t (x, 1, p,5)s" 7 AV (y,s)
1(/1“{‘(7“"2) H ’ * A ’

= ¥ (x,55-,) =0

o

for each (x,7) e H. Hence, = is injective.

We show that for each ¥ e (4,.0(c))", there exists ueb!(1) such that
n(u) = ¥ and |lull,1;) < |l Let ¥ € (%,,0(0))". We define a mapping 4
by

2 A+o+2

A =7 (T, fe GolH).

(A+0+2)

Then, Theorem 5.8 and Lemma 6.2 imply that A is a bounded linear functional
on Cy(H) and ||4|| < C||¥||. Thus, the Riesz representation theorem shows
that there exists a bounded signed measure x on H such that

A(f) = J Fotdu(x.t). f e ColH)

H

and ||| = ||4||. We define a function u on H by
u(rs) = | FECRWO =yt )i dut ).
H
Then, (1) of Lemma 5.3 and Lemma 2.3 imply that

sy < [ | 19502 Wyt 9l av () i

< cj Dl (x,1) = Clla].
H

Hence, we have |[jul|;:;) < Cllul| = C||4| < C'[|¥|| and u ebl(1). We assert
n(u) = ¥. In fact, take ve %, (o). Then, since
2}.+a+2

v = F(i . 2) H;l+<7+l,).(ta+1@rv)

by Theorem 5.7, the definition of A implies
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2/1+rf+2

Po) = I(A+0+2)

c)y(nai-&-aﬂﬁ(ta-ﬁ—l@tv)) _ A(lUH@,v)

_ J 7 G 0(x, 1) du(x, 1).
H

On the other hand, the definition of u and the Fubini theorem show that

2 A+o+2 . .
u, v, 5= mj}{ u(y,s)2w(y,s)s" 7 dv(y,s)
Mot Ito+2 7 ()
:mJHJH,@IU(y,s)EJ[' TEWH (x — y,t+ )

x s vy, $)e°t du(x, ).

Since Theorem 5.7 again implies

we

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]

ﬂj Gy, )W (x — y, 14 5)s" dV(y,s)
F(l + ag + 2) H !

2A+o+2 J+o+1 Jto+1
=9 mJH D0(y,s)wy (x,t;,5)s dv(y,s)
= ‘@lv(xv t)a
obtain <{u,v); , = ¥(v). It follows that n(u) = ¥. O
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