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ABSTRACT. We study the stability of direct images by Frobenius morphisms. We
prove that if the cotangent vector bundle of a nonsingular projective surface X is
semistable with respect to a numerically positive polarization divisor satisfying certain
conditions, then the direct images of the cotangent vector bundle tensored with line
bundles on X by Frobenius morphisms are semistable with respect to the polar-
ization. Hence we see that the de Rham complex of X consists of semistable vector
bundles if X has the semistable cotangent vector bundle with respect to the polarization
with certain mild conditions.

1. Introduction

This is a continuation of our previous paper [9]. Let k be an algebrai-
cally closed field of characteristic p > 0, X a nonsingular projective variety of
dimension n over k, F = Fy the absolute Frobenius morphism of X and H a
numerically positive divisor on X. A divisor H on X is called numerically
positive if it is numerically effective and H” > 0. We define the slope of a
torsion free sheaf & on X with respect to H by

_ ) (é«?)anl

where ¢;(&) is the first Chern class of & and (&) is the rank of &. Then a
torsion free sheaf & on X is called semistable (resp. stable) with respect to H if
for all nonzero proper subsheaves # of &, u(F) < u(&) (resp. W(F) < u(8)).

As for the semistability of Frobenius pull-backs of vector bundles, a lot of
useful results have been obtained (see, for examples, [3], [7], [17]). On the
other hand, H. Lange and C. Pauly proved the following theorem on the
stability of Frobenius direct images of line bundles.
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THEOREM (Lange-Pauly [10]). Let X be a nonsingular projective curve over
k of genus g(X)>2. Then F.& is stable for any line bundle & on X.

Recently we have proved in [9] the following theorems on the semistability
of Frobenius direct images, which are generalizations of Lange-Pauly’s result to
nonsingular projective surfaces.

THEOREM 1.1. Let X be a nonsingular projective surface over k and let H
be a numerically positive divisor on X such that |mH| is base point free and it
contains a nonsingular member for sufficiently large integers m. Assume that
Q) is semistable with respect to H and KyH >0, where Q) is the cotangent
vector bundle of X and Ky is the canonical divisor of X. Then F.% is
semistable with respect to H for any line bundle & on X.

THEOREM 1.2. Let X be a nonsingular projective surface over k and let H
be a numerically positive divisor on X such that |mH| is base point free and it
contains a nonsingular member for sufficiently large integers m. Assume that
Ky win 0 (numerically equivalent to 0) and .Q)l( is semistable with respect to
H. Then F.% is semistable with respect to H for any line bundle & on X.

As an application of these theorems, we obtained the following result on
the geography of nonsingular projective minimal surfaces of general type.

THEOREM 1.3. Let X be a nonsingular projective minimal surface of general
type over k. Assume that Q)l( is semistable with respect to Ky.
(1) (Bogomolov’s inequality) If Q) is strongly semistable, i.e., (F¢)*(Q})
is semistable for every e € N with respect to Ky, then we have
(X)) < dery(X).
(2) If (Fe~Y)*(QL) is semistable with respect to Ky and (F¢)*(Q)) is not
semistable with respect to Ky for a positive integer e, then we have
4 2e
pizq( X).
p*—=(p-1)

In particular, we obtain that c;(X) > 0.

(X) <

Meanwhile, H. Lange and C. Pauly’s theorem was generalized to vector
bundles as follows.

THEOREM (Mehta-Pauly [12], Sun [20], Kitadai-Sumihiro [9]). Let X be
a nonsingular projective curve over k of genus g(X) =2 and & a stable (resp.
semistable) vector bundle on X. Then F.& is stable (resp. semistable).

Hence it is quite natural to consider the following question:
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PROBLEM. Let X be a nonsingular projective variety of dimension n over k
such that QY is semistable with respect to H and KyH"™' > 0. Then is F.&
semistable (resp. stable) with respect to H for any semistable (resp. stable)
vector bundle & with respect to H on X?

In this paper, we shall give the following partial affirmative answer to the
problem when X is a nonsingular projective surface.

THEOREM 3.1. Let X be a nonsingular projective surface over k and let H
be a numerically positive divisor on X such that |mH| is base point free and it
contains a nonsingular member for sufficiently large integers m. Assume that
.Q)l( is semistable with respect to H and KyH > 0. Then F*($®Q)1() is
semistable with respect to H for any line bundle & on X.

Hence we see by Theorem 1.1 and Theorem 3.1 that the de Rham complex
F.0y & F.0L % F (0y(Ky))
of X consists of semistable vector bundles with respect to H if X and H satisfy
the assumptions in Theorem 3.1. Thus we shall consider the semistability of
the images and the kernels.

PROBLEM. Are Py =1Im(dy), P, =1Im(d)) and Q) = Ker(d|) semistable
with respect to H?

We shall show the following.

THEOREM 3.3. Under the assumptions in Theorem 3.1, Py and P, are
semistable with respect to H.

It is well-known that the de Rham complex (F.(Q%),d) of X plays an
important role in the proof of Deligne and Illusie’s theorem [1]. Hence it
seems that the above results might be useful in the studies of geography,
Kodaira vanishing theorem etc., of nonsingular projective varieties of general
type in positive characteristic in the future.

2. Canonical filtrations and canonical connections

In this section, we recall several basic results on canonical filtrations (cf.
[9], [20]) and canonical connections (cf. [8]) because they play an essential role
in the proofs of Theorem 3.1 and Theorem 3.3. For details, please refer to [9].

Let k be an algebraically closed field of characteristic p >0, X a
nonsingular projective variety over k of dimension n, F = Fy the absolute
Frobenius morphism of X and let & be a vector bundle on X.
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2.1. Canonical filtrations. Let I/ be the kernel of the natural surjection
F*F.Ox — Ox. Since F*F.0Oy is an (Oy-algebra, we obtain a descending
filtration

1" =FFOy>I'"=I>’>5>---

on F*F,0y. Utilizing the descending filtration, we can define a descending
filtration on F*F.& as follows.

W=FF&E>W' ' =F'F.6 - I>--->W!
=F'F.&-I'> ... o W=+l = (0).

We call this filtration W* = {W'} (resp. I* = {I'}) the canonical filtration
on F*F.& (resp. F*F.0Oy).

Let U =Spec 4 = X be a nonempty affine open subset. Then the exact
sequence

0—>I—>F*F*@)(—>(ﬁx—>0
is locally expressed in the following way:
01— A4Q,4A—A4A—0

and I=<{a®1—-1®alae AYA. By shrinking U if necessary, every element

ae€ A can be written as a =3 o_, , _, ja  x'...x» where {x1,...,x,}

is a regular system of parameters and a; __; € A. Hence, locally, [ =
Xy xr®@1—1®x)...x|0<i,...,i, < p—1)A. Further putting w; =
xi®1-1®x; (1 <i<n), we obtain the following.

LEMMA 2.1.  With the above notation, we have
(1) I is a free A-module with a basis {w* =" ...y o= (a1,...,%)
#0,0<ouy <p-1,1 <k <n}

I=P wA.

a#0
(2) I+ = @‘a‘:iw“A Jor 0 <i<n(p—1), where |o| =0y + -+ 0.

Hence we observe from Lemma 2.1 that Gr'(I*) =1/ (0<i<
n(p—1)) is a vector bundle on X with rank = #{o = (ot,..., ) ||« =i,
0<o,<p—1(1<k<n)}. In particular, it is easily seen that r(Gr'(I*))
= (""" for 0<i<p-1and r(I"r=V) =1, ie,, I"»7Y is a line bundle on
X. Since 1"07V|, = 0Pt g and 17/, = D),y 0" 4 locally, we see
that 770 ~ K27~V and 11/1*" ~ §/(@L) on X for 0 <i < p—1 by com-
puting the transition matrices between those bases.
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In addition, there exists a perfect pairing
o L L B ®(p—1
11/11+1 ®In(p 1) z/In(p 1)—i+1 5 §®’7 NN 577 eIn(p 1) ~ KX (p—1)

for 0 <i<n(p—1)/2, from which we see I"(P-D=i/[n(p=D=itl ~ gOr~1 g
(I'/1"*1)Y, where &V is the dual vector bundle of &. Thus we obtain the
following result concerning Gr'(1*) = I'/I"*!,

LemMmA 2.2. Let I°={I'} (0<i<n(p—1)+1) be the canonical filtra-
tion on F*F,0y. Then we have

(1) In(pfl) ~ K?(P_l),

() 1)1 ~S(QY) for 0<i<p—1,

(3) Ire=D=ijpnr-N=itl & gD @ (1 [N for 0 <i < n(p—1))2.

As a corollary of Lemma 2.2, we can describe all Gr'(I°*) explicitly as
follows when X is a curve or a surface.

COROLLARY 2.3. We observe that .
(1) If dim X = 1, then I'/T*' =K' for 0<i<p—1.
(2) If dim X =2, then

1+ = Si(Qizﬁ 0<i<p-1,
K?(l*]”rl) ® ‘5*211—2—1‘(.{211‘,)7 p< i< zp _9.

Assume that &|, = M is the vector bundle on U associated to a finitely
generated projective A-module M. Then we observe that

FREly =M@ A)" = (M ®4(AQ4r A))”
Wiy =((M®uA4) I =(M®,1'),
from which it follows
Gr'(W*) ~ & ®,, Gr'(I°) on X for 0 <i<n(p-—1).
Combining with Corollary 2.3, we obtain the following.

COROLLARY 2.4. Let W* = {W'} be the canonical filtration on F*F.&.
Then we have

(1) If dim X =1, then WI/WH =6 QKE' for 0<i<p—1.
(2) If dim X =2, then
Lo E® S(QL), 0<i<p-1,
W W = o ®(ii{p+1) 2p-2-i Ol ;
& Q® Ky XSSP (Qy), p<i<2p-2.
By shrinking U if necessary, we may assume that &|, ~ @' Oy (r =r(&))
and choose a basis {e,...,e,} of I'(U,&). Then it follows from Lemma 2.1
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that every element f € I'(U, W'|,;) (0 <i<n(p—1)) can be written in the
following way uniquely:

f= Z e ® Z o”f + (higher terms),

i=1 Jo|=i

where fyFi)eA. This is useful for computing V(f), where V:F*F.§ —
F*F.6 ® Q) is the canonical connection of F*F.£ defined in the next
subsection.

2.2. Canonical connections. Let & be a quasi-coherent sheaf on a non-
singular projective variety X of dimension n. Then there exists a connection
V:F*§ — F*6 ® Q), which is called the canonical connection (cf. [8]). This
is locally written as

M®AA_)M®AA®AQ,14/]¢:M®AQ,L/](7
w w

me f — mdf

where 4 =I'(U,0x) and M =T'(U,&) for an affine open subset U of X.
Here A is considered as an 4-module through Frobenius morphism. Hence
the canonical connection is the positive characteristic version of the Gauss-
Manin connection. In particular, we get a connection on F*F.&

V:F'F.6 — F'F.6 ® Qy.

Let {x,...,x,} be a regular system of parameters on U = Spec 4 and
wi=x;,®1—-1®x; for 1 <i<n Then we have by straightforward compu-
tation,

LEMmA 2.5.
Vie®@w!"...0kf)

o

E) ® dx,

n
5 a1
=e® E (—ockwl“ o L oif ol ok
k=1

where e I'(U,&) and f € A.
It turns out from Lemma 2.5 and Lemma 2.1 that the y-homomorphism
View! /Wt =e@I'/I" - 61" /I'® Qy

—wlwieel, (0<i<n(p-1))
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induced from V is injective. Hence we see that W//W™! is a subsheaf
of 6® (24)®" through the Oy-homomorphism V,o---0V, oV, (0<i<
n(p—1)).

Let & be a nonzero coherent torsion free sheaf (r = r(&)) and S a nonzero
torsion free subsheaf of F.& and let V : F*F,§ — F*F.6 ® Q) be the canon-
ical connection on F*F.&. Further, let W* = {W'} (0 <i<n(p—1)) be the
canonical filtration of F*F.&. Then the filtration W* induces a descending
filtration F*SNW* ={F*SNW'} (0<i<n(p—1)) of F*S. Let S;=F*SN
Wi/F*SN W™ and r; = r(S;) for 0 <i<n(p—1). Then ry = r(Sy) is always
a positive integer. In fact, since the image of F*S by the canonical surjec-
tion F*F,6 — & is nonzero, F*S is not contained in W' Hence we see
r(So) > 0. When n=2, we can observe the following fact concerning r;
(0<i<p-1). Let K=k(X) be the function field of X over k. Then
we have r; = dimg(S; ® K) = dimg(F*SNWI/F*SN W ® K). Let

f= Ze,- ® Z a)l ok mz + (higher) [, fyfli)%z ek
i—1

a4 =2(p—1)—i
0<oy,0 gpfl

be an element of (F*SN W2P-D-1)® K (0 <i < p— 1) whose residue class f
in Sy,—1)-i ® K is not zero, i.e.,

0£> e6® > ofolfle(@@rv /i ek
i= o +0=2(p—1)—i
05911,0125,0—1

Then we see by Lemma 2.5 that
;
= Zei ® (Z(—oclwf“_]wz w1, + (higher)) ® dx;
i=1

+ Z —mo] o3 ')+ (higher)) ®dx2).

Since V induces a connection on F*S, if we put

Ze,@Z — o) w2 Mz + (higher)),

Z&@ Z RO OIS W? + (higher)),

then V., (f) and V., (f) are elements of (F*SNW?»3~)® K. Let us put
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—1—i —1—i
V£1 V{cjz :VxlO”'OVXIOVXZO'”OV)Q'

(p—1—i)-times (p—1—i)-times
Then it turns out that
1-i 1-i . o!
vy =Y e Y
i=1

a1 +o=2(p—1)—i, (al - (p e l))‘

0<oy,0<p—1

0!2!
- (p—1-10)

and V2-17'VEU(f) is an element of (F*SN W) @ K whose residue class
corresponds to

L TP A0 L (higher)

oo

! OC]! OQ!

e ® - :

,; ' al+“2:2%_1)_[7 (o —(p=1=0) (2= (p—1-1))!
0<oy,0<p—1

.wfl—(p—l—i)wgz—(p—l—i)f;liiz e(6Q® Ii/1i+1) QK.
Hence we have the following commutative diagram

(F*Sn W2(p71)7i/F*Sm Wz(‘l)*l)*i“rl) R K (W2(p71)7i/ W2(p71)7i+1) RK

l i

(F*SNWI/F*SN Wit ® K — (Wiwrh ® K,

where ¢ is the isomorphism obtained by multiplications by nonzero elements

(117(;17!14))! (otgf(;z—!l—i))! for oy +op=2(p—1)—i (0<oy,00 < p—1). There-

fore we have proved the following.

LemMmA 2.6.  With the above notation, we have r; = ry,_1—; for 0 <i<
p—L

In particular, assume r5,_» =r. Then we can take a basis {¢;} (1 <i<r)
of & ® K such that {e; ® o’ 'w?™'} (1 <i<r)is a basis of (F*SNW¥2)®
K. Hence taking Corollary 2.4 into consideration, we obtain the following by
arguments similar to the above.

LemMA 2.7. If royp—» =r, then we have

. r(i+1), 0<i<p-1,
lr@p-1-i), p<i<2p-2.
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3. Main results

Using the canonical filtrations and canonical connections, we prove the
following theorem, which is a partial affirmative answer to the problem when X
is an algebraic surface.

THEOREM 3.1. Let X be a nonsingular projective surface over k and let H
be a numerically positive divisor on X such that \mH| is base point free and it
contains a nonsingular member for sufficiently large integers m. Assume that
Q) is semistable with respect to H and KyH >0. Then F.(¥ ® Q) is
semistable with respect to H for any line bundle & on X.

PrOOF. Assuming that F,(Z ® Q}) is not semistable with respect to H,
we shall derive a contradiction. Let S be the maximal destabilizing subsheaf
of F.(4 ® Q). Then we have by Theorem 2.1 [9]

W(S) > u(F(Z ®Q))) = %KXH + %cl (Z)H.

Let W* = {W'} (0 <i<2p— 1) be the canonical filtration of F*F,(¥ ® Q).
Then we see by Corollary 2.4 that

FF(2@Q=W'ow! ..o w1 =(0)
and

wijwit = $®Q)](®Si(g)l()a 0<i<p-1,
$®Q;( ®K§?(z—p+l) (@521)7271'(_9;()7 p<i<2p-2.

It follows from Ilangovan-Mehta-Parameswaran’s Theorem ([5, 16]) and the
restriction theorem (cf. [11, Corollary 5.4]) that Wi/ Wil is semistable with
respect to H for 0<i<p—2 and p<i<2p—2 since .Q)l( is semistable
with respect to H. In addition, F*SNW?* is a filtration of F*S. If we
put

S;i=F*SONW!/F*snw™  (0<i<2p-2),
then we have that
u(Si) < p(w'/wHh except for i=p— 1.

Thus the following inequalities hold for i # p — 1

A(F*SONWHH — ¢|(F*SN WY H < @ + é) r(S) Ky H + r(Si)e1 (L) H.
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Summing up the above inequalities, we see that
N 1 ’ 1 ’.
CI(F S)H — C](Spfl)H < (EZ V(Sj) +§Z lr(Sj)>KxH

+ (S (2)H (1)
where ' = D igpl = 2t +22p 2

1) Assume that QL ® Sr=1(Q X) is semistable with respect to H. Then
we have that

c1(Sp-1)H < (;r(S,,_l) +p;1r(Sp_1)) KyH +r(S,-1)c1(X)H

because WP~!/W? is semistable with respect to H. Hence combining the
above inequality with the inequality (1), we have

2p— 12p— 2p-2
IERES U] VRS R

1(F*S) H<<
i=0 i=0

l\)l'—‘

1 1Y a(S;
W(F*S) < (5 + EZ "(s )>KXH + e (L)H.
On the other hand,
1 1
W(F*S) = pu(S) > p(zKXH+pC1($)H> :gKXH'FCl(ff)H‘

Therefore it follows that

0< z_:(i —(p=1)r(Si) = : (i = (p = D))(r(Si) = r(Szp-2-1))-
i=0 i=0

However r(S;) > r(Sy-2-;) for 0<i<p—1 by Lemma 2.6 and we have a
contradiction.

2) Assume that r(Sy,—») # 0.

Take a sufficiently small affine open subset U = Spec 4 of X such
that W22 =’ 'y?~'4 on U, where 0 =x®@1-1Q@x, n=y®1-1® y
({x,y} being a regular system of parameters of A) and ¥ ® Q} is free
on U. Let f=37 e®w” 'y’ 'f; be a nonzero element of I'(U,F*SN
W»-2), where {ej,e;} is a basis of I'(U,Z®Q}) and f; € I'(U,0y)
(i=1,2),and let V: F*F.(¥ ® Q}) — F*F.(Z ® Q}) ® 2} be the canonical
connection of F*F,(4 ® Q). Then it holds from Lemma 2.5 that
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Vi =S aw(~(r- o o L e ar

+Ze, ( — D'y LpP=2f; 4+ P~ 1yp~! f’)@d

Hence if we write

= Zei ® (—(p — l)wpiznpilfi + C()pil}?pil g];;>,
afi
1% f) = Z@l‘ ® (—(p — 1)6017*1;7[7*2]} +Q)p117p1%>7

then both V.(f) and V,(f) are contained in I'(U,F*SN W*»~3?) because V
induces a connection on F*S. For every o and f (0 <a<p—-1,0<f<
—1), let us put

Vx“y/f:V.)CO'.'OVXOV}’O".OV}"

o-times p-times

By direct calculations, we observe that

Vx“y/‘ (f)

o<+ (p_l)' ( _1) p— ozp
=2 a® ( SO T lﬂf”h‘gher))

e [(U,F*SNWw»-2-04h),

Hence for every {oa,f} such that o+ f = p—1, we see that

S, 1 =F*SNWr Il FsSnwr ——  wril/wr =2, ®sr'(Q})
w w

Vx’y/’ (f) f Zi (1(,{;115)[ ([(ﬁ;l)/;)!fiei ® dxpiliadypiliﬂ

on U, where V.,.(f) is the residue class of V..(f) in F*SNWwrt/
F*SN WP, Therefore, there exists a rank 1 torsion free subsheaf M of
& ®Q}( satisfying the conditions

(a) r(S,.1NM®Sr(2)) > p,

(b) Z®Q3/M is a rank 1 torsion free sheaf.
Indeed, the saturated rank 1 torsion free subsheaf M of & ®.Q}( which is an
extension of the line bundle on U associated to the rank 1 free A-module
21.2:1 fieid to X satisfies the above conditions (a) and (b).
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Consider the following commutative diagram with exact columns:

0 0
S N(M @S (Qy)  —— M ® Sr(Qy)
Sy — 22,0572y

Since M ® SP"1(Q}) and (£ ® QL/M)® SP~1(Q)) are semistable with re-
spect to H, it follows that

sy N @ 5 @) < (a0t + 23 Kt )
1(Sp-1/S 1N (M ® SN Qy))H

-1
< (26'1 (g)H + KyH — ¢ (M)H + p2K)(H> t,
where #; = r(S,_1 N (M ® SP~'(2}))) and 12 = r(S,_1/S,_1 N (M ® SP~1(Q}))).
Thus combining the above inequalities, we obtain that

—1
Cl(Sp_l)H < <pT (l] + lz) + Zz)KxH + (ll — Zz)Cl(M)H + 2[261(3)1‘1.

Further, we have that ¢|(M)H < cl(g)H—&—%KXH and 11 — 1, > 0 because
r(Sp—1) =t1 + 1 <2p and t; > p. Hence it follows that

c1(Sp-1)H < (%r(Spl) + pTlr(S,,l))KxH +7(Sp)—1)c1(L)H,
which leads to a contradiction similar to the case 1).

3) Assume that Q) ® SP~1(2}) is not semistable with respect to H and
F‘(Szp_z) =0.

3.1) There are the following canonical exact sequences for any rank 2
vector bundle & in positive characteristic p > 0.
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0— SP2(E)@det & — & @ SP (&) — SP(6) — 0,
0— &P - SP(&) — SP2E) @det & — 0,

where &7 = F*& is the Frobenius pull-back of &. Hence in particular, we
have the exact sequences:

0— S72(Q)) ® Ox(Ky) — Q) ® S71(Q)) — S"(Q)) -0, (2
0 — (_Q)l()(P) N SP(Q;,) N SP*Z(Q}() ® Ox(Ky) — 0. (3)

Thus if (_Q)l()“’ ) is semistable with respect to H, then it turns out from the exact
sequences (2) and (3) that 2} ® S?~!(Q}) is also semistable with respect to H
because  u((21) 7)) = u(S72(2}) ® Kx) = u(S7(24)) = (p/2)KxH. Hence
(Q)l()(p ) is not semistable with respect to H. Let

0—-A4—@\HP” B0 (4)
be the Harder-Narasimhan filtration of (Q}()(” ) and let
v:(@h=FQ, - F,e®a

be the canonical connection of F*Q}. Then V induces a nonzero Cy-

homomorphism 4 — (Q)l()“’ )4 ® Q) (cf. [19]), from which we obtain

1
gKXH <a(A)H < 3(1+2p)KyH. (5)

3.2) Consider the following commutative diagram with exact columns:

0 0

S, 1N(Z®S"2(QL) ® 0x(Ky)) —— £ ®SP2(Q)) ® Ux(Ky)

Sp-1 — ZR2®57'(Qy)  (6)
4
9(Sp-1) — 7 ® 87 (Q)
0 0,

where ¢: Z® Q) ®SP'(Qy) - £ ® SP(Qy) is the canonical surjection
associated to the exact sequence (2) and put r; = r(S, 1 N (L ® SP Q) ®
Ox(Kx))), r2 = r(p(S,_1)). Since ¥ ® SP2(2}) ® Ox(Ky) is semistable with
respect to H, it follows from (6) that
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(5y-10(2 ® 57@}) @ Ok < n(§Kett +ai(2)m). ()

Further, consider the following commutative diagram with exact columns:

0 0
o(S, NNZ® QNP — 7 ® QL)
9(Sp-1) — 7 QSr(Qk) (8)
14
V(2(Sp-1)) —— Z®S"(Qy) ® Ox(Kx)
0 0

where y : £ ® SP(QL) — £ ® SP2(Q)) ® Ux(Ky) is the canonical surjection
associated to the exact sequence (3) and put s; = r(p(Sp—1) N L ® (Q)l()(zﬁ)),
52 =r(Y(p(S,-1))). Then we obtain from (8) similarly to the above argument
that

(Y (p(Sp-1))H < 53 <§KXH + c1(££)H>. (9)

3.3) Finally let us consider the following commutative diagram with exact
columns:

W(Spfl)n-g@/l —_— ZR®A
p(S,)NZ® QY)Y —— 2@ Q)7 (10)

oS, NNZ@ QYY) —  2@B
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where ¢: 2 ® (Q41)” — @B is the canonical surjection associated to
the Harder-Narasimhan filtration (4) and put ¢ =r(p(S-1)N L ® 4), tr =
r&(p(S,-1)NZ ® (@)17)). Then we have from (10) that

C1 (q)(Sp_l) N® A)H <h (C](A)H + ¢ (g)H),
AEp(S,)NL @ (Q)")H < t(c1(B)H + o1 (L) H).
Hence it holds that
(S, 1) N2 ® (QVYH < t1¢1(A)H + trey(B)H + s1¢1(L)H
=phKyH+ (t) — th)c1(A)H + s1¢1 (L) H.

Combining the above inequality with (9) and (7), we obtain
1
c1(p(Sp-1))H < (Zz + ESZ)PKXH + (t1 — )1 (A)H + re1 (¥)H,

c1 (Spfl)H < <lz +%(Y1 + Sz))prH + (ll — tz)c1 (A)H + I’(Sp,l)cl(g)H.

Therefore we get the following in combination with (5) according to the values
of t; (i=1,2):
331) Hh=0 H=1ort,=0t=1.

(S0 H < Er(Sy-) K H +1(Sp)en(2)H,

whence a contradiction similar to the case 1) is derived.
332) Hnh=1, =0

1
1 (Syo)H < gr(sp,l)KXH + 3 K H + (S, 1)K H.

In the case 3.3.2), it follows that
2p—2 1
D (= (p=1)r(S;) +5>0. (11)

i=0

However, since r(Sp) > r(S»—2) =0 from our assumption, the inequality (11)
can not hold. O]

As a corollary of Theorem 3.1, we have the following.
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CoROLLARY 3.2. Under the assumptions in Theorem 3.1, F.(¥ ® Tx) is
semistable with respect to H for any line bundle & on X, where Iy is the
tangent vector bundle of X.

PrOOF. It is known that (F,(¥ ® 7))’ ~ F.(Q, ® 27'® K}[”), where
&Y is the dual vector bundle of & ([14]). Hence, F.(¥ ® Jx) is semistable
with respect to H by Theorem 3.1. O

Let us consider the de Rham complex of X:
F.0x & F.0L 5 F (0y(Ky))

and put P, =Im(dy), P, = Im(d)) and Q; = Ker(d;). Then we observe from
Theorem 1.1 and Theorem 3.1 that the de Rham complex of X consists of
semistable vector bundles with respect to A under the assumptions in Theorem
3.1.

On the other hand, there exist the following exact sequences by the
Cartier’s isomorphism theorem (cf. [6]):

0—- 0y — F.0y — P, —0
OHPlﬂQIH.Q)l(HO
0—>Q1—>F*.Q}(—>P2—>0

0 — P, — F.(O(Kx)) — O(Kx) — 0.

Hence it follows that

p-—p V4
P))=p?—1, P)) = Ky, P))=—"——KyH,
V( 1) p Cl( 1) 3 X :u( 1) 2(p+1) X
2
pP+p-2 p+2
Py) = p?—1, P, — Ky, P,) = KyH,
r(Py)=p c1(P2) > X wW(P>) 2o+
2 2
—-p+2 p-—p+2
— 2 _P TP £ P H
V<Q1> p + ) C1<Q1> 2 X ‘Lt(Ql) 2(p2+1) X

Concerning the semistability of those vector bundles, we shall show the
following.

THEOREM 3.3. Let X be a nonsingular projective surface over k and let H
be a numerically positive divisor on X such that |mH| is base point free and
it contains a nonsingular member for large integers m. Assume that .Q}( is
semistable with respect to H and KyH > 0. Then P, and P, are semistable
with respect to H.
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ProOOF. 1) Assuming that P; is not semistable with respect to H, we
shall derive a contradiction. Let S be the maximal destabilizing subsheaf of
Pi. Then we have ¢ (S)H > (p/2(p+ 1))rKyH where r=r(S). Let S=
dy'(S) = F.Oy and let W*={W'} (0<i<2p—1) be the canonical filtra-
tion on F*F,0x. Put S;=F*SNW!/F*SN Wt — Wi/Wi! and r; = r(S))
(0<i<2p—2). Then it follows from Corollary 2.4 that

A (F*SNWHH — e;(F*SN WY H < %r,»KXH for 0 <i<2p—2.
Summing up the above, we have ¢ (F*S)H < ((1/2) Zfﬁgz ir))KxyH. Since
c1(S) = ¢1(S) and Z?ﬁaz ri =r+ 1, the inequality

2p-2

Y ((p+V)i=pP)ri+p*>0 (12)

i=0
holds. If ryp—2 #0, ie., ry—2 =1, then it follows from Lemma 2.7 that r; =
i+lforO0<i<p—landr=2p—1—ifor p<i<2p-—2. Hence we have
r(S) =r(S) — 1 = p? — 1, which contradicts to r(S) < p*—2. Thus we see
rp—> =0. We shall check the inequality (12).

p—2
The left hand side = —p?ry + Z((p +D)i— pIr =1y
i1
2p-3
+> ((p+ Di—pPri+ p?
i=p

2

=) ((p+ 1)i=p*)(ri — rap-ai) — p*ro —rp-1

i=1
p—2

2

-2 Z Fop—2—i+ P
i=1

However, since ro =1 and r; >ry_>; for 0 <i<p—1 by Lemma 2.6, it
follows that the left hand side < 0, which is a contradiction.

2) The semistability of P, is proved by arguments similar to P; and
hence we shall omit the proof. O

ReMark 3.4. (1) Unfortunately, it is left open whether Q; is semistable
with respect to H or not.
(2) Let X be a nonsingular projective curve with genus g(X) > 2 and

F.0x ﬂF*(@X(KX)) the de Rham complex and let Py = Im(dy). Then it
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is easily proved by arguments similar to 1) in Theorem 3.3 that P; is
stable.

(2]
(3]
(4]

(5]
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