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ABSTRACT. Large time behavior of solutions to the compressible Navier-Stokes equa-
tion around a given constant state is considered in an infinite layer R"™' x (0,a), n > 2,
under the no slip boundary condition for the velocity. The L? decay estimates of the
solution are established for all 1 < p < oo. It is also shown that the time-asymptotic
leading part of the solution is given by a function satisfying the n — 1 dimensional heat
equation. The proof is given by combining a weighted energy method with time-weight
functions and the decay estimates for the associated linearized semigroup.

1. Introduction

This paper is concerned with the initial boundary value problem for the
compressible Navier-Stokes equation in an infinite layer Q:

(1.1) 0p + div(pv) =0,
(1.2) 0,(pv) +div(po @ v) + VP(p) = udv + (u+ 1)V div v,
(1'3) U|x,,:0,a =0, p|t:0 = pO(X>7 v‘t:() = U()(x).

Here Q is an n-dimensional infinite layer that is defined by

Q={x=(x,%);x"= (x1,...,%_1) eR" 10 < x, < a}, n=>2;

b

p=p(x,t) and v=(v'(x,?),...,0"(x,£)) denote the unknown density and
velocity at time 7 > 0 and position x € Q, respectively; P = P(p) is the pressure;
w and ' are the viscosity coefficients that satisfy x>0, 2u+ x> 0; and the
notation div(pv ® v) means that its j-th component is given by div(pv/v).

We are interested in the large time behavior of solutions to problem (1.1)—
(1.3) when the initial value (p,,v) is sufficiently close to a given constant state
(p,,0), where p, is a given positive number.

Matsumura and Nishida [22, 23] proved the global in time existence of
solutions to the Cauchy problem for (1.1)-(1.2) on the whole space R" around
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(p.,0) and obtained the optimal L?> decay rate of the perturbation u(f) =
(p(t) — p,,v(t)). Kawashima, Matsumura and Nishida [17] then showed that
the leading part of u() is given by the solution of the linearized problem. (See
[16] for the case of a general class of quasilinear hyperbolic-parabolic systems.)
The solution of the linearized problem reveals a hyperbolic-parabolic aspect
of system (1.1)—(1.2), a typical property of system (1.1)—(1.2). It is written
asymptotically in the sum of two terms, one is given by the convolution of the
heat kernel and the fundamental solution of the wave equation, which is the so-
called diffusion wave, and the other is the solution of the heat equation. Hoff
and Zumbrun [7, 8] showed that there appears some interesting interaction of
hyperbolic and parabolic aspects of the system in the decay properties of L?
norms with 1 < p < oo. The diffusion wave decays faster than the heat kernel
in L? norm for p > 2 while slower for p < 2. (See also [20].) This decay
property of the diffusion wave also appears in the exterior domain problem [18,
19] and the half space [14, 15].

On the other hand, in contrast to the domains mentioned above, we know
that the Poincaré inequality holds for functions on the infinite layer Q. There-
fore, if one considers, for example, the incompressible Navier-Stokes equation
on 2 under the no-slip boundary condition for the velocity, it is easily seen that
the L?> norm of the velocity decays exponentially. (See [1, 2, 3] for the L”
decay estimates.) As for problem (1.1)—(1.3), the Poincaré inequality still holds
for the velocity v(¢) but not for the density part ¢(¢) = p(¢) — p,. This leads to
that the spectrum of the linearized operator reaches the origin but it is like the
one such as the n — 1 dimensional Laplace operator. As a result, the solution
of the linearized problem behaves in large time such as a solution of an n — 1
dimensional heat equation [11]. In this paper we will prove that the leading
part of the solution of the nonlinear problem (1.1)—(1.3) is given by the solution
of the linearized problem. More precisely, we will show that under suitable
assumptions on the initial value, u(¢) satisfies

(1.4) lu(r) = u®@ @)l = O =AY L (1))

forall ] < p<ooast— oo. Here L(r) =1 when n >3 and L(z) = log(1 +¢)
when n=2; and u© = (4(x’,1),0) with ¢ (x',7) satisfying

1 a
o — a9 =0, ¢V =~ L (Po(x's xn) = p. )b,

where x = Tz}vz’ v=2=,92=P(p,) and 4" = 0y ++-+0: . We will also
establish decay estimates of [|0u(z)||, for all 1 < p < oo.
The estimate (1.4) means that the leading part of u(¢) is given by a

solution of the n— 1 dimensional heat equation and no hyperbolic feature




Compressible Navier-Stokes equation 97

appears in the leading part. We also note that, even in the case of n = 2, any
effect from the nonlinearity does not appear in the leading part.

As for related works, we mention that the structure of the spectrum of the
linearized operator near the origin is quite similar to that of the linearized
operator appearing in the free surface problem of viscous incompressible fluid
studied in [4]. So, the leading part of u(¢) has a similar form to that of the
free surface problem. We also mention the work of Benabidallah [5] where
the global existence of the solution was proved in the isothermal case under
the action of a large potential force such that the density tends to 0 as
|x| — o0.

The proof of (1.4) is similar to that of an analogous result on the half
space problem investigated in [15]. It is based on the H* a priori estimate with
time-weight function by the energy method [13, 15, 21, 24] and the decay
estimates for the linearized semigroup [10, 11]. There are, however, several
aspects different from the half space problem, especially in low-dimensional
cases. One thing is that the decay rate of the linearized semigroup is not so
fast in the case n = 2,3. Therefore, for these cases, a more detailed treatment
of the nonlinearity is needed.

The paper is organized as follows. In Section 2 we state our main results
concerning the large time behavior. The proof of the main results is given in
Section 3. We first show the asymptotic behavior (1.4) for p =2. We then
investigate the asymptotic behavior in L* space by combining the linearized
analysis and the decay estimate of the H® norm. We finally study the
asymptotic behavior in L' space. In the Appendix we give a proof of the
estimates for the solutions of the Stokes problem which are used in the proof of
the energy estimates.

2. Main result

We first introduce some notation. For 1 < p < oo we denote by L” the
usual Lebesgue space on @ and its norm is denoted by || -||,. The L? inner
product will be denoted by (-,-),. Let / be a nonnegative integer. The
symbol W’? denotes the /-th order L” Sobolev space on Q with norm
Il llyrr- When p=2, the space W’? is denoted by H’ and its norm is
denoted by |- |;.. Cf stands for the set of all C’ functions which have
compact support in Q. We denote by H/} the completion of C} in H'. The
dual space of H{ is denoted by H~!.

We often write x € Q as x = (x',x,), x’ = (x1,...,%,.1) € R""!. Partial
derivatives of a function u in x, x’, x, and ¢ are denoted by 0.u, d,u, 0y,u and
O.u, respectively. We also write higher order partial derivatives of u in x as
Fu = (0%u; |of = k).
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We next rewrite problem (1.1)-(1.3). We set ¢ = p —p,. Then problem

(1.1)—(1.3) is reduced to finding u = (¢,v) that satisfies

(2.1) 0p+v-Vo+pdivv=0,

(2.2) p(Ow +v-Vv) — pdv — (p+ )V div o+ P'(p)Vé =0,
(2.3) U|x,,:0,a =0; ul,_ = uo,

where p = ¢+ p, and

Uy = (¢0700)7 Po = po —

Here (1.1) is used to obtain (2.2).
In the following we set
n
S0 = |:§:| + 1

Here and in what follows [¢] denotes the greatest integer less than or equal to

q.
For a solution of (2.1)—(2.3) we define some quantities. Let u = (¢,v) be
a solution of (2.1)—(2.3). We define E?(¢) and D?(¢) by

12
ES(1) = ( sup (1 4+ 1) {|[$(2)]2 + |[v<r>]|§})

0<z<t

and
1/2

t
(J (1+ r)2r|||Dv||édr> for & =0,
Do) =4

t 1/2
(L(l (IR, + |||Dv||i}dr) for o> 1.

Here and in what follows we denote

o) 1/2
|—<Z|I5’l// IIan,> :

o (D], for o =0,
(W @)]l; + 12 (0)];-) ' for o= 1.

We will look for the solution wue ﬂly/ 2]C [0,00); H=%)  satisfying
ES(1)* 4+ Dy(1)* < oo for all 1> 0 with s> s.

Before stating our main results we mention the compatibility condition.
Since we consider strong solutions, we need to require the compatibility
condition for the initial value uy = (¢, v9), which is formulated as follows.

|||DW(I)|IIG={
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Let u = (¢,v) be a smooth solution of (2.1)—(2.3). Then 6/u = (8/¢,0/v)
(j=1) is inductively determined by

dp=—v-VoI ' —pdive/ v — {0/ v-V]g+ [0/, p div]v}
and
oJv=—p {4/ "o+ P'(p)Vo] ' ¢} — p ' {[0] ", ploww + [0, P'(p)V]g}
—p~tol (pv- Vo).

Here Av = —pudv — (u+ ¢')V div v; and [C,D] = CD — DC is the commutator
of C and D.

From these relations we see that (d/¢,0/v)|,_, is inductively given by
(¢, v0) in the following way:

(a{¢7 azjv)‘t:() = (¢j7 vj)7

where

-1, .

. j—1 .

¢ = —vo -V — po div o — Z( / >{W Vs + ¢ divoil,
/=1

v = —py {Av_ + P'(po)Ve;_1}
-1

1
-’ (JZ ){qﬁ/v_/—/+W(¢0?¢1"“’¢f)¢f—‘—‘}

/=1
-1
+py Gio (¢g, V0, OxV0; Py s - - - ,¢j_1,1)],. Vi1, Ok, . ,axvj_1).

Here py= ¢y +p.; as(dy;d1,-..,¢,) is a certain polynomial in ¢,,...,d,;

By the boundary condition v|, _,,=0 in (2.3), we necessarily have

J —
/vl _9.» =0, and hence,

U./'|xn:0,11 =0.

Assume that (¢,v) is a solution of (2.1)—(2.3) in ﬂ,[zg] C([0,T); H)
for some T > 0. Then, from the above observation, we need the regularity
(), 07) e H"% for j=0,...,[s/2], which, indeed, follows from the fact that
(¢g,v0) € H* with s > sp. Furthermore, it is necessary to require that (¢, vo)
satisfies the §-th order compatibility condition:

-1
v € H| forjO,l,...,&[S2 }

We are ready to state our global existence result.
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THEOREM 2.1. Let s be an integer satisfying s> sy and assume that
P'(p,) > 0. Then there exists a positive number & such that if the initial
perturbation uy € H® satisfies ||uo| s < & and the $-th order compatibility condi-
) . . . 2 Y
tion, then there exists a unique global solution u(t) € ﬂj[i/o] C([0, 0); H*"%) of
problem (2.1)—(2.3), which satisfies

E3(1)* + Dy(1)* < Clluo||7.
Sor all t>0. Furthermore, it holds that lim,_ . |lu(z)| ., = 0.

The proof of Theorem 2.1 is similar to that of analogous results in [13,
24]. It is proved by a combination of the local existence and the a priori
energy estimate. The local existence can be proved by applying the local
solvability result in [12]. The a priori energy estimate can be obtained by the
same energy method as in [13, 24]. The decay of the L™ norm can also be
proved in a similar manner as in [13]. We omit the details. (See Lemma 3.5
below for the energy estimate.)

As for the asymptotic behavior of the solution, we have the following
result.

THEOREM 2.2. Let s be an integer satisfying s> sy+2 when n >4,
s>80+3 when n=3 and s> sy+4 when n=2. Assume that P'(p,) > 0.
In addition to the assumption on uy in Theorem 2.1, assume also that uy belongs
to HSN (W' x WU, Then if ug is sufficiently small, the solution u(t) of
problem (2.1)—(2.3) satisfies

u(r)]], = O (=D/20=1/p)y,
loxu(o), = O(r~((=0/20=1/p)=1/2 1y (/2 (1=2p).
and
lu() — O (0)[|, = O =212 (1))

for any 1<p<oo as t— oo. Here (1—%) :max{l—%ﬁ}; u® =

(¢ (x",1),0) and ¢ (x',1) is a function satisfying "

1

o —xd'p® =0, ¢ =~ L (Po(x',xn) = p. )b,

where k = T;}V;, v=u/p,, y>=P'(p,) and A’ = 6%1 +- aim; and L(t) =1

when n > 3; and L(t) =log(1 +t) when n=2.

REMARK 2.3. (i) As is well known, [« (7)||, decays exactly in the order
~((=1)/2)(1=1/p)  We thus see that the decay estimate for u(¢) in Theorem 2.2 is
optimal.
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(i) The regularity assumption on u, can be relaxed depending on p. See
Theorems 3.4, 3.7, 3.13-3.15 and 3.17 below.

Theorem 2.2 will be proved in the next section.

3. Proof of Theorem 2.2

In this section we prove the asymptotic behavior described in Theorem
2.2. The proof is given by combining the weighted energy estimate (Lemma
3.5) and the estimates for the linearized semigroup (Lemmas 3.1 and 3.2) which
were obtained in [10, 11].

We first transform the unknown v into m = pv. Then (2.1)-(2.3) is
written as

01+ divm = 0,

mem

dm + div( ) +VP(p) =ud (%) + (u+p)V div (%) ;

m|x,,:o,u =0; ¢|z:0 = ¢O(x)v m|r:0 = I’I’lo(x),
where my = pyvg with py = ¢y + p,. We rewrite this problem as
(3.1) dw + Lw = div A,

(3.2) mlag = 0; Wli—o = Wo,

where w:(¢), 14/0:(¢0> and
m my

0 div . 0
L = e/Vl ==
(y2\7 —vd — W div)’ ((J‘Gk)g.;,m)

with 2 = P'(p,), v=yp/p., v=(u+1')/p, and

1
— O §* Lu — 0)P"(¢0 + p*)dO —

m;my
p+p.

Here the j-th component of div .4 is given by >, 0y, Nk.

In view of the H*® energy bound in Theorem 2.1, it suffices to prove
Theorem 2.2 with u(z) replaced by w(z).

In [10] we showed that the operator —L with domain D(L)=
WLr(Q) x [W(Q)N W, '(Q)] generates an analytic semigroup #%(7) on
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Whr(Q) x L"(Q) (1 <r< o) and established the estimates of #(t) for
0 <t <2 stated in Lemma 3.1 below.

In the following we will denote by Q the (n+ 1) x (n + 1)-diagonal matrix
diag(0,1,...,1). Note that

-(2) e (2)

LemMA 3.1. Let £ =0,1. Then there hold the estimates

0% (ywol|, < CE="*|wollyrrep s l<r<oo,
||a£@/(l)Won < Cli(liﬂ)||W()HH[n/zH]wa[n/zH/
and
Hai%([)WOHp = Ct7//2||WOHW’“-/’>< Wi p=1, 0,
for 0 <t <2 with some constant 0 < ¢ < 1, provided that wy belongs to the
Sobolev spaces indicated on the right-hand side of each inequality above.
Furthermore, if Qwol, o, =0, then

||ax%(t)w0\|l < C”M/OHWZ*IXWI’I
holds for 0 <1< 2.

As for the large time behavior of #(t), we showed the following result in
[11].

LEmMMA 3.2. Let 1 <r< oo and let U(t) be the semigroup generated by
—L.  Suppose that wy = (¢y,mg) € L'(Q) N [W7(Q) x L"(Q)]. Then the solu-
tion w(t) = U(t)wy of problem (3.1)—(3.2) is decomposed as

U (1w = U0 ()ywo + U™ (1)wy,

where each term on the right-hand side has the following properties.
(i) %O (t)woy is written in the form

w0 (Hywo = WO (1) wo + 2 (1)w.

) g0 1) . Oy gy i on i
Here W (t)wy = 0 ;and ¢ (x',t) is a function independent of x,

and satisfies the following heat equation on R"!':

/ L[ /
0,00 — x40 =0, 0| = EL do (X', xn)dxy,

where Kk = al’zvz and A" = (')il +-+ ﬁiil. WO r) satisfies W' (1)Qwy =0,
and, furthermore, for any 1 < p < oo and j,/ =0,1, there exists a positive

constant C such that
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167 aLw ) (Bywol|, < Cor DRI g

The function 9?(0)(1)\4/0 satisfies the following estimate. For any 1 < p <
and j, ¢ = 0,1, there exists a positive constant C such that

||6f6§@(0>(t)1v0||p < C,—((n—l)/2)(1—1/11)—1/2—J‘||W0||1
holds for t > 1. Furthermore, it holds that
10229 (1) Qwol|,, < Ce~ = DDUD= | Gy |

and
12 ()]0 Qw] ||, < Crr=DRA=RZ12| Gy

(ii) There exists a positive constant ¢ such that U™ (t)wqy satisfies
0702 ) (tywo ||, < Cewollyprrnyes  Jil =0,1,
for all t > 1. Furthermore, the following estimates
10520 ()woll.,, < Ce™|[woll gwrarsrer ey /=0,1,
1oz = (tywoll, < Ce™|lwollyrsrmxwess P =1,00,4=0,1,

hold for all t > 1, provided that wq belongs to the Sobolev spaces on the right of
the above inequalities.

REMARK. Although the estimates of the time derivative were not given in
[10, 11], it is easy to prove these estimates by tracing the proof in [10, 11].

We first prove the L?> decay estimates (Theorem 3.4) and then the L7
estimates for p = co (Theorems 3.7, 3.13 and 3.14) and p = 1 (Theorems 3.15
and 3.17). The L? estimates for general p can then be obtained by inter-
polation. To prove the L? estimates for p = oo and p = 1, we will use the L?
decay estimates and the H® energy estimate with a time-weight function.

We define Mz(k)(t) and M(t) by
M (1) = sup (14 0)" VA2 k(1))

0<r<t
0 1
M(1) = My (1) + M ().
To obtain the decay estimates for L?> norm we use the following

LemMA 3.3. Let s>so+ 1 and assume that |uoll, <é&. Then the fol-
lowing inequalities hold.

(i) |div A7, < C(1+ o)~ "V ES () 2 M (1) + ES(0M (1)} (n = 3).
(it) [div A7, < C(1+ 0 "2 010,002 M (0)F + Eg()M(1)} (n=2).

(i) |div A7), < C(1+6) " VAVZES (O M(1) (n > 4).
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(iv) [div Al < C(4 )" VE2EES (0 M ()Y + E()M (1)} (n=3),
(v) ldiv ¥l < (1t AR ) M 1 ESOM(D)} (1 =2).
(vi) Set ) (th« ), = 1,2, with /V(l —V0sy, (ﬁz ) — Opv div ((ﬁ;) and

il
J‘/ﬂiz)f ke — /V . Then

Jk
[/l < €+ =DM (),
[div 4@, < C(1+ 0" 220 ()2,

Proor. The inequalities in Lemma 3.3 follow by a direct application of
the Holder, Poincaré and Gagliardo-Nirenberg-Sobolev inequalities to each term
of div.A4" except ||J||, (p=1,2) for n=2,3 with J = —V%Am — ﬁ%V div m.
We here estimate it for n =2. The case n =3 can be treated similarly.

We write m = pv = ¢v+ p,v. Then

|03m| < C{|030] + |$03o] + |0xg0xv] + |03¢0]},

and whence,
11y < C{llgazelly + 19?050l + llgaxpdsull, + llgazgull;}.
Let wus estimate each term on the right-hand side. Since J,v=
d.m/p — 0x¢m/p?, we have
00l < C(1+ )|,

Therefore, by the interpolation inequality: [0%v|, < C||d, v||2/3||6xv||lH/f,
have

2/3 1/3 2/3 1/3
pa20ll, < Cllglllovolly 100l < Cligllsllowwly o]l
< C(1 4 1) 4| owl|}3 M (1)

Similarly, we have ||¢*02v]|, < C(1+1)~ 3/4||6sz||1/3 (1)*. The remaining
terms can be estimated by using the Holder and Poincaré inequalities, and,
consequently, we obtain

11 < €1+ 1) {lloxell 3 M(0)°7 + Eg()) M (1)}
We next consider ||J||,. We decompose ¢ as

b=t F=g| s,

Observe that ¢ does not depend on x,, namely, ¢ = #(x’) (x’ € R) (Recall that
n=2.) Therefore, applying the Gagliardo-Nirenberg inequality for ¢ = ¢(x’)
(x" eR), we have

I9ll., < cwWﬂw¢W”<amwwamW.
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As for ¢,, since fé’ ¢, dx, =0 for all (x',r), the Poincaré inequality gives

9111, < Cll0x, 811, < Clloxgll,-
It then follows that

T T 1/2 1/2 1/2 1/2
1602mly < |4, 102mll, < ClIBl5 > 0xglly 1 0xmlly > ([ 0xm] )3

< C(1+0)"Ej(0)"* M(1)*?

and
Ig103mll, < 41 1ls103mlly < Cllo [l l10xmll 2

< C(1+ 1) *E ()M (1),

from which the desired inequality for ||J||, is obtained. This completes the
proof.

In the following we will denote
&o = [lwoll g« + [Pwoll;-

THEOREM 3.4. Let s>sy+ 1. Assume that woe H'NL'. Then there
exists a positive number & such that

(1) lotw(n)]l, < C(L+ 0"V Rgy 7 =01,
for all t =0, provided that &y < . Furthermore, it holds

(i) hw(6) = u® (D), < C(1 4 1) " D12,
Here u') (1) is the function defined in Theorem 2.2.

ProoF. To prove (i) we derive a uniform estimate for M(z). By The-
orem 2.1, we know that ||w(?)| ;1 < Cé&y for all +>0. So, it suffices to
estimate M (¢) for ¢ > 2.

We write w(f) as

t—1 t

U(t — 1) div A (7)dr + J U(t — 1) div AN (t)dt

w(t) = U (1)wo +J -

0
= 10([) + Il(l) + L(1).
We note that

0

div A (1) = < div 1 (T)> = Q div (1),

and, therefore, %% div 4" () = 2% div #(1). By Lemma 3.2, we see that
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1021(1)||, < C(1 + 1) "D/~ R gy,

We next apply Lemmas 3.2 and 3.3 to estimate I;(¢)

When n > 3, we
have

t—1
1oL (), < CJ (1 41— 2) DA ED2 i (o)) dr
0

—1
N CJ e~ =9\ div A (1) ||,d7
0

< C(1+ 1) " DARLES (VM (1) + ES(0)** M (1)**}

We here used the fact that div .4 = Q div A"
In case n =2, since s > sp + 1 =3, we similarly have

[CRAG]

for /£ =0,1.

SCJ:l(lﬂ—r)”“”“”(H 0) (0wl M(2)°F + E§(r) M (v))de
1+ 1) de(EY(0) P M (0P + Ey()M(1)).
0

By Hoélder’s inequality, we have

—1
J (141 —7) DR ) o) dr
0

1 5/6 , -1 1/6
< (J (1+1— T)*(6/5)(3/4+(/2)(1 + r)9/10dr) (J ||axu||i,3dr>

0 0
<C(1+ l)71/47//2D8(Z)1/3.

It then follows that

1020 ()]l < C(1+0) /S P{Dy(0) P M (1) + Es()M (1) + Ey(e)' > M (1)**}
for /=0,1.

As for L(¢), we apply Lemmas 3.1 and 3.3 to obtain
1032(1)11
t
< cJ (1 — )| div N (2)||,de
-1

< C(1+ o) "1 Es (M

() + ES(0** M) + E5 (1) P M (1)1}
for /=0,1.
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Since Ej(t) + D§(t) < Céy for all t >0 by Theorem 2.1, it follows from
the above estimates that if &, is sufficiently small, then

M(t) < C{éo+ 6 M (1) + 6 M) + &> M (1)},

We thus conclude M(¢) < Céy, provided that &, is sufficiently small. This
completes the proof of (i).
We next prove the estimate (ii). By Lemma 3.2, we have

1o(1) — O (2)], < C&(1 + 1)~ 1/412,

We already showed that ||1>(#)||, has the desired decay property. As for I,(?),
we write 4" = A1 + #® as in Lemma 3.3 (vi). It follows from Lemmas 3.2
and 3.3 (vi) that

t—1
(0], < JO (141 =) 2O, + |ldiv 4@ ()], )de

t—1
+ CJ e\ div A (7)||,d
0

< CE(1+ 1)~ V12 gy,
We thus obtain the estimate in (ii). This completes the proof.

We next establish L™ decay estimates. We first derive a decay estimate of
the H* norm, which will be also used to obtain the L' estimate for 0,w(z).

LemMMA 3.5. Under the assumption of Theorem 3.4, it holds
w(O)|| e < Co(1 + 1) "4 (log(1 + 1))/,

Proor. The proof is based on Theorem 3.4 and a weighted energy
estimate with a time-weight function. Let u = (¢,v) be a solution of (2.1)—
(2.3). Assume for simplicity that Ej(¢) < 1 for all z. One can then prove that
there exists a positive constant C independent of ¢ such that

(33) B0 +DN0) < c{nuomp T E()DS(1)?

t
L rDy(1) + rJ (1+ f)z"-‘||u||§df}.
0
The inequality (3.3) is proved in the same way as in the proof of [13,
Proposition 3.2] and [15, Propositions 11.2, 11.3], where the half space problem
was investigated. In fact, there are only two points to be remarked as
compared with the argument in [13, 15]. One is in the estimate of
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E°(1)* + D°(1)*.  Although we can estimate it as in [13], here we can also use
the Poincaré inequality. Let a(p) = /P'(p)/p. Then we see from (2.1)—(2.2)
that

(3.4) di(a(p)¢) +v-V(a(p)d) + pa(p) div v = —pa’(p)(div v)4,
(3.5) p(ew+0- Vo) + Ao+ V(P'(p)p) = P"(p)(V4)g.

Taking the L2 inner product of (3.4) and (3.5) with (1+1)*a(p)¢ and
(14 £)*v, respectively, and noting that

(pa(p) div v,a(p)$), = —(V(P'(p)¢), v),,
we have

(3.6) 5 [(L+ 07 (la(p)d(D)]3 + VP (D)D) + (L + ¥4 2u(0)]3

=r(1+ 0" (|la(p)p(0)|l5 + IVp v(1)I[3) + R(z),
where || 4'20]|3 = gl|Vo[)5 + (g + p')||div vlf3 and
R(t) = —(v-V(a(p)$), a(p)$), + (v,V(pa' (p)a(p)$*)), + (P"(p) (V). v),.

For the velocity v, we have the Poincaré inequality: ||v||, < C||d,v]|3. There-
fore, R(z) is estimated as

IRO| < C(L+ (1911810 1ol 10:01l, < CEG(0)]|0xull3-

This, together with (3.6), implies that E°(1)> + D°(¢)* is bounded by the right-
hand side of (3.3).

The second point is as follows. In deriving (3.3) we use regularity
estimates for solutions to the Stokes system. In the case of Q it is formulated
in the following way. Let (p,v) € H*'! x H**? be the solution of the Stokes
system

divo=f in Q
—udv+P'(p,)Vp=yg in Q
U|xn:0,a =0.
Then for any ke Z, k > 0, there exists a constant C > 0 such that
(3.7) 193 lly + 105 plly < CLf g + gl + 001133

Here the right-hand side of (3.7) is slightly different from the one for the half
space problem, but it does not affect the argument to obtain (3.3). For
completeness we will give a proof of (3.7) in the Appendix. The other part
of the proof is quite similar to the argument in [13, 15]. We omit the details.
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We continue the proof of Lemma 3.5. We see from (3.3) with r = 0 that
(3.8) E3()° + Di(1)” < Clluolly,

provided that ||ugl/;. < & for some small & > 0. Note that this is just the
energy estimate in Theorem 2.1. Since ||u||, < C||w||,, we see from (3.3) and
(3.8) that

¢ 1/2
£ < Cllnly + €] 1+ 07 wir)
0

provided that ||ug| . is sufficiently small. We now take r:”4—1 and apply
Theorem 3.4 to obtain

t

1/2
EX (1) < Cé (J (1+ r)ldr> < Cé&o(log(1 + 1)'?

0

with r =271, The desired estimate now follows since ||w(?)| ;. < Cllu(?)]| ..
This completes the proof.

Before proceeding further, we prepare a lemma to estimate the non-
linearity, which follows from [9, Lemma 3.3.1].

LemMma 3.6. Let F be a smooth function on R. Then

X (gl < CAU+ A1) U s llgllze + g lloo 1 )-

Proor. The inequality follows by a direct application of [9, Lemma 3.3.1],
when Q is the whole space. The desired inequality can then be obtained by
using the extension argument. This completes the proof.

We set

MO(1) = sup (1+1)"V2|w(7)

oo
THEOREM 3.7. Let s > 5o+ 1. Then there exists a positive number & such
that
Iw(®)l,, < Céo(1 + 1)~ "2,
provided that &) < &.

Proor. Since |w(?)|,, < CEj(t) < Céy by the Sobolev inequality, it
suffices to show Mgg)(l) < Céy for t > 2.

As in the proof of Theorem 3.4, we write w(t) = Iy(t) + I, (¢) + L(¢). By
Lemma 3.2 we have

o(D)]|,, < C&o(1 + 1)~ 1/2,
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Applying Lemmas 3.5 and 3.6, we see that
(3.9) [div A oo < Cllwll 1wl s
< CE(1+ 07" (log(1 4 )P MO (2).

This, together with Lemmas 3.2 and 3.3, implies that

—1
1L ()], < cj L+ 1—7) "2 D), + ||div 4O (0))de
0

t—1
+ CJ eI div A (2) || yy0-rdT
0

t—1
< C@%J (1+41—1) V21 4 )~ (=102712
0

t—1

+c@@0M;j()J e =91 4 1) 2D 1og(1 + 7)) de
0

< CEL(1+ 1)~ D212 (g

+ (1070 og(1+ 1) M P (1)}
As for L(¢), we see from Lemma 3.1 and (3.9) that

t
1B, < €| (=07 div o (0) 1o

t—1
t

ch%Mgg)(t)J (1= 1) 11 4 )30V log(1 + 1)) Vdr
t—1

< CE(1+ 1) log(1 + 1) P MO (1),

We thus conclude that if &) is sufficiently small, then Mg © () < C&. This
completes the proof.

To obtain the decay estimate for ||0,w(?)||,, we first show that ||0.w(7)]|.,
decays in the order r~"~1/2 We set

Mﬁé)(t) = sup (1 + T)(n_wznaxw(f)”m

0<t<t

PROPOSITION 3.8. Let s > 59+ 2. Then there exists a positive number &;
such that

l0aw()]],. < Co(1+1)" V72,

provided that &) < &3.



Compressible Navier-Stokes equation 111

Proor. Since s > 59+ 2, we see from Lemmas 3.5 and 3.6 that
[div A || o0 < ClIwllo W] s
< Céo(1+ 1) (log(1+ 1) MO ().

Similarly to the proof of Theorem 3.7, we can obtain the desired estimate. We
omit the details. This completes the proof.

To prove |[0.w(2)]l,, = O(r"=D2=12L(1)/2) we next derive a decay
estimate for [02m(1)|,. We set
MO (1) = sup (140" V2L 2 0w (D)), + [93m(D)],)-
0<t<t

Based on the decay estimates obtained above, it is now straightforward to
obtain the following estimates for the nonlinearity.

LemMmA 39. Let s>s0+2. Assume that &y <e3. Then the following
inequalities hold.
(i) 10, div A, < CE1 + MDD (1)} (1 + o)~V 12012,
(i) [0y div ||, < C&(1 + )~ D412 )12,

ProOPOSITION 3.10. Let s > 59+ 2. Then there exists a positive number &,
such that

owd)|, + [|[2m(D)]|, < C&E(1 + 1 ~(=D/A=12 (4 1/2,
2 X 2
provided that &) < &.

PrOOF. Since |[|6,w(2)|l, + ||02m(1)|l, < Ej(t) < C&y for all t>0, we
may assume that ¢>2. As in the proof of Theorem 3.4, we write
w(t) =Io(t) + L(t) + L(f). By Lemma 3.2 we have

10,4o(2)|, < C&pr = 1/4-172,

Since

t—1

o0 (t) =a(1) div /(- 1) +J U (t — 7) div A (1)dx,
0

we see from Lemmas 3.2 and 3.3 that
-1

o4, (1), < C||div A (t = 1)||, + CJO (14— 1)~ " V42 div 47(2)| dx

t—1
+ cJ ==\ div A(2)||,de
0

< CEY(1 + 1)~ /A2,
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By integration by parts, we have

t
0L (1) = J U(t —1)0, div N (7)d7.
-1

Applying Lemmas 3.1 and 3.9, we then find that

t
mwm£4|mmwwwr

t—1

t
< Céo{l +M(2)(Z)}J (1+7) V2L Pae
—1
< Céo{1+ MO} (1 + VL),
We thus obtain
l6w(e)]l, < C&{1 + M<2>(t)}(l + t)_(”_l)/4‘1/2L(t)1/2.

We next estimate |0, dym(t)|,. In view of the proof of Lemma 3.2 ([10,
11]), one can see that

(3.10) 1040, (H)woll, < C(1 + 6)" " D4 ol
and
(3.11) 1050 ™) (£)woll, < Ce™||dxwoll g1 p2-

We see from (3.10) and (3.11) that
Hax/axlo(t)nz < C(g@o(l + t)f(nfl)/471/2'

By (3.10), (3.11) and Lemma 3.9, we have

t—1

[0 0l (1)l < CJ (14— "V N div (@) d
0

t—1
L J e =0, div A (2)[|,dT
0

t—1
< C@“’oj (141 — ) DA )= D/A=12 g,
0

1
+ C@@OJ e*"”*f)(l + T)*(n*1>/471/2L(T)1/2dT
0

< C&(1 + 1) VAR L)1,

Since ¢, commutes with %(t), we similarly obtain
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t
0wty = €| (=0 Py div 4 ()]ads
t—1

< C@%J (=) P+ L) Par
t—1

We thus obtain
0w 0sw(D)]l, < CE(1 4 1)~V 12,
It remains to estimate ||6§nm(t)||2. From equation (3.1) we find that
v&f,nm’ =0’ —vA'm' — V' divm 4+ V' — (div N,
(v+ ﬁ)&inm” =om" —vA'm" —vo, V' -m' + 90,4 — (div A")",
where V' = (d,,,...,0y,,) and div A" = ((div A"), (div A#)"). Tt follows that
102 m(1)]ly < CLlam(O)l, + 0w tsm(®)]l + |24l + [div A (D)]],}
< CE1+ MP (1)} (1 + o) 2L )2,

Therefore, we arrive at M) (f) < C&{1 + M (f)}. The desired inequality
now follows if & is assumed to be sufficiently small. This completes the proof.

The following inequalities immediately follow from Proposition 3.10.

LEmMMA 3.11. Let s > 5o +2 and assume that &) < ¢4. Then
[div )|, < C&o(1 + 1)~ D22 ()12,

To estimate ||0u(f)||,, we also use the following inequality.

e

LEMMA 3.12.  Assume that s > sy +2 when n>4, s >so+ 3 when n=3
and s > so +4 when n=2. Assume also that &y < &s. Then

[div A ||y < CELL + MDY + 1) D212 L)1,
ProoF. We write div ./ as
div A" = {W - (V(Fi(¢))m) + W - (F1(¢)Vm)
+W(V(Fi(¢)) -m) + W (Fi(4) divm)}

L V(R + B($)VH) +{/%<V¢~m>m %m.vm}

=1+ + Js
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where Fj(¢), j=1,2, are some smooth functions. By Lemma 3.6, we see
that

Il 0 < CLIGN 10wl ot + 10xmll s (4]l ooz + 105 oo [lml] o1 3-

We here used the inequality: |[m],, < C||dwm|,, which follows from
m

—0.a =0
Similarly we can obtain

120l zs0 < CLNBI o 103l 0 + (10360

3l rs0 < CllOW[|o W] o

Xn

|l 01

oo

o0

Consequently, we have

(3.12) (Idiv A7) sy < C{||w

oo 10l oo + 10l rsgr) + (10wl 19l 02}

Let us now consider the case n >4. Since 21 > 3> 1 for n > 4, we see
from (3.12), Lemma 3.5 and Theorem 3.7 that

div A || o0 < CEAM (1) + MD (1)} (1 + 1) V2712,

which yields the desired inequality for n > 4.
We next consider the case n = 3. Since 5o =2 when n = 3, we see from
Theorem 3.4 and Lemma 3.5 that

104Dl < ClawbON 043
< C&(1+ 1) (log(1 + 1) < C&(1 + 1)1/,
We also obtain, by Theorem 3.4, Lemma 3.5 and Proposition 3.10,
[0.m ()| g < |0m(2)]] + |07m(2) | 2
< [[0am(@)ll, + Cllzm()|e3m@)||73
< CE{(1+ 1)+ (1 + 1) (log(1 + 1) '/*}
< C&(1+1) V2

This, together with (3.12), implies the desired inequality for n = 3 as in the case
n=>4.

We finally consider the case » = 2. In this case we also have sy = 2 but
w(t)|l s < Céo(1 + 1) "*(log(1 +1))"/?.  Therefore,

10:(0)] 0 < Cllowd@) 1y 10xp(0)]| 17 < Co(1 + 1)~/ (log(1 + 1)) '/*

and
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103 (1)|| oot < [|0xm(2)]]5 + 105m(8)]] 2
< [|0xm(D)l, + Cll22m(0) ||y | 02m(0) ||}
< CE{(1+ 07 + (140 (log(1 + 1)) /*}

< C&E(1+ 1) (log(1 + 1))/

This, together with (3.12), implies the desired inequality for n = 2 as in the case
n > 4. This completes the proof.

We now establish the estimate for ||0,w(¢)

w-

THEOREM 3.13.  Assume that s > sy +2 when n >4, s > so +3 when n =13
and s > so +4 when n=2. Then there exists a positive number es such that

[000(0) . < Co(1 + 1) V2L 2,

provided that & < &s.

ProoF. As in the proof of Theorem 3.4, we write w(f)=
In(t) + I)(¢) + I(¢). By Lemma 3.2, we have

10:Do(1)]|,, < Céo(1 + 1)~ =D/2172,

We also see from Lemmas 3.2, 3.11 and 3.12 that

t—1

o)l < cJ (141 =)V div A7 (2 e
0

t—1
+ CJ eI\ div A (1) || oo d
0

t—1
< C(S”OJ (141 —1) =02 g gy (=012 )12,
0

t—1
+ Céo{l +M(1)(1)}J u=(1 4 1)V 2 g

0
0

< CE&{1+ MV ()Y (1 4 1)~V L2,

o0

As for L(t), we apply Lemmas 3.1 and 3.12 to obtain

t

ot < €[ (=070 div (2

t—1

t
< Cé{1 + ng(z)}J (t—1) (1 4 o) DR L) 2y
t—1

< CE{1+ MV ()Y + 1) D2 L)1
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We thus conclude that Mgg)(l) < Céy(1 +M£é>(t)), from which the desired
inequality follows if & is sufficiently small. This completes the proof.

We next prove the asymptotic behavior in L* space.
THEOREM 3.14. Under the same assumption of Theorem 3.13, it holds

Iw(t) — u® (1), < CE(1 + 1)~ " D212 L.

e

Proor. We write A" = 4D + 4"?) as in Lemma 3.3 (vi). We see from
(3.12), Lemma 3.5 and Theorems 3.7 and 3.13 that

(3.13) [div A7 || o1 < CE(1 4 1)~ 2V2L(0) 12,

This, together with Lemmas 3.2 and 3.3, implies that

t—1

1L (2], < CL L+t —7) 22O )| + ||div 4P (7)) de

t—1
+ cJ eI\ div A () || oot
0

t—1
< C(%J (1 4+ 1 — ) 0D gy tmn2-12g,
0

t—1
+Céy J =01 4 1)V ()12,
0

< C&(1+ 1)~ V212,
Also, by Lemma 3.1 and (3.13), we have

t
L@, < CJ (=0 INdiv A (@) |y 1 dT

t—1
-1
< C&)J (= 1) 91 4 o) D22 (12
0
< CEY(1 4 1) DR n12,
This completes the proof.
We finally consider the estimates in L! norm.

THEOREM 3.15. In addition to the assumption of Theorem 3.4, assume also
that wy e W1 x LY. Then the following estimates hold.

(1) Iw()lly < C{o + lIwollpr1.p1}-
(i) hw(6) = (@)l < {0+ Iwoll i} + 07 2L(2).
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Proor. By Lemmas 3.1 and 3.3, we have

t

(@Il < Cliwoll i + CL [div A7 (1) d7
< C{&o + [wollyr1.p1}

for 0 <r<2.
Assume that 7>2. As in the proof of Theorem 3.4, we write
w(t) = Ip(t) + I,(¢t) + L(¢). By Lemma 3.2 we have

Ho(Oly < C{&o + lwollyrcri}-
By Lemmas 3.2 and 3.3, we have

t—1
1@l < CJ (14— 2D, + ldiv 4P (@), )de
0

t—1
N CJ e,c(rfr)Hdiv JV(T)HIdT
0

t—1

< Céaoj (1 —&—[—1)71/2(1 +T)*(”*1)/2*1/2d1,
0
t—1
+ c@@oj (1 4 1) (0w (D)l + Ve
0

t—1

< C@%{(l +10)72L(1) +J

e =I(1 4 7)3/4||axu(f)|g§df}.
0

As for the last term on the right, we see from Holder’s inequality that
—1
J e (14 1) 0w} de < C(1+ 0Dy ().
0
We thus obtain
LD, < Céo(1 + 1)~ 2L(2).

Similarly,

t

!
|div A" (7)), d7 < C&)J (1+7) 4 (||0x0(2)]|13 + 1)dz
t—1 t—1

TAGIE cj
< C&(1+ 1),

We thus obtain the inequality (i).
Furthermore, by Lemma 3.2, we have
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o(2) = u® (@)l < C{E + Iwoll s} + 0712

Combining this with the estimates for ||7;(¢)||; and ||>(¢)||, obtained above, we
arrive at the inequality (ii). This completes the proof.

To estimate ||0,w(¢)||; we make use of the following inequality.

LEmMA 3.16. Assume that s> so+1 when n>3 and s> sy+ 2 when
n=2.Assume also that & < ¢e. Then

[div A7) it < CE(1 + 1)~ "V (1og(1 + 1)) /2.
Proor. By Lemma 3.3, we have
[div A7), < C&(1 + 1)~ DA12,
Here we used the fact that ||0.v(?)| s < Ej(t) < Céy when n=2 since
s>850+2=4 for n=2.
A direct computation, together with Lemma 3.5, yields the inequality
[0y div 47|, < C&(1 + 1) "D 2(10g(1 + 1)1/,
We omit the details. This completes the proof.

We now establish the decay estimate for ||d,w(?)]|;.

THeOREM 3.17. Assume that s > so+ 1 when n>3 and s > so +2 when
n=2 Assume also that woe H*N (W' x WL, Then

loaw(dlly < €80+ Iwoll o b1+,
provided that &) < ¢;.

Proor. We first note that mol, _, , = 0 since u satisfies the compatibility
condition. Therefore, for 0 < ¢ <2, we see from Lemmas 3.1 and 3.16 that

t
10xw(@)]ly < Clwoll i + CJ (t = 1) |div A (@) . dT
0

t

< CHWOHWMXWH + C(gaoj (t, T)*I/Zdl_
0

< C{&o + |woll a1y -
We next consider the estimate for > 2. As in the proof of Theorem 3.4,
we write w(t) = Ip(t) + I;(¢t) + L(¢). By Lemma 3.2, we have
10co(D)ly < C{&0 + Iwoll i }(1+ )72,

We also see from Lemmas 3.2 and 3.16 that
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—1
louh (1), < cj (141 — )" |div 4 (1)) dx
0

-1
+ CJ e U\ div A (2)|| 1 dT
0

t—1
< Cgoj (1 +f— T)il(l + _L_)*(nfl)/471/2(10g(1 + ‘L'))l/zd‘[
0

< C&(1+ 1)1,
and, by Lemmas 3.1 and 3.16,

t
lob (@), < CJ (1 — ) V||div A (D) 1 de

t—1
t
< Cﬁoj (1=0) 721+ 0 R log(1 + 1)) de
t—1

< C&(1+1)712

We thus obtain the desired estimate. This completes the proof.

Appendix: Proof of (3.7)

In this section we give a proof of the estimate (3.7) for the Stokes system.
The argument is similar to that in the proof of [25, Theorem III.1.5.1].
We begin with

Lemma A.l. Let 2 =R" or 2 =R’ = {x = (X', x,);x, > 0} and let k be
a nonnegative integer. Assume that ve H"*(2), p e H*'(2) satisfy

divo=f in 9,
—pdv+P'(p)Vp=g in 2,
v=0 on {x, =0} in case Z =R

.
Then

10520l 20y + 105 Pll 20y < CLUOT f Il 120 + 1050 120 }-

ProoOF. See, e.g., [6].
In what follows we assume that v e H**(Q), p e H**(Q) satisfy

dive=f in Q,
(A.1) —udv+P'(p,)Vp=g in Q,

v=0 on {x, =0,a}.
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We take a family of open cubes {Q;}”, that has the properties: (i)
Qc Uj: 0;, (i) Q;=02NQ; # &, (iii) Q;’s are congruent with each other,
and (iv) {Q;}Z, has the finite intersection property.

LEMMA A2, Set p; = ‘Q‘fg p(x)dx. Then it holds
P = Pill o) < CLllgll o) + 100l 20 }-
Here C is a positive constant independent of j.
ProOF. We see from (A.1) that
—udv+P'(p)V(p—p;)=9g  ae x.
For any ¢ e C;°(£;), we have
P()V(p = 5)s0) 1200y = 100:0) 200 + (V0. V0) 20|
< 9l 2@ 191l 2y + Vol 20 VOl 20
< C{llgll 2@ + VUl 2@ HIVEll 20

Here we used the Poincaré inequality: |[l¢l;2o) < Cl[Vol2q,. We thus
obtain

V(P = p)lla-119) < Clllgll2ig) + 11050l 120 }-

Since |[p = pjll 120 < ClIV(P - p])||H 1) (See e.g., [25, Lemma II.1.5.4]), we
have

P = Djll o) = Clll9ll 2@ + 100l 120 }-
This completes the proof.

In the following we take a family of smooth functions { xj};il that satisfies
supp z; = Oy and 7, 17 =

Proor OF (3.7). We set v; = y;v and p; = y;(p — p;). Then we see from
(A.1) that

{ div vy, = Fj,
—pudv; + P'(p,)Vp; = Gj.

Here
Fy=yx/f+v-Vy,
G =19 = 2Vy; - Vo —udyo+ Vi (p = py).

By Lemma A.l we have
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(A.2) 10301112 + 1911, < CLIIF 15 + 1G53
By Lemma A.2 we have
(A3) 1Gill, < CHllgll 2@y + 1ol + 12 = Pill 2o
< {9l 2@y + ol @) -
We also have
(A4) 10xFjlly < CL a1 + 10l @)}
Therefore, we see from (A.2)-(A.4) that
(A.5) 10301112 + 101l < CUI a1 @) + 19112y + 101 @) }-
Furthermore, since
X/aiv = aivj + [va ai]va
Xjaxp = Xjax(p - ﬁ/) = 0xpj + [va 0x)(p — ﬁj)7
we see that
(A.6) ;030> < N1030illy + Clloll1a
and, by Lemma A.2,
(A.7)

%;0x2ll, = l%;0x(p — D))l
< l[0xpill> + C{llgll 2@ + 110l 20 }-

It then follows from (A.5)—(A.7) that

020]l3 + llwplls =

J=1

2 2
20wl + ol

-
112 2 2
< CY Aoy + l9llz20y + 01510y}
=1

2 2
< C{IA W+ Nlgls + ol )

< C{IA N + llgll3 + llaxell3}-

Here we used the Poincaré inequality for v. The estimate (3.7) is thus obtained
for £k =0.

The case kK > 1 can be shown by induction on k. We have already seen
that (3.7) holds for k =0. Suppose that (3.7) holds for all k </. We will
prove (3.7) to hold for k=/+1. We apply Lemma A.l to obtain
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(A.8) 107201l + 1107 2pill, < CLIO 2Bl + 105 G-
By Lemma A.2 we have
(A9) 107 Gilly < C{llgll ey + N0l + 12 = Bill oy}
< Clllgllgengy + 10l gengy) + 101 e o) }-
We also have
(A.10) 1072 Fll, < CU Mpraqgy + N0l eaay -
Therefore, we obtain
(A1) oyl + 105 2pill,
< Al Mugeagy) + 19llmegy + 1vllzeog) + 105l o)}
Since
Xj6£+31) = 6§+30j + [ 6§+3]v,

%0020 = 100 (p = 1) = 0 p + 15,00 (p - By)
we see that
(A.12) ;0% 0lly < CLIL P oilla + ol geaioy}
and, by Lemma A.2,
(A13) 0l < L0 2pilla + 10wl 00y + 1911220y + 105011220}
It then follows from (A.11)—(A.13) that

/ 2 / 2
15 0ll; + 1105 2ply

o0
/4312 / 2
=D Mo olls + lgor pll;
=1

0
2 2 2012 2 2
< C ) S Mgy + 19l + 1030150 + 1052150 + 0110t
J=1
2 2 2112 2 2
< I ey + 19lme @) + 105005 @) + 1001 @) + 10l 0)}
By the inductive assumption and the Poincaré inequality we obtain

43112 /12 112 2 2 2
1050l + 105 pllz < CU i) + gl @) + 10x0l3}-

Therefore, the estimate (3.7) holds for k =/ + 1. This completes the proof.
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