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Recursive Games with Infinitely Many Strategies
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In our previous paper [1] in which certain stochastic games were shown
to be strictly determined, we have first defined a dummy game which may be
considered a linearlization of stochastic games, and then by using the princi-
ple of contraction we have shown the existence of the principal value vector
thereof which turned out to be the value vector of the stochastic games. This
paper is a continuation of the one [1] just cited, and by the same method as
above we shall show that some recursive games (a recursive game is originat-
ed by H. Everett [2]) are strictly determined.

Throughout this paper we use the notations and some of the results which
were obtained in [1].

First we begin with the definition of recursive games. Suppose we are
given N positions 1, 2, ..., N. To each position k we consider a game

Iy = (Ars By grs Dirs i)

called a component game of the recursive game, which will be defined below.
Let Players 1 and 2 choose a pair (o, b) € 4, X B,. Then the transition pro-
babilities p.;(a, b) and the stop probabilities pso(a, b) are given. Here py(a, b)
denotes the probability with which the game /", moves to the next one I"; and
pro(a, b) denotes the probability with which the game stops at this position £.
Let %, (resp. B;) be a os-algebra of subsets of 4, (resp. B;) such that 2, (resp.
B,) contains one point set (a) for any « € 4 (resp. (b) for any b € B), and €, be
the smallest o-algebra of subsets of 4, % B, which contains the Cartesian pro-
duct A, x B;. We assume that py(a, b), pr(a, b) are bounded and €;-measura-
ble. The recursive game I is defined as the collection of all I";, pus, pro, &, =
1,2, ..., N, where we assume

(i) the pay-offs g:(a, b) are bounded and §,-measurable over A4, x B, for
every k, ‘
(i) payments can take place when and only when the game stops,
(iii) strategy spaces (4, 86%%), (4, 8?#) are precompact for every k,1=1,2, ...,
N,
and
(iv) the transition probabilities p.(a, b) are §,-measurable over A, x B, for
every k, I, and the stop probabilities p.o(a, b) are non-negative for every
k.

Now we shall define dummy games associated with I". Suppose Player 1
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(resp. Player 2) select mixed strategies #; (resp. v;) in each component game

I"; of the.recursive game. We consider the infinite game I, beginning with
I"x which has the expected value G,(4, ) of the gains of Player 1:

N
@ G (&, D) = gr pro(es ve) + Zpkzl (w5 ve) (g1,p1,0 (111, ”11))

+ Z Z Pri, (te, Vk)pz I, (//’11, Vi )(gzzpz o(#zz, Yy ))

l1=112=1

where

gipro (i, v2) = 3 S 4(a, B)pio(ay B)dpsy (a)dve ().

Bk Ak

The right hand series of (1) is absolutely convergent. For, let
lgr(a, b)| LM,

then we have
N
[Gr (L, D) | L M {pro(pse, ve) + Zpkzl(#k, vi)pr,o (s vi,)

+ Z Z pri, s o) puyt, (o, w1 ) Pryo (s v1,) + -3

l1=112=
Now using the relations
N .
I_lekl +pro=1,
we have
M {pro + Zpkzlpllo + - + Epkl Pl I, Pinlnts Plns,0)

L1islaseeesl

Z M {pro + EPM Piot -+ Epkz Pty Placitny = M.

lislaseesl

Namely the right hand series of (1) is absolutely convergent, and therefore
convergent. Now it is clear that G,(4, V) is a solution of the N equations in N
unknowns vy, vz, ---, vy:

N
(%3 =gkpko(Mk, vi) + lglpkz(#ka vy for k=1,2,..., N

N
Put hk (a3 ba T}) =gk ((Z, b)Pko ((Z, b) =+ Epkl ((Z, b)vb
where
D= (1)13 V25 =y vN)'

The game
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(Ak, Bk; hk(a, b: 'D), gfnka gbz), k= 13 2, Tty N
is called a dummy game, and denoted by 1'4(?).
The following lemmas shall be needed for later purpose.

Lemma 1. Let I'y=(4, B, K, D, ) and [;=(4, B, H, M, N) be two games.
If the strategy spaces (4, 8%) and (4, &%) are precompact, then (4, §¥¥) is
also precompact.

Proor. A space is precompact if and only if any sequence of A4 contains
a Cauchy subsequence. Then the statement of our lemma is obvious from
the inequality:

8 H(a, o) L 165 (a, d) + 287 (a, ') for any a,d € 4,
where
> IH(aa b)]9 PN |K((Z, b)"

As an immediate consequence of Lemma 1 we have

Lemma 2. Let the strategy spaces (4, §%) and (4, §7) be precompact.
Then the game (4, B, K-H, M, N) is strictly determined.

It is to be noticed that each dummy game I'¢(?) is strictly determined by
Lemma 2, and Lemma 2 in [1].

We shall consider the cases where there exists a positive number ¢ with
pro>c, k=1,2, ..., N (Case 1) or some p;,=0 (Case 2). In Case 2 we shall im-
pose further conditions which will be described below. We call Case 1 (resp.
Case 2) normal (resp. semi-normal). If all py, vanish identically, then the re-
cursive game is practically non-terminating, which amounts to meaningless.

It is our main purpose to prove that each J is strictly determined, i.e.

sup inf G, (4, ») = inf sup G,(4, V)
7 v v ©
in both cases 1 and 2.

Case 1. First we consider a principal value vector 3* of dummy games
@) (k=1, 2, ..., N). It is defined as follows:

vt=supin | [, b, 7 dm@an®) =intsu | | -,
o VE Mk

23
Bk Ak B Ak

where
N
hi(a, b, 7*) = gi(a, b)pro(a, b) + 12 pu, (@, b)v,  for every k.
1=1

The existence of 7* can be shown as follows:
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Consider the value transformation 7': ?°—#' defined by

ol = sup infg Shk(a, b, ) dp(@)dva(®) for k=1,2, ..., N.
1.7 k

B Ak

Define the norm of 7 by ||3]| = max |v;|. Then we have
: k

(2) | Tw — To|| = max |value of I'¢(@) — value of I'4(3)|

L max[sup |h(a, b, ®) — hi(a, b, 3)| ]
k ab

I

N
sup | >3 pu(a, b) (w; —v))|
ksasb I=1

N
Zsup | >3 pua, b)| max |w, — v
P !

<A —o)llw— 3.

Then by the principle of contraction, there exists a unique 7* which satisfies
T#»*=%*, the principal value vector #*.

Next we introduce the notion of ¢-optimal strategies of the dummy games,
€ being any non-negative number. Let #* denote the principal value vector
as before. For each k, any pair (#§, v§) € W, x N, is said to be e-optimal strate-
gies of Players 1 and 2 of the dummy game at the position k, when

hi (B v4s 9*) 2 0f — € for any v, € My,
and
By (pog, Di, 1'5*)év}f + € for any pu, € M,

In the case where e=0, e-optimal strategies are no more than optimal strate-
gies. Then we have

Lemma 3. Let 0Le< 1. Any complete set of e-optimal strategies of
Players 1 and 2 of dummy games ['¢(?*) are €/c-optimal strategies of the

original infinite game I°, for every k=1, 2, ..., N.

Proor. Denote by G,(i, p) the expected value of the gains of Player 1.
Putting

N
vy =gszo(/"1, ) + lglpul(/‘z, Vl)vlla =12, .., N,
we have
> > N £
G (&, V) — vy = 8rPkro (Bas vo) + Z:lpkzl (1t Vk)vz1 — U

N N
= Iy (g iy %) — Izlpkzl(ﬂ’k, Vk)”>ll<1 + 121 Pri, (e Vk)vz, — vy
1= 1=
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N
= Ry ey vy %) — vF + IE_lpkzl(Mk, ve) (v, —v%))

N
== Ty (o v, 0*) — 0f + IEkazl (s v2) (hr, (a5 21, %) — 0F)

N N
+ > lpkll(/"’ky v Py, (B, v1) (B, (B, w1y, 3%) — 0%,) + -

l1=11l2=
Consequently, since
hk(#k) V;, T)) - v:é €,

we have

G.(i, ) —viLe+e hz]i]lpkll +€ 11211:1 lélpkzlpllzz + -
ZLE€/c.
Similarly we can show that
Gy (5, D)2 vy — €/c,
and our lemma is proved.

Lemma 4. For any positive ¢, there exist e-optimal strategies of the dum-
my games.

Proor. Let € be any positive number. We put € =ec/2c+1. We divide
A, (resp. B,) into non-empty measurable subsets Az 1, Az, 2, -+, Ap,m, (resp. By,
B2, -y Bi n), Where A;; (resp. B ;) are smaller than € in diameter in the
metric 8" %79, Let ay = (ar1, ar2, > @tm;) (x€SD. Br = (br,1, bi,2, -+, br,n)) de-
note the finite subset of A, (resp. B:) where a;,; (resp. b; ;) is any point chosen
from A, ; (resp. B ;). Let M, (resp. N;) be the set of probability measures
concentrated on «; (resp. B:).  For any w e M, (resp. v € N;) we define g € M,
(resp. v € N;) as follows:

B (ar,:) = p(Ay,:) (resp. 5 (by,;) = v(By, 7).

Then we have

®) [, 5, 59 = a2, , 39| £33 S S | hu(a, b, )

"’ Akei Bhoj

— hp(ag,iy by, j, )| dpprdyy < €
If we denote by 7” the value transformation of
I'y = (A, By, hi(a, b, 7), M;, N}),
then it follows from (3) that

4) 7% — T'o*|| L€
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Let #'* be the principal value vector of I";* for k=1,2, ..., N. Then by (2) and
(4) we have
(7% = T34 £ (1 — ) | 7791 9% — T"73%|
@A —o) [o* — T
Z€ed—¢).
Consequently
e e A
L +e€Q—)+e€A =)+
=¢€'/c.

Since a;, and B, are finite there exists optimal strategies af, ¢ of the game
(Ak; By, hk(aa b, 'T/*)a gﬁ}’” g)’alla)

Therefore
(5) he(B, B, ) 20 * 2 0f — €/c,
and
(6) hi(, 55, 07%) Lop* Loy + € /c.

Then for any v € N;, by using the equation

N
b (i, v, B) = grpro(, v) + 121 Pkll(/"'ln Vi)V,

we have
(7) hk(lle) V, 7)*) = hk(ﬂei E) al*) + h’k(l_l‘e’ v — D) '?)*)
N
+ 12}1 (v>1k1 - U;T)szl (ﬂE> D)>

where
(8) ‘hk(lj‘a v— Da ﬁ*)l < E,)
and

N >k 73k 7
© | 33 @F, = 0i)pule, 9)| <€

On account of (5), (7), (8), and (9), we have

b (S, v, 1) 0¥ — € — €
0¥ — € fc— 2€

=vf —€.
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Similarly we can show that
hk(ﬂ’, 1769 ﬁ*)évt + €,
and our lemma is proved.

TueoreMm 1. If ppo>c >0, k=1, 2, ..., N, then the recursive game I' =

{I', k=1, 2, ..., N} is strictly determined, and the value of I, is equal to v},
the k-th component of the principal value vector of the associated dummy
games.

Proor. By Lemmas 3 and 4, we see that there exist e-optimal strategies

>

A€, 3¢ of I', for any positive €, that is,
G, V)>vf—e and Gp(4, V) Lof + €
Then

inf G, (j€, $) ok — €.

As € is any positive number, so we have

10) sup inf G, (4, V) > v},
“ v

Similarly we have

11 inf sup G.(4, V) Lv}.
v ®

On the other hand it is easy to see that

12) sgp irvlf G (4, ﬁ)éil:f sgp G (4, D).

Therefore the inequalities (10), (11), together with the inequality (12) impliy
vy = sEp i?f Gy, p) = irvlf sBp G, (&, D).

Thus the proof is completed.

Now we turn to

Case 2. We assume that there exist positive numbers c, ¢’ such that

3 po=0 and Slpu<d <l for i=1,2 ..k
=1
pioxc>0 for i=h+1,A+2, ..., N.

We shall show that Theorem 1 remains valid also when we assume (13) in-
stead of pro>c>0,k=1,2, ..., N. Let for any % we put

vi=value of I"%(®) for j=1,2,..., N,
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then by using (2) and (13) we have
¢ max |v; —w;| +max |, —w;| for j=1,2, ..., h,

(14) ]v; _w‘;lé{ 1=j=h <l
1—-omax |v,—w;| for j=hr+1,A+2, -, N.
h<l

Choose a positive number « in such a way that a«<1—¢ and define the norm
of o by
3] = max {a |v1], &|vzl, ---, @|va], lvas1l,s |ons2l], -, |ow]}-
Then by (14) we have
0" — @] = max {a|v] —wil, & |v; —ws|, -, a|v; —wy],

|9541 —W;¢+1|’ IU;/;+2 _wllﬂzla ey |va —wfvl}

£ max {ac’ max |v; —w;| + max |v; —w;|, (1 — c)max |v; —w; |}
1=j=h h<i h<l
Zmax( +a,1—c)|p— .

Consequently by the principle of contraction there exists a unique principal
value vector #* of dummy games /'¢(*) (k=1, 2, ..., N). Regarding e-optimal
strategies we have

Lemma 5. Any complete set of e-optimal strategies of Players 1 and 2
of dummy games I'¢(3*) is €(1+1/c)-optimal strategies of each original in-

finite game [7}.

Proor. Denote by G,.(4, ») the expected value of the gains of Player 1.
Putting

N
v =g1pio + l%‘;}p”‘vll, 1=1,2, ..., N,
where

pkO:Os k_—“l, 2> "'sh,

we have for k=1, 2, ..., h,

N
G (4, ) —vf = Izlpkzl(/bk, V)V, — Vg
<

= hy (ftpy V1, D) — VF

= h (b, vay %) — U + B (s vy D) — R (B 02y )
N
= hp(Ra, v, D*) — 0F + 12_1pk11(m, vr) (v, — v7)
N
= hy (g, vi, %) — vf + IZ_‘.lpu,(m, ve) (e v1,5 %) — 07,)

+ ;‘.;pkz,(#k, v iy, (s v1,) (hay (i, vr,, 3%) — 0%,) + -



Recursive Games with Infinitely Many Strategies 59

Consequently we have
G (4, V) —vy Le+ E%pkll + E%}%}pk“pllzz + ...

Let+et+rel—c)+ed—c)f+ ...

=¢e(1l+1/c).
And by Lemma 3 we have

Gr(&, V%) —vi <¢€/c
Lel+1/¢c) for k=h+1,h+2, ..., N.
Similarly we can show that
Gr(&5, ¥) > vy — €(1 + 1/0),

and our lemma is proved.
On account of Lemmas 4 and 5 we can reach the same conclusion as
heorem 1.
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