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1. Introduction. Let R, be the n dimensional Euclidean space and let
F, be the dual of R,. The elements of R, and 5, are sequences x=/(x1, %2, ---, %)
and £=(&, &, ..., &,) of real numbers. We put

D=y, Dy, D) with D=2 0 (—12
i Ox;
For convenience’ sake we use the notations:
X = (x,9 t)a x, = (xla X2y vy xﬂ—1>9 L= Xy,

5:(5/3 T)y E/:(Sla Eay ooy Sn—l), T=&,,
D, = (Dla DZ, Tt Dn~1>, D,=D,.

We denote by Z,_; the n—1 dimensional space consisting of elements &’.

Let @, & and Oy be the spaces of all C*-functions with compact supports,
all rapidly decreasing C~-functions and all slowly increasing C*-functions on
R, respectively. These spaces are provided with usual topologies of L.
Schwartz [4]. Let @ and &’ be the strong duals of & and & respectively
and let O/ be the space of all rapidly decreasing distributions. We shall
denote by 0y(&,_1) the space Oy considered on =, ;. By the partial Fourier
transform of T € &’ we understand the Fourier transform of 7 with respect
to the first n—1 variables which will be denoted by 7' (¢, ?).

For any A(¢") € Oy(E,_1), we define the operator A(D,,) on & as follows:
The partial Fourier transform of A(D,) T, T €<, is A(€) T(¢,¢). In this
paper we are concerned with the operator of the following form:

FD,,D)=D7r+ A(D) D7 '+ ... 4+ A(D,/)
with 4;E) € 0y(Er) (=1,2,..,m) and m>1.

J. Peetre observed in [2, 3] that the operator

n—1
D, — i1+ D)2
j=1
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leaves invariant for every element T of a subspace of &’ the infimum %; of
t-coordinates of points of its support. We shall show that if F(&',v) =0 has
only roots v whose imaginary parts are > c(a positive constant) then F(D,,,
D)) leaves kr invariant for every T € &’ (Theorem 1), and that in the general
case F(D,., D,) leaves kr invariant for every T € &’ such that k> — co (Theorem
2). It is the purpose of this paper to give elementary proofs of these facts.

2. For any T € D’ we denote by kr
inf {¢: x € supp T},

where we understand kr= 4 oo if supp T is empty.
We use the notation [t<<«| for the set of all elements x of R, such that
t<a and similarly for [:<la] ete.

We begin with

Lemva 1. Let TeD'.
(1) If a sequence {T;} of D' converges in D' to T, then lim kr, <kr.

oo
(2) Let {0;} be a sequence of regularization, let {co;} be a sequence of
multiplicators and put T; =a;T*0;. Then lim kr; = kr.

jooo

Proor. (1): We put a=1limkr,. If a=—co, the assertion is evident.

joreo
Assume that ¢>—co and let « be any real number such that o« <«. Then
there exists an increasing sequence {j,} such that a<kr,,. If €D and

supp ¢ C[t<a ], then we have
< T]'ka ¢ > =0
since supp 7;, C[t=>a]. Passing to the limit, we obtain <7, ¢>=0 and
therefore a<kr. Thus o <kr.
(2): Since

supp 7'; C supp («;1") + supp 0; C supp 7"+ supp ©;,

we have kr,>kr +k,. T, converges in O to T and supp 0; converges to the
origin as j—>oco. Hence by (1)

lim kr, >kr + Uim k,; = kr >1lim kr .

S jreo joo

Consequently, lim kr; = kr.

joee
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Thus the proof is complete.

In the sequel F denotes the operator F(D,., D;) stated in the introduction.
We prove

Lemma 2. For any T € % we have kr kpery.
Proor. Since F(T)=Fo+T with ¢, the Dirac measure, we have
supp F(T) C supp Fo + supp T
CL=0]+[t=kr]=[t=>kr].
Therefore the assertion is immediate.

LemMa 3. Assume that F(€',7)=0 has only roots t with positive imag-
inary parts and let ¢ € #. If F(p) €D, then ky=kpy,).

Proor. We put ¢ =F(¢). Since k,<k, by Lemma 2, we are only
to prove that k, <k,. The partial Fourier transform of ¢ satisfies the
differential equation

D13, )+ 4EDFEE, D+ -+ A&, = (&, D).
If we consider the equation on [¢<k, ], this becomes
D, )+ L EVDPE B+ - + An(ENB(E, ) =0.

We now fix & and let 7y, 7y,..., 7, be the distinct roots of F(¢',7)=0 with

k
respective multiplicities my, my, .., m; where >)m;=m. Then we have
i=1

$(&, 0= ﬁ P;)eit  for t<lhy,
j=1

where P;(t)(j=1,2,.--, k) are polynomials in z of degree m; — 1.
We assert that P,))=0 (j=1, 2, ..., k). In fact, suppose that P;(z)==0.
If we put

2@) =D, — )" o (Dy— T, )" (D — T )" (D — )" (€ 1),

then x(¢) is rapidly decreasing since ¢ € . Now x(¢) can be written in the
form

x () = €' Q(Dy) P; ()
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where
OD) = Dy + 75 — 1" .- (D + 75 — 751"
XD+t —i)"+ (D + T — T

Since t;%1; for all A5}, Q(D)P;(%)=~0. The imaginary part of r; being
positive,

e Q(Dy) P;(2)
is not rapidly decreasing for : <k, and therefore x(¢) is not also, which is a

contradiction. Hence we have P;())=0(j=1,2, ..., k), as was asserted.
Thus we have

$@&, =0  for ¢t<k,
which shows that &k, <kj..:. By using the fact that
ky = i;}f kger s

we conclude that &, <k.
The proof of the lemma is complete.

3. We shall now show the two theorems stated in the introduction.
We first prove the following

Tureorem 1. Assume that F(&',7)=0 has only roots t whose tmaginary
parts are > c for a positive constant c. Then kr =krqy for every T € &',

Proor. Denoting the roots of F(&,7)=0 by ;&) (j=1,2, ..., m), we
have

FE, 0 =[] (=)
and therefore
|F(&, o) z.ﬁl Im ;&) >c" > 0.

Hence 1/F(&',7) is in Oy Let G be the inverse Fourier transform of
1/F(¢', 7). Then G is an element of 0/ and for every T € &’

GxF(T)=F(G+T)=T.
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Now take a sequence {0;} of regularization and a sequence {«;} of
multiplicators and put 7,=«;T+0;. Then T; €D, GxT; € & and F(G+T,)=T,.
Therefore it follows from Lemma 3 that kr,=keyr,. Since T, converges in &’

to T,G+T; converges in &' to GxT. Therefore by using Lemma 1 we see
that

kT =lim ij = hm kG*TjSkG*T-

VAndad e

Since F(G*T)=T, Lemma 2 shows that kc,r <kr. Hence it follows that
kr =koyr. By replacing T by F(T), we have

kpy = koyry = kr.
Thus the proof is complete.
We next prove the following

Tueorem 2. Let T be a distribution € % such that kr> —oco. Then
kT:kF(T).

Proor. By the assumption
4@V 0u(Err)  (G=1,2, .., m).
Hence there exist a positive integer # and a positive constant ¢ such that
4OV for [&]=c  (j=12 ., m).

If we denote the roots of F(&,7)=0 by ¢;(&) (j=1,2,..,m), it is easily
shown that

[o;( N <2]1&|®  for |&|>c (j=1,2,...,m).
On the other hand for |&|<c¢ we have with a constant 4
IImz;¢N<d  (j=1,2, ..., m).
We put
UE, )= e 20 DT, o).

Then we assert that Ue€ .. In fact, take a real number « such that ¢ <#kr
and choose a bounded C~-function ¢(¢) in such a way that
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1 for t>a
¢(t)={
0 for t<a—1.

Then we have
¢(t)e—2(|§/lzh+d)t € OM

and U=¢U. It follows that Ue &', as was asserted. We now define S e ¥’
as follows:

S, =U(, ).

Then it is evident that ks =kr.
Let F, be the operator of the same type as F, which is defined by

Fi(¢, D) =(D,—2i(|&'|*" + D))" +
T4 E) (D= 20" + @) A+ -+ A (€.
Then the partial Fourier transform of F,(S) is
F{(S) (&, 0 =[(Di—2i(1&' | + )" +
+ 4 E)Y D —2i(|E 1+ D)+ -+ AT (E, )
= 2D 4 A EVDP T+ An(EIT (D)
= 2T (¢ )
Consequently,
kp,s)= i?,f kplisycernty = i?/f kLry e = kre)
Now the roots of F,(¢/,7)=0 are
HEY=2("+ )+ 7€) (=12, .., m).

By considering separately the cases where |&'|>>c and where |&'|<lc, we
have

Im ;¢ =2(|¢'|*" + d) — [Im 7;(§)| > d.

Therefore we can apply Theorem 1 to infer that ks==Fkr ) Hence we
conclude that kr =kp).
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Thus the proof of the theorem is complete.

Similarly, we can show that if we put
Kr=sup{t: x € supp T}
then K; = Kpr) for every T €%’ such that K <+ oo.

Theorem 2 does not hold for an element T of %’ such that kr =—cc in
general. For example, take F =D, and let T be a non-zero constant. Then
kT:_oo and kF(T):“I‘OO.

As an illustration of our results, we consider the differential operator
PD)=Dt + A(D:)D? " + .- + An(Dsr)

where 4;(D,.) (j =1,2, ..., m) are polynomials in D,, with constant coefficients.
If the plane =0 is characteristic with respect to P(D), then the differential
equation P(D) T=0 has a null solution with respect to the half space [:>>07],
that is, a C™-function which is 0 for 1< 0 and whose support contains the
origin (17, p. 121). By making use of Theorem 2 we can assert that there
exist no null solutions of P(D) T =0 contained in &’. In fact, let T be a null
solution of P(D)T=0. If T e &', then by Theorem 2 we see that kr=kpp)r,
which contradicts the facts that £r=0 and kppyr=+oco. Therefore 7'
For example, the equation

P(D)T= 0t _j:1 0x? =0

has actually a null solution, since the plane :=0 is characteristic with
respect to P(D). By the result stated above, there exist no null solutions
contained in &',
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