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§ 1. Introduction with definitions and problem setting

In a locally compact Hausdorff space, there are many ways to consider
a set function for compact sets which is similar to the capacity in the clas-
sical sense. Starting from such a set function, we can define an inner quanti-
ty and an outer quantity. The problem of capacitability is to discuss when
they coincide. A very useful tool is the general theory of capacitability
which was estabilished by G. Choquet [2Γ\.

In this paper we shall examine the capacitability problem in relation
to the Gauss variational problem. More precisely, let Ω be a locally compact
Hausdorff space and Φ(χ, γ) be a lower semicontinuous function on ΩxΩ.
Throughout this paper, we shall assume that Φ takes values in Q0, + oo], A
measure μ will be always a non-negative Radon measure and Sμ the support
of μ. The potential of μ is defined by

Φ(x, μ) = yKx, γ)dμ(γ)

and the mutual energy of μ and v is defined by

(V, μ)=[φ(x, μ)dv(x).

We call (μ, μ) simply the energy of μ. Let «f be the class of all measures with
finite energy and put

#A={μ', μ£#, Sμ is compact and SμCΛ}.

We note that each measure in gQ has a compact support and hence £Ωφg in
general. The kernel Φ is assumed, unless otherwise stated, to be of positive
type, i.e. Φ(x, γ) = Φ(γ, x) for all x, γβΩ and (μ, μ) + (v, v) — 2(v, /χ)Ξ>0 for all
μ, ve<?. The pseudo-metric | |μ — HI = Kμ> μ) + (v, v) — 2(y, /x)]1'2 defines the

strong topology in «f.

A class of measures is called strongly complete if any strong Cauchy net
in the class converges strongly to an element of the class.

We shall recall the quantities which are related to the capacity and were
used by M. Ohtsuka Q7]. For a nonzero measure μ, put F(μ) = sup {Φ(χ, μ);
x e Sμ} and for a nonempty set A define °UA by {μ; Sμ is compact, SμCA and
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μ(Ω) = l}. Set Vi(Λ)=mf{V(μ); μewA} it Aφφ and Vi(φ) =00 (φ denotes
the empty set). Define Ve(A) by sup { Fi(G); G is open and G^)A}. We shall
say that a property holds n.e., or nearly everywhere (q.e., or quasi everywhere
resp.) on a set A if the Vrvalue (F^-value resp.) of the exceptional set in A
is infinite.

Let / be an extended real valued function on Ω which is universally
measurable1} and integrable with respect to any measure with compact support
and finite energy (i.e., any measure in gΩ). The problem of minimizing the
expression

for v 6 &A is called the (unconditional) inner Gauss variational problem. We
put

It is easily seen that ΓA(f) = int {Γκ(f); K is compact and KC A}. As the (un-
conditional) outer Gauss variational problem, we discuss the quantity

= sup { 4 ( J O ; G is open and

REMARK 1. In case/=l, the following relations are well-known:
= -Vi(A)-\IA(l)=-Ve(A)-\

Next, we introduce two classes of measures:

ΓA(f)={ve#; Φ(x, v)^f(χ) n.e. on A}
and

Γβ

A(f)=ive*; Φ(χ, v)^f(χ) q.e. on A}.

B. Fuglede [3] considered these classes in case/=l. If there is no confusion
from the context, we shall denote ΓA(f)9 ΓA(f) etc. by ΓA, ΓA etc. We set

c)(A) = inf {(,, »);vβ ΓA} if ΓAΦφ

and

™ if rA = φ.

We define ce

f(A) for ΓA in the same way.
In this paper, we shall be concerned with the following four problems:

Problem I. 7s it valid that — ΓA = cj(A) for any set ?

Problem II. 7s it valid that — ΓA = ce

f(A) for any set?

Problem III. For what set A is it valid that c}(A) = ce

f(A)?

Problem IV. For what set A is it valid that ΓA= FA?

The last two problems are capacitability problems.

1) A function is universally measurable if it is measurable with respect to all Radon measures.
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B. Fuglede [3], M. Kishi [4] and the author [8] examined these problems
in c a s e / = l , and M. Ohtsuka [7] examined Problem IV in case / is upper
semicontinuous. In case / is a potential of a measure with finite energy, S.
Ogawa [5 6J studied Problem IV.

In the present paper, we investigate our problem under the assumptions
that Φ is of positive type and and often that <f is strongly complete. Answers
to our problem will be given in the following cases: the case where / is upper
semicontinuous (§4), the case where/ is lower semicontinuous (§5), the case
where/ is a potential of a measure with finite energy (§6) and the case where
/ is quasi upper semicontinuous (§7).

§ 2. General theory

In this section, we assume that / is a universally measurable function
and study properties of c}(A), ΓA9 etc. as set functions and their general rela-
tion. First we give the following useful propositions obtained by Ohtsuka.

PROPOSITION 1.2) Let {Bn} be a sequence of universally measurable sets (i.e.,
measurable for every measure on Ω) and A be an arbitrary set. Then we have

PROPOSITION 2.3) Let {An} be a sequence of arbitrary sets. Then we have

COROLLARY. Let A\ and A2 be arbitrary sets. If Ve(A2) = o°, then it holds
that Ve(A1-A2)=Ve(Aι)=Ve(A1VjA2).

PROPOSITION 3.4) For any compact set K, we have Vi(K)= Ve(K).
We shall prove

LEMMA 1. Let {Bj} (y = l, 2, ..., n) be a family of universally measurable
n

sets and let B = \JBJ. Then we have

PROOF. We may assume that each c}(Bj) is finite. Given ε>0, we can
find a measure vj for each j such that ||i{/ ||<c}(i?)1/2 + 2~ 7ε and Φ(x, Vj)^>f(x)

n.e. on Bj. Let Nj={x € Bj; Φ(χ, »j)<f(χ)}> v = ^vj and N= {xβB; Φ(x, v)<
.7 = 1

n

/ ( » } . Then NC\jNj and F, (7Vy)=oo. Since each Nj is universally mea-
y i

2) [7], Proposition 1, p. 139.

3) [7], Proposition 2, p. 140.

4) [7], Theorem 1.14, p. 207.



230 Maretsugu YAMASAKI

surable, we see by Proposition 1

Hence v belongs to Γι

B and it follows that

j = i y = l

By the arbitrariness of ε, we obtain the desired inequality.

LEMMA 2. Assume that f is integrable with respect to any measure in SΩ

and — ΓA = ct

f(A)for any open set A. Let {Gn} be a sequence of open sets and
OO

G = \jGn. Then we have
1

PROOF. We may suppose that — ΓG is positive. For any positive number
a smaller than [— ΓGJ!2, there is a compact set K such that KCG and
[— Γκy

l2>a. Since K is compact, it is covered by a finite subfamily
( / = 1 , 2, ..., n0). Then by Lemma 1 and by our assumption that —IA = c}{
for open sets, it holds that

τi Πl/2

2, where G0 = \jxrj.
y = i

This completes the proof.

LEMMA 3. Lei {̂ 4W} 6β a sequence of arbitrary sets and A — \jAn. Under
n=l

the same assumptions as in Lemma 2, we have

PROOF. We may suppose that each ΓAn is finite. Given ε>0, for each n>
there is an open set Gn such that AnQGn and [-Γ G J ι l 2 <[_-^lJ 1 / 2 + 2-wε.

OO

Writing G = \jGn, G is open and contains A. It follows from Lemma 2 that
n=l

By the arbitrariness of ε, we have the desired inequality.

LEMMA 4. Let f be bounded from above on any compact set and N be a
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relatively compact set. Then Ve(N)=°° implies ΓN = 0.

PROOF. If we put Wi(A) = mf{(v,v); ve<%A} for Aφφ and
then it is well-known that Wi(A) = Vi(A).5) There is a relatively compact open
set Go such that NCG0 and F,<G)>0 for any open set G, NCGCG0. For any
nonzero measure μG <fG, it holds that v = μ/μ(G)e<%G and

^ »)-2[SUP {/(*

> lμ(G)J Vi(G) - 2μ(G)β ^ - β2

where β is a positive upper bound of / on Go. This inequality is also true
for zero measure and hence

Therefore 0>ΓN>-β2/ V£N) = 0. This completes the proof.
In the above proof, we have shown

COROLLARY. Let f be bounded from above in Ω and β be a positive upper
bound off. Then for any set A, we have — FA<.β2/Ve(A).

LEMMA 5. Assume that f is bounded from above on any compact set, that
— pA — c}(A) for any open set and that Ω is 6-compact. Then Ve(N)=oo implies
FN = 0.

PROOF. By our assumption, Ω can be represented as a countable union
of compact sets {Kn}. For each n, Nn = NΓ\Kn is relatively compact and
Ve(Nn)^ Ve(N)=oo. From Lemma 4, it follows that ΓNn = 0. On account of
Lemma 3, we conclude FN = 0.

Combining above lemmas, we obtain the following useful lemma.

LEMMA 6. Under the same assumptions as in Lemma 5, it is valid that

IeA-N = IΆ f°r any s e t A if Ve(N)=co.
Next we give a relation between ΓA and c}(A) in the general case.

THEOREM 1. Let f be integrable with respect to any measure in SΩ. Then
we have — ΓA<Lcι

f(A) for any set A.

PROOF. Let v be any measure of ΓA, i.e. ve<? and φ(x, v)^>f(χ) n.e. on

A. Integrating both sides by λ e £A, we have (λ9 v)^>\fdλ (see footnote 5) and

It follows that (v, v) ^ — I(λ) for any v G ΓA and λ e £Ά Consequently

5) [7], p. 222. By this fact, we see that a measure with finite energy has no mass on any universally

measurable set with infinite F,-value.
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This theorem is not always true if Φ is not of positive type. To see this
we give

EXAMPLE 1. Let Ω = A={xu x2}, / = 1 , and Φ(xu xι) = Φ(x2, χ2) = 0 and
Φ(χu χ2) = Φ(χ2, #i) = l. It is easily verified that ΓA(A)= — oo and c}(A) = 2
and that Φ is not of positive type.

§ 3. Measures whose energy equals c}(A) or c^(4)

We assume that / is universally measurable. The following lemmas are
well-known:

LEMMA 7.6) Let ^ be a nonempty convex set in £ and v0 be a measure in
& such that ||ι>o|| = inf{|H|; ve^}. Then we have \\v—vQ\\2^\\v\\2—\\v0\\2 for
any ve^.

LEMMA 8.7) // μn converges strongly to μ0, then we have

Iim0(>, μn)<:Φ(χ, μo) n.e. in Ω.

LEMMA 9.8) Assume that any open set in Ω is a Kσ-set, i.e. a countable union
of compact sets and that Vi{A)— Ve(A) for any Kσ-set. If μn converges strong-
ly to μ0, then we have

l im^O, μn)<^Φ(x, μo) q.e. in Ω.

THEOREM 2. Assume that £ is strongly complete. In case c}(A) is finite,
there exists a measure μ0 in ΓA such that ci

f(A)=\\μo\\2.

PROOF. Since ΓA is not empty, there is a sequence {μn} in ΓA such that
\\μn\\2 tends to c}(A) as rc-»oo. Because (μn + μm)/2 belongs to ΓA, we have

Therefore {μn} is a strong Cauchy sequence in £ and converges strongly to
some measure μo 6 £ by our assumption. It follows from Lemma 8 that μ0

belongs to ΓA and hence \\μo\\2 = c)(A).

THEOREM 3. Assume that £ is strongly complete and that any open set in
Ω is a Kσ-set. In case ce

f(A) is finite, there exists a measure μ0 in ΓA such that

6) [3], Lemma 4.1.1, p. 174.

7) [3], Lemma 3.2.4, p. 165 or [7], Theorem 1.18, p. 210.

8) [3], Lemma 4.3.3, p. 182 or [7], Lemma 3.7, p. 306.
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cf(A)=\\μo\\2.
On account of the corollary of Theorem 7 below, we can prove this theo-

rem by the same reasoning as in Theorem 2, by using Lemma 9 instead of
Lemma 8.

THEOREM 4. Assume that <f is strongly complete, that f is integrable with
respect to any measure in £Ω and that — Ii

κ = ci

f(K) for every compact set K.
Then we have — ΓA = c{

f(A) for any set A.
If we assume furthermore that ci

f(G) = c}(G) for any open set G, then we
have the following relation:

PROOF. In order to obtain — ΓA = c}(A), it is sufficient to show — ΓA7>
c}(A) in case ΓA> — °° because of Theorem 1. Since 7^ = inf {Γκ; K is com-
pact and KCA}> — °o, there is a sequence {Kn} such that Kn is compact,
Kn<ZKn+ι C A and ΓKn tends to ΓA. By Theorem 2 and our assumption — Γκ =
c}(K\ we can find a measure »n in Γi

Kn such t h a t \\vn\\2 = ct

f(Kn)= — ΓKn<, — ΓA

< oo. We see by Lemma 7 that {vn} is a strong Cauchy sequence in <f. Since
£ is strongly complete, vn converges strongly to some measure ρ0. Then we

have Φ(x, vo)^f(χ) n.e. on \jKn by Lemma 8. We shall show Φ(x, vo)^>f(χ)
n=l

n.e. on A. In fact, if we deny this, then there would be a compact set Ko

such that Vi(K0)<oo and Φ(x9 ι>o)<f(χ) on Ko. Writing K'n=Kn\jK0, we see
that Γκ,n tends to ΓA by the inequality ΓA^Γκ^n^ΓKn. If v'o is determined by
the sequence {K'n} in the same way as v0 was determined by the sequence
{Kn}, then we have ||^o||2=:||^oll2 a n d IK^^oll — 0, or equivalently,9) Φ(x, vo) =

Φ(x9 V'Q) n.e. in Ω. Since Φ(x, v'0)^f(χ) n e o n \JKf

n^)K0, we have Φ(x, »0)^>
n=l

f(x) n.e. on Ko. This is a contradiction. Thus voeΓA(A) and
= \im\\vn\\2= — ΓA. Next we shall show ce

f(A)<, — ΓA. For any op

it holds by our assumption that ce

f(A)<^ce

f(G)-=c}(G) = — ΓG. Hence ce

f(A)<; — ΓA.
This completes the proof.

§ 4. The case where/ is upper semicontimious

Now we discuss the problems raised in §1. In this section, we assume
that £ is strongly complete and that, except in Theorem 10 below, / is upper
semicontίnuous and does not take the value + oo. First we obtain

THEOREM 5. It holds that ci

f(A) = ce

f(Ά) for every Kσ-set A.

PROOF. It is enough to show that Φ{x, v)^f(x) n.e. on A implies

9) [3], Lemma 3.2.1, p. 164.
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Φ(x, v)^>f(x) q.e. on A. Write N={xβA; Φ(x, v)<f(x)}. Then TV can be
represented as a countable union of compact sets {Kn}, because/ is upper
semicontinuous and A is a Kσ-set. Since Fe(Kn)= Vi(Kn)^> Vi(N) = oo by Pro-
position 3, it follows from Proposition 2 that Ve(N)—oo. Namely Φ(χ,v)
;>/O) q.e. on A.

Next, we give an answer to Problem I:

THEOREM 6. It is valid that — ΓA — C)^AL) for any set A.

PROOF. It suffices to show — Γκ ;> c}(K) for every compact set K in case
Γκ > — oo? because of Theorems 1 and 4. Assume that K is an arbitrary com-
pact set with Γκ> — co. We may suppose that sup{/O); χ€K} is positive.
In fact, otherwise, Γκ = 0 and μ = 0 satisfies the inequality Φ(x, μ)^>f(χ) on
K and hence c}(K) = 0. In case V{(K) is positive, it is a known result that
there exists a measure μκ^£κ such that Γκ = I(μκ), Φ(x, μκ)^f(χ) on Sμκ

and Φ(xy μκ)^f(χ) n.e. on K; see, for instance, [jΓ]. Then it follows that
— Γκ = (μκ, μκ) = c*f(K). Next we shall show the inequality in case Vi(K) = 0.
Write F={xeK;f(x)>0} and Fn= {xeK; f(x)^l/n}. Then {Fn} is an in-
creasing sequence of compact sets whose union equals F. We shall show that
Vi(Fn) is positive for all n. In fact, if we deny this, there would be an in-
teger n0 and a measure μoe^Fno

 s u c h that (μθ9 μo)= Wi(FnQ)= Vi(FnQ) = 0. It
follows that ΓK^ΓF <[ I(tμ0)^ —2t/n0 for any positive number t and hence
Γκ= — oo. This contradicts our assumption Γκ> — °°. Since Vi(Fn)>0 for
each 7z, we can find a measure μne£Fn such that ΓFn= — c}(Fn)=\\μn\\2 and
Φ(x, μn)^f(χ) n.e. on Fn. We see that {μn} is a strong Cauchy sequence by
Lemma 7 and therefore it converges strongly to some measure μ*e# by the
strong completeness of S. Then we have lim(—j£n)=||μ*||2 and Φ(x, /f*)̂ >

W->OO

f(x) n.e. on F by Lemma 8. Since/^0 on iΓ-F, it is valid that Φ(x, μ*)^>f(χ)
n.e.1 on K. Therefore ||μ*||2^c}(X). It is always valid that Γκ^ΓFn and
hence J ^ l i m J^. It follows that -Γκ^lim(-ΓFn)=\\μ*\\2^c}(K).

In the above proof, we see easily

COROLLARY.10) In case Γκ> — oo5 there exists a measure μ* such that Γκ =
— (yu,*, μ*) andΦ{xfμ^)^f{x) n.e. on K.

Thus Problem I is solved in this case. But for Problem II, we have a
negative answer in general. In fact, we give

EXAMPLE 2. Let Ω be the real line, K= {x = 0}, Φ(x, y)= \x\\y\ and μ be
the unit point measure at x = l. We take f(x)=Φ(x, μ)=\x\. Then Γκ —
ct

f(K) = ce

f(K) = 0 and Γκ=—1. In fact, let G be any open set containing K.

measure v of *fG, put a = a(v)= \ \χ\ dv(x). Then 7(y) = α2 — 2a with

10) cf. [7], Theorem 3.35, p. 342.
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0<a<oo. We see ΓG=inf{I(v); v€£G} = - l . Thus Fκ=-1.
However, we can prove

THEOREM 7. Assume that any open set in Ω is a Kσ-set. If we assume
either / > 0 or Φ>0, then we have — ΓA = ce

f(A) for any set A.

PROOF. Since we obtain — FA~Ξ>ce

f(A) by Theorem 4, let us show that
Φ(x, v)^>f(x) q.e. on A implies — FA<,(v, v). Let N={xeA; Φ(x, v)<f(χ)}.
Then Ve(N)=oo, For any numbers t, 0 < ί < l , and s > l , put Gts = {χeίl;
sΦ(χ, v)>tf(x)}. By our assumption that / > 0 or 0>O, Gts contains A — N.
Since / is upper semicontinuous, Gts is an open set. Because (s/i)v belongs
to ΓGt8, it follows from Lemma 6 and Theorem 6 that — FA— — FA-N<. ~ IGU
^ci

f{Gts)^{s/t)2{'u, y). Letting t and s tend to 1, we have — IA<>(v> v).
By combining Remark 1 with Theorems 5, 6 and 7, we have

COROLLARY. It holds that Vi{A)— Ve(A) for any Kσ-set A,

THEOREM 8. Assume that any open set in Ω is a Kσ-set. Let {An} be an
oo

increasing sequence of arbitrary sets and let A = \J An. Then it holds that

n°

Consequently, under the same assumptions as in Theorem 7, we have
/ e

A-

PROOF. It suffices to show that \im ceXAn)^ceXA) in case limc}(An) is

finite. There is a measure vn such that ce

f(An)=\\vn\\2 and Φ(x, vn)^>f(χ) q.e.
on An by Theorem 3. Since Γe

An^)ΓAn+^ we have by Lemma 7

Therefore {vn} is a strong Cauchy sequence and converges strongly to a mea-
sure VQ e S. It follows from Lemma 9 that Φ(x, vo) !>/(#) q.e. on A and hence

On account of Theorems 5, 6 and 7, we have Γκ = Γκ for any compact set
K in case 0>O o r / > 0 . By this fact and Theorem 8, we can apply Choquet's
theorem (Theoreme 30.1 in [2J). Thus we have an answer to Problem IV:

THEOREM 9.n ) // we assume that any open set in Ω is a Kσ-set and either
or/>0, then it is valid that FA— FA for every analytic set A.

Combining this theorem and Remark 1, we have

COROLLARY. It holds that Vi(A)= Ve(A) for every analytic set A.
Using this result, we have an answer to Problem III:

11) cf. [7], Theorem 3.48, p. 345.
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THEOREM 10. Assume that f is a Borel measurable function and that any
open set in Ω is a Kσ-set. Then it is valid that cj(A) = ce

f(A) for every analytic
set A.

REMARK 2. Fuglede [2Γ\ called a kernel consistent if it is of positive type
and any strong Cauchy net converging vaguely to a measure converges
strongly to the same measure. Without the strong completeness of <f, he
obtained a result similar to this corollary. It is restated as follows:

PROPOSITION 4.12) // the kernel is consistent and any open set in Ω is a
Kσ-set, then it holds that Vi(A) = Ve(A) for every analytic set A.

If we use this fact, we have a result similar to Theorem 10:
Assume that f is a Borel measurable function, that any open set in Ω is a

Kσ-set and that Φ is consistent. Then it is valid that c}(A) = ce

f(A) for every
analytic set A.

§ 5. The case where/ is lower semicontinuous

In this section, we are interested in the case where / is lower semiconti-
nuous and does not take the value — oo. As for Problem I, we have

THEOREM 11. Assume that £ is strongly complete. Then it holds that
— ΓA = cj(A) for any set A.

PROOF. It is enough to show that — Γκ 2> c}(K) for every compact set K
in case Γκ> — oo. Let D={a} be a directed set, and {fa\ aeD} be a net of
continuous functions increasing to /. For each a, there exists a measure
VaeΓκ(fa) such that c}a(K)=\\va\\2. lίfa^fβ then rK(fa)^rK(f,) and by
Lemma 7

Hence {va} is a strong Cauchy net and converges strongly to some measure

v0. We see that v0 belongs to rl

K(f). In fact, put N= {x eK; Φ(x, vo)<f(χ)}.

If Vi{N) were finite, then there would be a nonzero measure μe£N. Obvi-

ously (μ, vo)<\fdμ and (μ, Vα)2> \fadμ for any aζD. By the latter in-

equality, we have \fdμ = lim\fadμ<^lim(μ,Va) = (μ,»o) This is absurd. It

follows that

| | | | | i > α
αεD αeί) αεβ

This completes the proof.

12) [3], Theorem 4.5, p. 184.



On a Capacitability Problem Raised in Connection with the Gauss Variational Problem 237

We have a negative answer to Problems II and IV even if / > 0 and 0>O.
It is shown in

EXAMPLE 3. Let Ω be the real line, K={\x\<,l}, Φ = l and f(χ)=l if
\χ\<l and =2 if | * | > 1 . Then we see Γκ=-1, c}(K) = l and ΓG= - 4 for
any open set G containing K. Hence Γκ= — 4. We observe that in this ex-
ample # is strongly complete.

§ 6. The case where/ is a potential

We now consider the case where / is the potential of a fixed nonzero
measure μ of tf: f(x) = Φ(x, μ). Since it is lower semicontinuous, Problem
I is solved as proved in §5. However for Problem II, we have a negative an-
swer as Example 2 shows. The assumption Φ > 0 is not sufficient (cf. Theorem
7) to have an affirmative answer either. It is shown in

EXAMPLE 4. Let Ω be the real line, K= {# = 0}, Φ(x, y) = l/\x\\ y\ and μ
be the unit point measure at χ = l. Then f(x) = l/\x | and c}(K) = ce

f(K) = 0.
Since ΓG=—1 for any open set G containing K, we have Γκ= — 1.

In order to obtain an affirmative answer in a special case, we shall con-
sider the generalized capacity introduced by Cartan in the classical case. We
begin with some preparations.

For any set A and v e £A,

Therefore it is valid that 0J> Iι

A{f)^ — \\μ\\2> — °°. The following proposi-
tion was proved by Cartan \ΛΓ\ in the classical case.

PROPOSITION 5. Let ^ be a nonempty strongly complete convex set in &
andlet Λ(<F; μ)={μ'e <F; \\μ

f-μ\\ = mί{\\μ-v\\; vβ^}}. Then A^\μ)φφ
and \\μ[ — μf

2\\ = Q for any μ[, μ^eΛ^; μ).
& is called a cone if tv e ^ for any measure v e & and any number t ^ 0.
Like Cartan, we have

LEMMA 10. Let & be a nonempty strongly complete convex cone in &. A
"measure μ! G ^ belongs to A(^ μ) if and only if (μ —μ, v) I> 0 for all v € ^
and (μ—μ, μ) = 0.

LEMMA 11. Let Kbe a compact set and assume that £κ is strongly com-
plete. Then any measure μκ in Aiβκ μ) satisfies (μ, μf

κ)= \\μf

κ\\2 and Φ(x, μ'κ)
^>Φ(χ, μ) n.e. on K.

PROOF. Since £κ is a nonempty strongly complete convex cone in S by
our assumption, A(βκ μ) is not empty because of Proposition 5. Take any
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μκe.A{βκ\ μ). By the above lemma, (μ, /4:)=|l/4rll2 We shall show that
the set N defined by {xζK; Φ(x, μ'κ)<Φ(x, μ)} has infinite Frvalue. If we
deny this, there would be a nonzero measure V^^NC^K- Then

This contradicts μ'κ E A{βκ μ) on account of the above lemma.

THEOREM 12. Let Kbe a compact set and assume that £κ is strongly com-
plete. Then we have — Γκ = ci

f(K)=\\μ/

κ\\2.

PROOF. First we recall that I(^=\\v-μ\\2-\\μ\\2. It follows that Γκ =
mίl(v)=\\μ/

κ — μ\\2—\\μ\\2= — \\μ'κ\\2. We have — Γκ = c}(K) as shown in the

proof of Theorem 11.
Hereafter in this section we assume, unless otherwise stated, that £ is

strongly complete. We shall define &A and £\ for any set A like Cartan

ίfi = the strong closure of {ve S\ p(# — A) = 0}13)

and

GI is open and GO A}.

We observe that S\ is equal to the strong closure of \J{SK\ K is compact
and KCA}. Since £ is strongly complete by our assumption, &A and Se

A are
strongly complete convex cones in <f. Given μ e «f, taking £A (βe

A resp.) for
J5" in Proposition 5, there exists a measure μA e #ι

A(μA € S\ resp.) which
minimizes I(v) for v G £A(£A resp.). This extremal measure is not always
determined uniquely, but the corresponding values of energy are unique by
Proposition 5. We put

Ci(A) = (μA9 μA) and C £A) = (JLA, μA).

We shall study the relation between these quantities and those in the previ-
ous sections. As stated at the begining of this section, we take Φ(x, μ) for
f(x). First we shall prove

THEOREM 13. Let f(χ) = Φ(x, μ). If Sκ is strongly complete, then we have

for any compact set K.

PROOF. For any vGcfĵ , there is a sequence {vn} in &κ which converges
strongly to v. The measure μκ obtained in Lemma 11 satisfies the following
relations: μ'κ€<?κC(?κ, (μ'κ — μ, ^ ) ^ 0 and (μf

κ — μ, μ#) = 0. We let n^oo
and see (μ'κ — μ, v)^0. By the arbitrariness of v and Lemma 10, we conclude
that μίeA^ί; μ) and hence -IK^WM^C&K) (Theorem 12).

13) v represents the outer measure of v, i.e. v(A) = mf{v(G); G is open and
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Like in the classical case, we have

LEMMA 12.14) Let {tFa\ cceD} be an increasing net of nonempty strongly
convex cones and ϊF be the strong closure of XJ^a- Then μί€.Λ(#r

a; μ) con-
D

verges strongly to some measure μ e Λ(& μ).
In this lemma, by taking Ό — {K; K is compact and contained in A} and

{«fk Ke D} for {&a\ aeD}, and observing that &\ is also equal to the strong
closure of W{«f̂ ; Ke D}, we obtain

LEMMA 13. CjLC4) = sup {Cμ(K); K is compact and KC A}.

Combining this lemma with Theorem 13 and taking account of the equali-
ty Γ}= inf {Γκ K is compact and KC A}, we obtain

THEOREM 14. Let f(x) = Φ(x, μ). If Sκ is strongly complete for every
compact set K, then we have Cμ{A) = — ΓA for any set A.

LEMMA 14.15) Let {^a; aeD} be a decreasing net of nonempty strongly
closed convex cones in £ and let tF=f\tFa- Then μ'aξL Λ(ίFa\ μ) converges

strongly to some measure / / € Λ(^; μ).
By taking D={G; G is open and contains A} and {&{

G\ GeD} for {^a\
aeD} in the above lemma, we see Ce

μ(A)=inf{Cjι(G); G is open and G^)A}.
Thus we obtain

LEMMA 15. If £κ is strongly complete for every compact set K, then we
have Ce

μ(A)= — ΓA for any set A.
Thus in case/(» = 0O, μ) with μ€£, Problem II is reduced to the ques-

tion as to the coincidence of ce
f(A) with Ce

μ(A). In order to obtain an affirma-
tive answer, we give the following propositions which were proved by
Ohtsuka:

PROPOSITION 6.16) Assume that the kernel Φ satisfies the continuity prin-
ciple^ and 0>O. Then for every μe#, there is a sequence {μn} C$ such that
Φ(x, μn) is finite and continuous in Ω and μn converges strongly to μ.

PROPOSITION 7.18) Under the same assumptions as in the above proposition,
£κ is strongly complete for every compact set K.

REMARK 3. We do not need in the above two propositions that £ is
strongly complete.

14) [1], Proposition 1.

15) [1], Proposition 2.

16) [7], Lemma 1.4, p. 190.

17) Continuity principle: If the potential Φ(x, μ) of a measure μ with compact support Sμ is finite

and continuous as a function on Sμ, then Φ(x, μ) is continuous in Ω.

18) [7], Theorem 1.7, p. 196.
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The following two lemmas are easy to see.

LEMMA 16. Let ^ be a nonempty strongly complete convex cone in &, μι
and μ2 be nonzero measures of <f and μ] € Λ(β?\ μj) (y = l, 2). Then we have

LEMMA 17. Let {μn} be a sequence of nonzero measures in £ and & be a
nonempty strongly complete convex cone in £. If μn converges strongly to μ,
then μ'n e Λ(& μn) converges strongly to some μ e Λ{^, μ).

Now we shall prove

THEOREM 15. Let f(x) = Φ(x, μ). Assume that Φ satisfies the continuity
principle, that Φ>0 and that any open set in Ω is a Kσ-set. Then we have

for any set A.

PROOF. By means of Proposition 7, it follows from Theorems 4, 10 and
11 and Lemma 15 that ce

f(A)<, —FA = Ce

μ(A).,v Hence it is sufficient to show
that ce

f(A)^>Ce

μ(A). First we consider the case where Φ(x, μ) is finite and
continuous in Ω. Since Φ>0, on account of Theorem 7 and Lemma 15, we
have ce

f(A)= — FA = Ce

μ(A). Next, in the general case, there is a sequence
{μn} C<? such thsitfn(x) = Φ(x, μn) is finite and continuous in Ω and μn conver-
ges strongly to μ by Proposition 6. We can choose {μn} in such a way that
fn(x) increases with n. Since Γe

A(fn) D Γe

A(f), it follows that C*n(A) = c}n(A) <;
cf(A). Taking £% for J5" in Lemma 17, we see that Ce

μn(A) tends to C%A) and
hence C%(A)<Lc'f(A\

Summing up Proposition 7, Theorems 10, 14 and 15, we have

THEOREM 16. Suppose that Φ satisfies the continuity principle, that Φ>0
and that any open set in Ω is a Kσ-set. Then it holds that Cμ(A) = Ce

μ(A) for
every analytic set A.

COROLLARY. Under the same assumptions as in the theorem, we have
&A = £A for every analytic set A,

PROOF. It is always true that £A C &Ά- Let μ e £e

A. Then we can find a
measure μeΛ(#A; μ) by Proposition 5. Since μ^A{βe

A, μ), we see \\μ — μ'\\2

^\\μ\\2-\\μf\\2 = Ce

μ(A)-Cμ(A). If A is an analytic set, then it follows from
Theorem 16 that \\μ — //|| = 0. Because £A is strongly closed and μe<fA, we
conclude that μ£#A and hence £% C <?A

Ogawa [β 6] proved this theorem under a stronger condition that the
kernel satisfies the domination principle.

We give an example such that <f is strongly complete and the kernel does
not satisfy the domination principle.
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EXAMPLE 5. Let Ω be the 3-dimensional Euclidean space and g(χ)= | x \
if \χ\<:3, = 6 — I ΛJ I if 3 < | x | < : 6 and = 0 if \χ\>6. If we take Φ(x, y) =

' g(χ)g( T)J then Φ is of positive type and satisfies the continuity prin-
\x—y\
ciple. We can verify that £ is strongly complete by using the property of
the Newtonien kernel. Let λ be the unit uniform measure on {| x | = 1} and
μ = 2ε0 (ε0 is the unit point measure at x = 0 = the origin). Then Φ(x, μ) = 2\x\~1.
It holds that Φ(x, λ)<^Φ(x, μ) on Sλ and λ€z£. However it is not valid that
Φ(x, λ)<LΦ(x, μ) in Ω.

If we do not assume both the continuity principle and $ > 0 , it is not ne-
cessarily true that £ι

κ — ^eκ even for a compact set K. Actually £i

κΦ&eκ in
Examples 2 and 4. Ogawa [β~] stated that <f# = <̂ # if Φ satisfies the con-
tinuity principle and 0>O 1 9 ) without the strong completeness of <f. In its
proof, he asserted that any measure of £i

κ is supported by K. However, even
if & is strongly complete, a measure of £{

κ is not always supported by K. In
fact, we give

EXAMPLE 6. Let β = (-oo 5 oo), K={\x\<:i} and 0 = 1. Then it holds
that £κ Φ S{

κ = £ e

κ = β.
We give here a correct proof for the above statement. First, without

assuming that £ is strongly complete, we observe

LEMMA 18. Let ^ be a subset of <f. // & is strongly complete, then the
strong closure ^ of ^ in £ is strongly complete.

PROOF. Let {μa} be any strong Cauchy net in #\ Given ^>0, we can
find a0 and a measure va€ & such that \\μa — *>*||<V for each a and \\μa — μβ\\<7j
for any a, β~^>a0. Then {va} is a strong Cauchy net in J5*. Since ϊF is strong-
ly complete, »a converges strongly to some μ0 e &. It follows that μa con-
verges strongly to μ0.

For any compact set K, without the strong completeness of #, we shall
prove

THEOREM 17. Assume that Φ satisfies the continuity principle and $ > 0 .
Then <?i

κ = £e

κ.

PROOF. Since £'κ is strongly complete (Proposition 7), £{

K is strongly
complete by the above lemma. £e

κ is strongly closed and contained in £ι

Go,
which is strongly complete, where Go is a relatively compact open set contain-
ing K. Therefore £e

κ is strongly complete. C%K) and Ce

μ(K) can be consider-
ed as before. It is enough to show C%K) = C%K.) in order to obtain our
theorem (cf. the proof of the corollary of Theorem 16). This is carried out
in the same way as the proof of Theorem 15.

19) [6], Gorollaire du Theoreme C, p. 229 and Lemme 9, p. 237.
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§ 7. The case where/is quasi upper semicontinuous

A function / is called quasi upper semicontinuous if, for any positive
number ε > 0, there is an open set Gε such that Vi(Gε) > 1/ε and the restriction
of / to Ω — Gε is upper semicontinuous and does not take the value +°o. In
case / and —/ are quasi upper semicontinuous, we say that / is quasi con-
tinuous.

Throughout this section, we assume that / is Borel measurable, quasi
upper semicontinuous and integrable with respect to any measure in SΏ, and that
£ is strongly complete. We shall examine Problems I, II and IV in this case.20)

As for Problem I, we have

THEOREM 18. It holds that — IA = c{

f(A) for any set A.

PROOF. Let us show first — Γκ^ c{

f(K) for every compact set K. We
may suppose that Γκ is finite. For each n, there is an open set Gn such that
Vi(Gn)>n a n d / is upper semicontinuous and does not take the value +oo as
a function on Ω—Gn. We may assume that Gn decreases as n increases. Put

oo oo

Kn = K—Gn and N=f\Gn. Then \JKn — K—TV" and / is upper semicontinuous
n=\ n=l

in Kn and does not take the value +oo. On account of Theorem 6 and its
corollary, we can find a measure vn such that — Iκn = ci

f(Ktt)=\\vn\\2 and
Φ(χ, vn)^f(x) n.e. on Kn. By using Lemma 7 (in §3), we see that {vn} is a
strong Cauchy sequence and vn converges strongly to some measure v0. By
Lemma 8, we have Φ(x, vo)^>f(χ) n.e. on K—N. Since Vi(N)^> Vi(Gn)>n for
any n, it follows that Vi(N) = oo and Φ(x, \>o)^f(χ) n.e. on K. Thus VQ^Γ^
and c}(iQ^lkll 2 = l i m | H | 2 = -limΓκ <L- Γκ. Theorem 1 yields ci(K)= - Γκ

and hence c}(A)= — ΓA follows from Theorem 4.
Next we shall give an answer to Problem II:

THEOREM 19. Assume either / > 0 or Φ>0 and that any open set in Ω is a
Kσ-set and that f is bounded from above. Then we have — ΓA = c}(A) for any
set A.

PROOF. It suffices to show that Φ{x, v)7>f(χ) q.e. on A implies — IA<:(v, v)
by Theorem 4. Given ε > 0, on account of the quasi upper semicontinuity of
/, there is an open set Bε such that Fί (jB£)>l/ε a n d / is upper semicontinu-
ous as a function on Ω—Bε. Write

N={xeA;Φ(x,»)<f(x)}
and

-Be; tΦ(x, v)>sf(x)}

20) This extension was suggested by Professor M. Ohtsuka. The author considered first the case

that f is quasi continuous and bounded from above.
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for positive numbers ί > l and 0<s<l . Then Gts\jB€ is an open set and con-
tains A — N because of our assumption that Φ>0 or / > 0 . It follows from
Lemmas 2 and 6, Theorem 18 and the corollary of Lemma 4, that

Since (t/s)v belongs to Γ*Gtt, we have c}(Gts)^(t/s)2\\u\\2 so that \L-IAJ
ί2<

(t/s)\\v\\ + βε1!2. Letting ί->l, s-^1 and ε->0, we obtain the desired inequality.
Finally we give an answer to Problem IV:

THEOREM 20. Under the same assumptions as in Theorem 19, we have
ΓA—ΓA for every analytic set A.

In the last two theorems, we can not omit in general the condition that /
is bounded from above. In fact, we refer to Example 4. The function / in
this example is quasi continuous, because K and φ are only sets of infinite Ve-
value.

§ 8. Conditional Gauss variational problem

Let g be a positive continuous function on Ω and t be a positive number.
r

We introduce a class of measures: SΆig, t)= {v€ £ A\ \gdv = t}. The mini-
mizing problem of I(v) for ve<?A(g, t) is called the conditional inner Gauss
variational problem. Put ΓA= IA(f, g, t)=mt{I(v); v££A(g, t)} and ΓA =
sup{/c; G is open and G^)A}. Ohtsuka examined the capacitability problem
for these quantities. Can we apply the method of Fuglede in this case?
Namely, is there any advantage to introduce two classes of measures similar
toΓA andΓl?

In case A is a compact set K, Ohtsuka obtained the following result.21)

Let μt be a measure of #κ(g, 0 such that I(μt)= inf {I(v); vζ£κ(g, 0} is finite
and let γt(K) be defined by tγt(K) = (μt, μt)— \fdμt. Then it holds that Φ(x, μt)

n.e. on K and Φ{%, μt)^f(χ)-Jrϊt(K)g(x) on Sμt.
We can define Γx

κ as the class

; Φ(x, v)^f(χ) + ϊt(K)g(x) n.e. on K}.

We do not know how to define ΓA for a noncompact set A. We shall show
with an example that γt(K) does not have a monotone property with respect
to K. Accordingly, none of ±γt(K) is suitable to be regarded as a kind of
capacity.

21) [7], Theorem 2.7, p. 221.
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EXAMPLE 7. Let Ω be the 3-dimensional Euclidean space, / = 0 , g— 1, t = 1,
Φ(x, y) = l/\χ-y\,K1={\x\<Ll} and X2={|*|<:2}. If we denote the uni-
form unit measure on { |Λ; |=Γ} by μr, then ΓKι=I(μi) = l9 Γκ,= I(μ2)

EXAMPLE 8. Let Ω=K2 be the interval [0,1] in the real line, Kχ={x = 0},
g(x) = 2-x,f(x) = x/2, £ = 1 and 0 = 1. Then it holds that γί(K1) = l/A<l/2 =
γt(K2). We observe that 7^ = 1/4 and iΐ2 = 7(ε1) = 0, where εx is the unit point

measure at x = l. In fact, let v€£κ2(g, 0 Then I(v) = [y(Ω)~}2— \xdv(x) and

gdv = 1 means that — 1 + 2v(Ω) = \ % dv(x)> If we put v(Ω)=s, then I(v)=s2 — 2s

hl = (s — I) 2 and hence ΓK2 = 0> Let ve £κx(g, O Then \#Λ> = 1 implies

) = l/2. Therefore 7^ = 1/4.
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