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§ 1. Introduction with definitions and problem setting

In a locally compact Hausdorff space, there are many ways to consider
a set function for compact sets which is similar to the capacity in the clas-
sical sense. Starting from such a set function, we can define an inner quanti-
ty and an outer quantity. The problem of capacitability is to discuss when
they coincide. A very useful tool is the general theory of capacitability
which was estabilished by G. Choquet [2].

In this paper we shall examine the capacitability problem in relation
to the Gauss variational problem. More precisely, let 2 be a locally compact
Hausdorff space and @(x, y) be a lower semicontinuous function on 2x £2.
Throughout this paper, we shall assume that @ takes values in [0, +=]. A
measure ;. will be always a non-negative Radon measure and Sy the support
of . The potential of . is defined by

0, 10={00x, ()
and the mutual energy of . and v is defined by
s =0, vt

We call (i, ) simply the energy of u. Let & be the class of all measures with
finite energy and put

Ea={p; n€ &, S is compact and Sp C 4}.

We note that each measure in &, has a compact support and hence €, & in
general. The kernel @ is assumed, unless otherwise stated, to be of positive
type, i.e. O(x, »)=0(y, x) for all x, ye 2 and (x, p)+(», v)—2(v, ©)=0 for all
u, vEE. The pseudo-metric ||px—yv||=[(, )+, v)—2(v, u)]*'* defines the
strong topology in &.

A class of measures is called strongly complete if any strong Cauchy net
in the class converges strongly to an element of the class.

We shall recall the quantities which are related to the capacity and were
used by M. Ohtsuka [7]. For a nonzero measure u, put V(u)=sup {0(x, u);
x € Sp} and for a nonempty set 4 define #4 by {; Su is compact, S C 4 and
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w@=1}. Set ViAd)=inf{V(u); n€ U4} if A#+¢ and Vig)=co (¢ denotes
the empty set). Define 7,(4) by sup {¥V:(G); G is open and GO A}. We shall
say that a property holds n.e., or nearly everywhere (q.e., or quasi everywhere
resp.) on a set A4 if the V;-value (V,.-value resp.) of the exceptional set in 4
is infinite.

Let f be an extended real valued function on £ which is universally
measurable? and integrable with respect to any measure with compact support
and finite energy (i.e., any measure in &,). The problem of minimizing the
expression

16)= (5, —2| fa»

for ve &4 is called the (unconditional) inner Gauss variational problem. We
put
Li=Ii(f)=inf {I(+); v€ &4}
It is easily seen that Ii(f)=inf {I4(f); K is compact and KC 4}. As the (un-
conditional) outer Gauss variational problem, we discuss the quantity
I4(f)=sup {Ii(f); G is open and G D A}.
Remark 1. In case f=1, the following relations are well-known: Ii(1)
==V, L=~V (D)™
Next, we introduce two classes of measures:
Ii(f)={ve&; O(x, v)= f(x) n.e. on A}

and
I'i(f)={ve€é&; 0(x,v)= f(x) q.e. on A}.

B. Fuglede [ 3] considered these classes in case f=1. If there is no confusion
from the context, we shall denote Ii(f), I'4(f) ete. by I}, I'j ete. We set

ci(A)=inf {(v, »); ve 'y} if I'j=~¢
and
ci(A)=o0 if I'i=¢.

We define c4(A4) for I' in the same way.
In this paper, we shall be concerned with the following four problems:

Problem 1. Is it valid that — I}y =ci(A) for any set?
Problem II.  Is it valid that — I3 =c4(A) for any set?
Problem III.  For what set A is it valid that ci(A)=ci(A4)?
Problem IV. For what set A is it valid that Ij=I5?

The last two problems are capacitability problems.

1) A function is universally measurable if it is measurable with respect to all Radon measures.
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B. Fuglede [37], M. Kishi [4] and the author [ 8] examined these problems
in case f=1, and M. Ohtsuka (7] examined Problem IV in case f is upper
semicontinuous. In case f is a potential of a measure with finite energy, S.
Ogawa [5; 6] studied Problem IV.

In the present paper, we investigate our problem under the assumptions
that @ is of positive type and and often that & is strongly complete. Answers
to our problem will be given in the following cases: the case where f is upper
semicontinuous (§4), the case where f is lower semicontinuous (§5), the case
where f is a potential of a measure with finite energy (§6) and the case where
f is quasi upper semicontinuous (§7).

§ 2. General theory

In this section, we assume that f is a universally measurable function
and study properties of ci(A4), I}, etc. as set functions and their general rela-
tion. First we give the following useful propositions obtained by Ohtsuka.

Prorosition 1.2 Let {B,} be a sequence of universally measurable sets (i.e.,
measurable for every measure on £) and A be an arbitrary set. Then we have
Vi JB,NA) T =SV B.NA)

Prorposition 2.2  Let {A4,} be a sequence of arbitrary sets. Then we have
Ve (\JA4) =33 Ve(4) 7

CoroLLARY. Let A; and A, be arbitrary sets. If V,(A;)= oo, then it holds
that Ve(Al—Ag)—: Ve(A1)= Ve(Al\_/Az).

ProrositioN 8.2 For any compact set K, we have Vi{(K)=V,(K).
We shall prove

Lemma 1. Let {B;} (j=1,2, -, n) be a family of universally measurable

sets and let Bz\n/Bj. Then we have
i=1

c}(3)1/2g§_}1 C}:(Bj)ljz.
ji=

Proor. We may assume that each ci(B;) is finite. Given ¢>0, we can
find a measure v; for each j such that ||y;||<ci(B)"*+27 and @(x, v;)=f(x)
ne.on B; Let N;={x€ B;; O(x, v)<f(x)}, v=>1v; and N={x € B; 0(x, v)<

ji=1

f(x)}.  Then NC \n/Nj and Vi (N;)=co. Since each N, is universally mea-
i=1

2) [7], Proposition 1, p. 139.
3) [7], Proposition 2, p. 140.
4) [7], Theorem 1.14, p. 207.
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surable, we see by Proposition 1
VAN Z P\ V) =eo.
Hence v belongs to 7'} and it follows that
ef(BY P SIS 33 Iyl < 33ei(B,) e

By the arbitrariness of ¢, we obtain the desired inequality.

Lemma 2. Assume that f is integrable with respect to any measure in &g
and — Iy=ci(A) for any open set A. Let {G,} be a sequence of open sets and

G :OG,,. Then we have
n=1

[— =015,
n=1

Proor. We may suppose that — I, is positive. For any positive number
« smaller than [ —I.7'? there is a compact set K such that KCG and
[—Ii]"*>a. Since K is compact, it is covered by a finite subfamily {G;}
(j=1,2, .-, ny). Then by Lemma 1 and by our assumption that — I, =ci(4)
for open sets, it holds that

a<[ - <[— =3 - 1
i=1
gij[— I 1'%, where Go=\7ljnGj.
n=1 i=1
This completes the proof.

Lemma 3. Let {A4,} be a sequence of arbitrary sets and Az\:le,,. Under

the same assumptions as in Lemma 2, we have
[— I =2 - 1,
n=1

Proor. We may suppose that each Ij is finite. Given ¢>0, for each n,
there is an open set G, such that 4,CG, and [—I; J"*<[—1I5 J"*+2.

Writing G=\°°/G,,, G is open and contains 4. It follows from Lemma 2 that
n=1
[P =[— LTS 1< I, ] e
n=1 n=1
By the arbitrariness of ¢, we have the desired inequality.

Lrmma 4. Let f be bounded from above on any compact set and N be a
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relatively compact set. Then V,(N)=oco tmplies I3 =0.

Proor. If we put Wi(A)=inf{(», v); v€,} for A=+<¢ and Wi(p)=oo,
then it is well-known that W(4)= V;(A4).” There is a relatively compact open
set G, such that NCG, and V,(G)>0 for any open set G, NCGCG,. For any
nonzero measure u € &g, it holds that v=p/u(G) € %¢ and

1=ty 192\ fau = [G) 0, 2)—2[5up { f); 5 € Go} JulC)

= [C) P ViG)—2uG)B = — B/ ViG),
where £ is a positive upper bound of f on G,. This inequality is also true
for zero measure and hence
| .= — 8/ V6.
Therefore 0 > I, = —p*/V,(N)=0. This completes the proof.

In the above proof, we have shown

CororLrArY. Let f be bounded from above in 2 and (5 be a positive upper
bound of f. Then for any set A, we have — I3 =[*/V (A).

Lemma 5. Assume that f is bounded from above on any compact set, that
— Iy =ci(A) for any open set and that 2 is g-compact. Then V. (N)=oco implies
I, =0.

Proor. By our assumption, £ can be represented as a countable union
of compact sets {K,}. For each n, N,=NNK, is relatively compact and
VeNy) = Vo(N)=oo. From Lemma 4, it follows that I3 =0. On account of
Lemma 3, we conclude 1§ =0.

Combining above lemmas, we obtain the following useful lemma.

LemMA 6. Under the same assumptions as in Lemma 5, it is valid that
I5_y=15 for any set A 1f V,(N)=oo.
Next we give a relation between I, and ci(4) in the general case.

TueoreM 1. Let f be integrable with respect to any measure in &o. Then
we have — Iy < ci(A) for any set A.

Proor. Let v be any measure of /7, i.e. v€ & and ¢(x, v) = f(x) n.e. on

A. Integrating both sides by 1€ &4, we have (4, u)gg fd2 (see footnote 5) and
(”) V)+ I(l>2<ua L’>+(lv l)_z(l) ”‘)go‘

It follows that (v,v)==—1IQ) for any »€l} and A€&, Consequently

5) [7], p. 222. By this fact, we see that a measure with finite energy has no mass on any universally
measurable set with infinite V;-value.
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clA)=—1I.

This theorem is not always true if @ is not of positive type. To see this
we give

Exampre 1. Let 2=A={x, x2}, f=1, and @(x,, x1)=0(x,, x,)=0 and
O(x1, x2)=0(xs, x1)=1. It is easily verified that I(4)=—co and ci(4)=2
and that @ is not of positive type.

§ 3. Measures whose energy equals ci(4) or c(4)

We assume that £ is universally measurable. The following lemmas are
well-known:

LemMma 7.9  Let & be a nonempty convex set in & and vy be a measure in
F such that ||v||=inf{||v||; v€ F}. Then we have ||v—yvo||* <||v||*— w0l for
any ve £.

Lemma 8. If p, converges strongly to o, then we have

lim @, pn) < O(, o) n.e. in Q.

”

Lemma 9.8 Assume that any open set in 2 is a K,-set, 1.e. a countable union
of compact sets and that Vi(A)=V,(A) for any K,-set. If u, converges strong-
ly to uo, them we have

li_m@(x, pn) = O(%, o) g.e. i 2.

n—

Tueorem 2. Assume that & is strongly complete. In case ci(A) is finite,
there exists a measure o in I'} such that ci(A4)=||uol*

Proor. Since I'} is not empty, there is a sequence {u,} in I} such that
|| el|* tends to ci(A4) as n—>oo. Because (un+ pu)/2 belongs to I'}y, we have

Il n— gl |* =200 il |* + 1| o) — 411+ o)/ 212
= 2(lpal P+ ) — 4 (A

Therefore {u.} is a strong Cauchy sequence in & and converges strongly to
some measure u, <€ & by our assumption. It follows from Lemma 8 that u,
belongs to 7'} and hence ||uo||*=ci(4).

Tueorem 3. Assume that & is strongly complete and that any open set in
2 1s a K,-set. In case ci(A) is finite, there exists a measure o in I'y such that

6) [3], Lemma 4.1.1, p. 174.
7) [3], Lemma 3.2.4, p. 165 or [7], Theorem 1.18, p. 210.
8) [3], Lemma 4.3.3, p. 182 or [7], Lemma 3.7, p. 306.
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e (A)=]|poll*.

On account of the corollary of Theorem 7 below, we can prove this theo-
rem by the same reasoning as in Theorem 2, by using Lemma 9 instead of
Lemma, 8.

Tureorem 4.  Assume that & is strongly complete, that f is integrable with
respect to any measure in &g and that — Iy =c {(K) for every compact set K.
Then we have — Iy =ci(A) for any set A.

If we assume furthermore that c{(G)=c¥G) for any open set G, then we
hawve the following relation:

~L=ci( D= ()= — T

Proor. In order to obtain — I};=ci(4), it is sufficient to show —Ij=>
ci(A) in case I>—co because of Theorem 1. Since Ii=inf{I}; K is com-
pact and KC 4} > — oo, there is a sequence {K,} such that K, is compact,
K,CK,.1CAand Ij, tends to I). By Theorem 2 and our assumption — I} =
ci(K), we can find a measure v, in I'k, such that ||v,|*=ci(K,)=— I}, < — I,
< oo, We see by Lemma 7 that {v,} is a strong Cauchy sequence in &. Since
& is strongly complete, v, converges strongly to some measure »,. Then we

have @(x, vo) = f(x) n.e. on OK,, by Lemma 8. We shall show @(x, vo) = f(x)
n=1

n.e.on 4. In fact, if we deny this, then there would be a compact set K,
such that Vi(Ky) <o and O(x, vo)< f(x) on K,. Writing K=K, UK,, we see
that I, tends to I by the inequality I} << I}, <Ij . If v is determined by
the sequence {K.} in the same way as v, was determined by the sequence
{K,}, then we have ||v||*=||v{||> and ||v,—vg]|=0, or equivalently,” @(x, vo)=
O(x, v;) n.e. in 2. Since O(x, v{) = f(x) n.e. on OK;)KO, we have O(x, vy) =
n=1
f(x) n.e. on K,. This is a contradiction. Thus vo€ I"}(4) and ci(4) <||vo|?
=lim|]y,||*= —I’. Next we shall show c44)< —I4. For any open set GD 4,

it holds by our assumption that c(A4)<c%G)=ci(G) = — I}.. Hence cy(A)<— I;.
This completes the proof.

§ 4. The case where f is upper semicontinuous

Now we discuss the problems raised in §1. In this section, we assume
that & s strongly complete and that, except in Theorem 10 below, f is upper
semicontinuous and does not take the value + oo. First we obtain

Tueorem 5. It holds that ci(A)=ci(A) for every K, -set A.

Proor. It is enough to show that @(x, v)=>f(x) n.e. on A implies

9) [3], Lemma 3.2.1, p. 164.
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O(x,v)=f(x) q.e. on 4. Write N={x<€ 4; &(x, )< f(x)}. Then N can be
represented as a countable union of compact sets {K,}, because f is upper
semicontinuous and A4 is a K,-set. Since V,(K,)=Vi(K,)=Vi(N)=c by Pro-
position 3, it follows from Proposition 2 that V,(V)=occ. Namely @(x, v)
=f(x) q.e. on A.

Next, we give an answer to Problem I:

Tueorem 6. It is valid that — I =ci(A) for any set A.

Proor. It suffices to show — I = ci(K) for every compact set K in case
I > — oo, because of Theorems 1and 4. Assume that K is an arbitrary com-
pact set with Iy > —oco. We may suppose that sup{f(x); x€ K} is positive.
In fact, otherwise, I =0 and ;=0 satisfies the inequality @(x, ;)= f(x) on
K and hence c¢i(K)=0. In case Vy(K) is positive, it is a known result that
there exists a measure px € £x such that Iy = I(uy), O(x, px)< f(x) on Sux
and @(x, px)= f(x) n.e. on K; see, for instance, [7]. Then it follows that
— I =(ug, ng)=cK). Next we shall show the inequality in case Vy(K)=0.
Write F={« EK;f(x)>0} and F,={x€K; f(x)=1/n}. Then {F,} is an in-
creasing sequence of compact sets whose union equals . We shall show that
V{(F,) is posiﬁve for all n. In fact, if we deny this, there would be an in-
teger n, and a measure uo€ %r,, such that (uo, po)= WiF, )= Vi(F,)=0. It
follows that Iy < I} < I(tpo)< —2t/n, for any positive number ¢ and hence
Ii = —oco. This contradicts our assumption I >—oco. Since Vi(F,)>0 for
each n, we can find a measure y,€&r, such that I = —ci(F,)=|lu,ll* and
O(x, pn)= f(x) ne.on F,. We see that {u,} is a strong Cauchy sequence by
Lemma 7 and therefore it converges strongly to some measure p*< & by the
strong completeness of #. Then we have lim(— I} )=|[x*||* and O(x, p*) =

f(x) n.e. on F by Lemma 8. Since f=0on K—F, it is valid that &(x, u*) = f(x)
n.e. on K. Therefore ||u*||*=ciK). It is always valid that Iy <71, and
hence Ity <limIi . It follows that — I% =lim(— I )=||u*|* = c (K.

n—>0

In the above proof, we see easily

CoroLLARY.!” In case Ii; > — oo, there exists a measure u* such that I =
— (¥, p*) and O(x; w*)= f(x) n.e. on K.

Thus Problem I is solved in this case. But for Problem II, we have a
megative answer in general. In fact, we give

Exampie 2. Let 2 be the real line, K={x=0}, @(x, )= |x|| y| and p be
the unit point measure at x=1. We take f(x)=0(x, u)=|x|. Then I};=
ci(K)=c4%K)=0and Iz=—1. In fact, let G be any open set containing K.

For_ any measure v of &¢, put a=a(u)=8|x|dv(x). Then I(v)=a’—2a with

10) cf. [7], Theorem 3.35, p. 342.
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0<<a<oo. Wesee I.=inf {I(v); ve &} =—1. Thus I}4=—1.
However, we can prove

TurOREM 7. Assume that any open set in 2 is a K,-set. If we assume
either >0 or >0, then we have — Iy =c4(A) for any set A.

Proor. Since we obtain — I4=>c%(4) by Theorem 4, let us show that
O(x, v)= f(x) q.e. on A implies — 14 <(v,v). Let N={x€ 4; 0(x, v)<f(x)}.
Then V,(N)=oco. For any numbers ¢, 0<t<1, and s>1, put G;;={x € 2;
s@(x, v)>tf(x)}. By our assumption that />0 or >0, G, contains A—N.
Since f is upper semicontinuous, G;, is an open set. Because (s/¢)» belongs
to I'¢,,, it follows from Lemma 6 and Theorem 6 that —I4=—1I5 y< —1I,
=ci(G,) =(s/t)*(v,v). Letting ¢ and s tend to 1, we have —I5 =< (, v).

By combining Remark 1 with Theorems 5, 6 and 7, we have

CoroLLARY. It holds that Vi(A)=V.(A) for any K,-set A.

Tueorem 8. Assume that any open set in £ is a K,-set. Let {A,} be an
increasing sequence of arbitrary sets and let A=C/A,,. Then it holds that
lim ¢4(A4,) = c4(A). "

" Consequently, under the same assumptions as tn Theorem T, we have lim I
— 15 o
Proor. It suffices to show that }ZIIQI} ci(A4,) = c¥A4) in case }1im ciA4,) is

finite. There is a measure v, such that c¥(4,)=||v,|* and O(x, v,) = f(x) q.e.
on A4, by Theorem 3. Since I";, DI}, , we have by Lemma 7

[l —vll* <[vall* = [vm] for n=m.

Therefore {v,} is a strong Cauchy sequence and converges strongly to a mea-
sure vo€ &. It follows from Lemma 9 that @(x, vo) = f(x) g.e. on 4 and hence

e5(A) = ol =Lim| I,
On account of Theorems 5, 6 and 7, we have Iy = I for any compact set

K in case #>0 or f>0. By this fact and Theorem 8, we can apply Choquet’s
theorem (Théoréme 30.1 in [27]). Thus we have an answer to Problem IV:

TueoreM 9.1V If we assume that any open set in 2 is a K, -set and either
0>0 or >0, then it 1is valid that Ii= I for every analytic set A.

Combining this theorem and Remark 1, we have

CoroLLARY. It holds that Vi(A)=V,(A) for every analytic set A.
Using this result, we have an answer to Problem III:

11) cf. {7], Theorem 3.48, p. 345.
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Tueorem 10. Assume that f is a Borel measurable function and that any
open set in 2 18 a K, -set. Then it is valid that ci(A)=ci(A) for every analytic
set A.

Remark 2. Fuglede [3] called a kernel consistent if it is of positive type
and any strong Cauchy net converging vaguely to a measure converges
strongly to the same measure. Without the strong completeness of &, he
obtained a result similar to this corollary. It is restated as follows:

Proposition 4.2 If the kernel is consistent and any open set in 2 is a
K ,-set, then it holds that V{A)=V.,(A) for every analytic set A.

If we use this fact, we have a result similar to Theorem 10:

Assume that f is a Borel measurable function, that any open set in 2 is a
K,-set and that @ is consistent. Then it is valid that ci(A)=ci(A) for every
analytic set A.

§ 5. The case where f is lower semicontinuous

In this section, we are interested in the case where f is lower semiconti-
nuous and does not take the value —oo. As for Problem I, we have

Tueorem 11. Assume that & is strongly complete. Then it holds that
— I} =ci(A4) for any set A.

Proor. It is enough to show that — Iy = ci(K) for every compact set K
in case I} >—oo. Let D={a} be a directed set, and {f.; € D} be a net of
continuous functions increasing to f. For each «, there exists a measure
va € I'¢(fa) such that ci (K)=|lva|®. If fo<fs then I'k(fa) DI'x(fs) and by
Lemma 7

[Iva—vell* <[lvell* = [Ival %

Hence {v,} is a strong Cauchy net and converges strongly to some measure
vo. We see that v, belongs to I'(f). In fact, put N={x € K; 0(x, vo)< f(x)}.
If V,(N) were finite, then there would be a nonzero measure p€ &y. Obvi-

ously (g, Vo)<gfdp, and (u, va)ggfadp for any ae€ D. By the latter in-

equality, we have S f d,uzling S fad,uglirg (i, vo)=(u, vo). This is absurd. It
follows that

ef ) == il = 1im e, (K) = Tim (— Ty(f) =~ Ti(f)

This completes the proof.

12) {3], Theorem 4.5, p. 184.
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We have a negative answer to Problems II and IV even if >0 and ¢>0.
It is shown in

ExampLe 3. Let 2 be the real line, K={|x|<1}, 0=1 and f(x)=1 if
[x|<1and =2if |x|>1. Then we see Iy=—1, c(K)=1 and I;=—4 for
any open set G containing K. Hence Ij;=—4. We observe that in this ex-
ample ¢ is strongly complete.

§ 6. The case where f is a potential

We now consider the case where f 1is the potential of a fixed nonzero
measure p of €: f(x)=0(x, p). Since it is lower semicontinuous, Problem
I is solved as proved in §6. However for Problem II, we have a negative an-
swer as Example 2 shows. The assumption @ >0 is not sufficient (cf. Theorem
7) to have an affirmative answer either. It is shown in

ExampLe 4. Let 2 be the real line, K= {x=0}, &(x, y)=1/|x|| y| and
be the unit point measure at x=1. Then f(x)=1/|x| and c(K)=c¥K)=0.
Since I.= —1 for any open set G containing K, we have I;=—1.

In order to obtain an affirmative answer in a special case, we shall con-
sider the generalized capacity introduced by Cartan in the classical case. We
begin with some preparations.

For any set 4 and veE &4,

16)= (0, 2| fdr= (5, ) =20, = llp— = |

Therefore it is valid that 0= Ii( /)= —||u|/*> — . The following proposi-
tion was proved by Cartan [17] in the classical case.

Prorosirion 5. Let & be a nonempty strongly complete convex set in &
and let AF; p)={p' € F; ||v'—pll=inf{||[p—vl[; vEF}}. Then AF; w)+¢
and |[pi—p3l|=0 for any pi, p3 € AF; p).

& is called a cone if tv€ & for any measure v€ % and any number =>0.

Like Cartan, we have

Lemma 10. Let & be a nonempty strongly complete convex cone in & A
measure p' € F belongs to AF; u) 1f and only if (W' —pu, v) =0 for all ye F

and (u'— p, p')=0.

Lemma 11.  Let K be a compact sel and assume that &x is strongly com-
plete. Then any measure py m A& x; 1) satisfies (u, pi)=|lpkll? and O(x, p})
=>0(x, u) n.e on K.

Proor. Since & is a nonempty strongly complete convex cone in & by
our assumption, A(€k; w) is not empty because of Proposition 5. Take any
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ui€ A(Eg; p). By the above lemma, (u, px)=|luk||>. We shall show that
the set N defined by {x€K; O(x, uk)<O0(x, x)} has infinite V;-value. If we
deny this, there would be a nonzero measure v€ &y &x. Then

O, px)<(v, p).
This contradicts uj € A(&k; ) on account of the above lemma.

Tueorem 12. Let K be a compact set and assume that & x s strongly com-
plete. Then we have — I =ci(K)=||ukl|*

Proor. First we recall that I(v)=|v—pu|*—||x||>. It follows that I;=
infI(w)=||px —pl?—llpll*=—|lpkll>. We have —Iy=ci(K) as shown in the
proof of Theorem 11.

Hereafter in this section we assume, unless otherwise stated, that & 1is
strongly complete. We shall define ¢/ and &4 for any set 4 like Cartan [1]:

& =the strong closure of {ve&; 32— A4)=0}'®
and
c4=N4{¢L; is open and GD A}.

We observe that &% is equal to the strong closure of \U{&x; K is compact
and KC 4}. Since ¢ is strongly complete by our assumption, &} and &4 are
strongly complete convex cones in ¢. Given p€ &, taking & (&4 resp.) for
& in Proposition 5, there exists a measure pie€&i(uy€ &4 resp.) which
minimizes I(v) for ve &i(&4 resp.). This extremal measure is not always
determined uniquely, but the corresponding values of energy are unique by
Proposition 5. We put

Ci(A)=(p}, ph) and CyUA)=(p4, 1)

We shall study the relation between these quantities and those in the previ-
ous sections. As stated at the begining of this section, we take @(x, u) for
f(x). First we shall prove

Tueorem 13.  Let f(x)=0(x, p). If &k is strongly complete, then we have
Iy =c}(K)=Ci(K)
for any compact set K.

Proor. For any v € &%, there is a sequence {v,} in &x which converges
strongly to v. The measure u% obtained in Lemma 11 satisfies the following
relations: pux €8x C &%, (uk—mw, v,)=0 and (uy—u, pk)=0. We let n—>oo
and see (ux —u, v)==0. By the arbitrariness of v and Lemma 10, we conclude
that u} € A(¢k; 1) and hence — Iy =||uk||*=Ci(K) (Theorem 12).

13) ¥ represents the outer measure of v, i.e. 5(4)=inf{v(G); G is open and G 4}.
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Like in the classical case, we have

Lemma 129 Let {F.; a € D} be an increasing net of nonempty strongly
convex cones and F be the strong closure of \JF .. Then pic A(Fqa; 1) con-

aeD
verges strongly to some measure u' € A(F ; w).
In this lemma, by taking D={K; K is compact and contained in 4} and
{¢i; Ke D} for {#,; a € D}, and observing that &/ is also equal to the strong
closure of \U{¢%; K< D}, we obtain

Lemma 18, Ci(A)=sup {Ci(K); K is compact and K C 4}.

Combining this lemma with Theorem 13 and taking account of the equali-
ty I'=inf {I}; K is compact and K C 4}, we obtain

Tureorem 14. Let f(x)=0(x, p). If &g 1is strongly complete for every
compact set K, then we have Ci(A)= — I}, for any set A.

Lemma 149 Let {F.; a € D} be a decreasing met of monempty strongly
closed convex cones in & and let F=\F, Then u,€ A F.; pu) converges

aepD
strongly to some measure p' € A(F ; ).
By taking D={G; G is open and contains A} and {¢f; G€ D} for {Z,;
a € D} in the above lemma, we see C4(A4)=inf {Ci(G); G is open and G A4}.
Thus we obtain

Lemma 15, If &k is strongly complete for every compact set K, then we
have C(A)= — I for any set A.

Thus in case f(x)=0(x, p) with p€ &, Problem II is reduced to the ques-
tion as to the coincidence of c4(4) with Ci(4). In order to obtain an affirma-
tive answer, we give the following propositions which were proved by
Ohtsuka:

ProrosiTioN 6.1 Assume that the kernel @ satisfies the continuity prin-
ciple’” and @>0. Then for every p < &, there is a sequence {u,} C& such that
O(x, px) 18 finite and continuous in 2 and p, converges strongly to .

Prorosition 7.'¥  Under the same assumptions as in the above proposition,
&k 18 strongly complete for every compact set K.

Remarx 8. We do not need in the above two propositions that & is
strongly complete.

14) [1], Proposition 1.

15) [1], Proposition 2.

16) [7], Lemma 1.4, p. 190.

17) Continuity principle: If the potential @(x, p) of a measure p with compact support Sy is finite
and continuous as a function on Sy, then @(x, u) is continuous in £.

18) [7], Theorem 1.7, p. 196.
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The following two lemmas are easy to see.

Lemma 16. Let & be a nmonempty strongly complete convex cone in &,
and p; be nonzero measures of & and pj<€ AF; u;) (j=1,2). Then we have

et — mall =|lpey — peall.

Lemma 17,  Let {u.} be a sequence of nonzero measures in & and F be a
nonempty strongly complete convex cone in &. If p, converges strongly to pu,
then p, € A(F ; u,) converges strongly to some p' € A(F, u).

Now we shall prove

Tueorem 15.  Let f(x)=0(x, p). Assume that O satisfies the comtinuity
principle, that @ >0 and that any open set in 2 is a K,-set. Then we have

—I;=Ci(A)=ci4)
for any set A.

Proor. By means of Proposition 7, it follows from Theorems 4, 10 and
11 and Lemma 15 that c¥(4) < — I;=Ci(A4).. Hence it is sufficient to show
that c4(4) = C¢(4). First we consider the case where @(x, p) is finite and
continuous in £. Since >0, on account of Theorem 7 and Lemma 15, we
have c§(4)=—1I3=CyA4). Next, in the general case, there is a sequence
{un} C& such that f,(x)=0(x, u,) is finite and continuous in £ and y, conver-
ges strongly to u by Proposition 6. We can choose {u,} in such a way that
fa(x) increases with n. Since I'4(f,) DI'4(f), it follows that Cg (4)=c§ (4=
cy(4). Taking ¢4 for # in Lemma 17, we see that C; (4) tends to Ci(4) and
hence Cy(A) < c¥(4),

Summing up Proposition 7, Theorems 10, 14 and 15, we have

TueorEM 16.  Suppose that @ satisfies the continuity principle, that @>0
and that any open set in £ is a K,-set. Then it holds that Ci(A)=C¢(A) for
every analytic set A.

CoroLLARY. Under the same assumptions as in the theorem, we have
&L =& for every analytic set A.

Proor. It is always true that ¢4, C&4. Let n€&4 Then we can find a
measure u' € A(&}; 1) by Proposition 5. Since u€ A(6%; 1), we see ||u—u/|)?
<plP—=|I#||?P=CAA)—Ci(A4). If A4 is an analytic set, then it follows from
Theorem 16 that || —u'||=0. Because & is strongly closed and u’ € ¢, we
conclude that € &% and hence ¢4 C &%.

Ogawa [5; 6] proved this theorem under a stronger condition that the
kernel satisfies the domination principle.

We give an example such that & is strongly complete and the kernel does
not satisfy the domination principle.
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Exampre 5. Let 2 be the 3-dimensional Euclidean space and g(x)=|x|
if |x]<3, =6—|x]| if 3<|x|<6 and =0 if |x|>6. If we take O(x, y)=
Ix—_ﬂ—l- g(x)g(y), then @ is of positive type and satisfies the continuity prin-
ciple. We can verify that & is strongly complete by using the property of
the Newtonien kernel. Let 2 be the unit uniform measure on {|x|=1} and
1=2¢, (g is the unit point measure at x =0=the origin). Then &#(x, x)=2|x|".
It holds that @(x, ) <®&(x, u) on S2and 1€ &. However it is not valid that
O(x, )ZO(x, w) in 2.

If we do not assume both the continuity principle and @ >0, it is not ne-
cessarily true that £, =&% even for a compact set K. Actually ¢4 +6% in
Examples 2 and 4. Ogawa [ 6] stated that ¢4 =¢% if @ satisfies the con-
tinuity principle and @>0'® without the strong completeness of & In its
proof, he asserted that any measure of &% is supported by K. However, even
if ¢ is strongly complete, a measure of &% is not always supported by K. In
fact, we give

ExampLE 6. Let 2=(—o0, ), K={|x|<1} and &=1. Then it holds
that & £ &L =65 =6.

We give here a correct proof for the above statement. First, without
assuming that & is strongly complete, we observe

Lemma 18. Let & be a subset of &. If F is strongly complete, then the
strong closure F of & in & is strongly complete.

Proor. Let {u.} be any strong Cauchy net in &#. Given >0, we can
find « and a measure v, € & such that ||, —va|| <7 for each « and ||, — psl| <7
for any a, #=«,. Then {v,} is a strong Cauchy net in #. Since & is strong-
ly complete, v, converges strongly to some po€ #. It follows that u. con-
verges strongly to pu,.

For any compact set K, without the strong completeness of &, we shall
prove

Tueorem 17.  Assume that @ satisfies the continuity principle and @>0.
Then &k =¢&%.

Proor. Since &, is strongly complete (Proposition 7), &% is strongly
complete by the above lemma. ¢4 is strongly closed and contained in &,
which is strongly complete, where G, is a relatively compact open set contain-
ing K. Therefore &% is strongly complete. Ci(K) and C%K) can be consider-
ed as before. It is enough to show CLK)=Ci(K) in order to obtain our
theorem (cf. the proof of the corollary of Theorem 16). This is carried out
in the same way as the proof of Theorem 15.

19) [6], Corollaire du Théoréeme C, p. 229 and Lemme 9, p. 237.
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§ 7. The case where f is quasi upper semicontinuous

A function f is called quasi upper semicontinuous if, for any positive
number ¢>0, there is an open set G, such that V;(G.)>1/¢ and the restriction
of f to 2—G, is upper semicontinuous and does not take the value +co. In
case f and —f are quasi upper semicontinuous, we say that f is quasi con-
tinuous.

Throughout this section, we assume that f is Borel measurable, quast
upper semicontinuous and integrable with respect to any measure in &4, and that
& s strongly complete. We shall examine Problems I, IT and IV in this case.?”
As for Problem I, we have

Tueorem 18. It holds that — I}, = ci(A) for any set A.

Proor. Let us show first —I};gc}(K) for every compact set K. We
may suppose that I% is finite. For each n, there is an open set G, such that
Vi(G,)>n and f is upper semicontinuous and does not take the value + o as
a function on 2—G,. We may assume that G, decreases as n increases. Put

K,=K—G, and N= [\G Then \/K =K—N and f is upper semicontinuous

in K, and does not take the value 4 oo, On account of Theorem 6 and its
corollary, we can find a measure v, such that — Iy =ciK,)=]|]»,|> and
O(x, v) = f(x) n.e. on K,. By using Lemma 7 (in §3), we see that {v,} is a
strong Cauchy sequence and v, converges strongly to some measure v,. By
Lemma 8, we have @(x, vo) = f(x) n.e. on K—N. Since Vi(N)=V{(G,)>n for
any n, it follows that V;(N)=co and @(x, »0)=>f(x) n.e. on K. Thus y,€ 'y
and c}'(K)§||u0||2=}Zim||un||2= —7llim Ii < —1Ij. Theorem 1yields ci(K)=—1Ij

and hence ci(4)=— I’ follows from Theorem 4.
Next we shall give an answer to Problem II:

Tueorem 19.  Assume either f>0 or @>0 and that any open set in 2 is a
K,-set and that f is bounded from above. Then we have — Ij=c¥(A) for any
set A.

Proor. It suffices to show that @(x,v) > f(x) q.e. on 4 implies — I3<"(», )
by Theorem 4. Given ¢>0, on account of the quasi upper semicontinuity of
f, there is an open set B, such that 7;(B:)>1/¢ and f is upper semicontinu-
ous as a function on 2— B,. Write

N={x€ 4; 0(x, »)< f(x)}
and
Gis={x € 2—B¢; t0(x, v)>sf(x)}

20) This extension was suggested by Professor M. Ohtsuka. The author considered first the case
that f is quasi continuous and bounded from above.
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for positive numbers ¢ >1 and 0<s<1. Then G;;\UB; is an open set and con-
tains 4— N because of our assumption that #>0 or f>0. It follows from
Lemmas 2 and 6, Theorem 18 and the corollary of Lemma 4, that

[— I =[— Ih <[ = L0, 0
g[—‘Iémjllz‘f'[—Ijgs:luz<C}(G;S)1/2+.851l2-

Since (t/s)» belongs to I'{,, we have ci(G,,)<(t/s)*||»[|* so that [—I5]"*<
(t/s)||v]|+ Be*'2.  Letting t—1, s—1 and e—0, we obtain the desired inequality.
Finally we give an answer to Problem IV:

Tureorem 20. Under the same assumptions as in Theorem 19, we have
I = I for every analytic set A.

In the last two theorems, we can not omit in general the condition that f
is bounded from above. In fact, we refer to Example 4. The function f in
this example is quasi continuous, because K and ¢ are only sets of infinite 7,-
value.

§ 8. Conditional Gauss variational problem

Let g be a positive continuous function on £ and ¢ be a positive number.
We introduce a class of measures: &a(g, t)={v€&4; g gdv=1t}. The mini-

mizing problem of I(») for v€&a(g, t) is called the conditional inner Gauss
variational problem. Put I}=TI,(f, g, )=Iinf{I(»); ve&a(g, t)} and I}=
sup{I; G is open and GO 4}. Ohtsuka examined the capacitability problem
for these quantities. Can we apply the method of Fuglede in this case?
Namely, is there any advantage to introduce two classes of measures similar
to I'% and I'4?

In case 4 is a compact set K, Ohtsuka obtained the following result.??
Let pu: be a measure of (g, t) such that I(u,)=inf {I(v); v€ Ex(g, 1)} s finite

and let 7(K) be defined by tr:(K)= (s, M)—g fdu,. Then it holds that 0(x, u)
= f(®)+7(K) g(%) n.e. on K and O(x, p) = f(2)+71(K)g(x) on Sp,.
We can define I'}; as the class

We&; O(x,v) = f(x)+71(K)g(x) n.e. on K}.

We do not know how to define I"; for a noncompact set 4. We shall show
with an example that y,(K) does not have a monotone property with respect
to K. Accordingly, none of +7/(K) is suitable to be regarded as a kind of
capacity.

21) [7], Theorem 2.7, p. 221.
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ExampLe 7. Let 2 be the 3-dimensional Euclidean space, /=0, g=1, t=1,
O(x, p=1/|x—yl, Ki={|x|=1} and K,={|»|=2}.

If we denote the uni-

form unit measure on {|x|=r} by u,, then Iy =Iu)=1, Ii =u,)=1/2,
7:(K)=1 and 7,(K,)=1/2.

Exampre 8. Let 2=K; be the interval [0, 1] in the real line, K; = {x =0},

g(x)=2—x, f(x)=x/2,t=1 and @=1. Then it holds that 7(K,)=1/4<1/2=
7/(K>). We observe that I} =1/4 and I = I(¢;)=0, where ¢, is the unit point

measure at x=1. In fact, let v€ &, (g, ¢). Then I(u)z[u(!))]z—gxdu(x) and

S gdv=1means that —1+2u(2)={xdu(x). If we put»(2)=s, then I()=s*—2s

+1=(s—1)" and hence Iy ,=0. Let ve&x (g t). Then Sgduzl implies
w(K1)=1/2. Therefore I =1/4.
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