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1. Introduction and Summary

In a two-way classification design on two factors, say A and B, we apply
each factor on varying levels to various experimental units. We assume that
this application yields for each unit a quantity which we call the yield of
this unit. We denote by ??(/, /) the mean value of the yield obtained when
the factor A is applied at level / and the factor B at level /. These levels may
be qualitative or quantitative and could assume discrete or continuous values.
Usually they are chosen deterministically by the experimenter. In some
cases, however, they are selected randomly according to a probability scheme.
Even when the levels vary continuously, the experimenter can calibrate or
can group them into a finite number of discrete values. We, therefore, as-
sume that / and /can take the values 1, 2, •••, r and 1, 2, •••, s, respectively.

The object of a two-way classification design is to make some inferences
on the behavior of the mean yield function τ/(I, /). For such purpose, the
function ??(/, /) is usually broken up into a general mean /*, a main effect
a(I) of the factor A, a main effect /?(/) of the factor B, and an interaction
effect γ(I, /) ascribed to the combination of level I of the factor A with level
/ of the factor B, i.e.,

(l.i) ?(/, /) = /£+«(/)+/9(/)+r(/, /)•

If nothing more is stated about the decomposition, these components of the
decomposition are not uniquely defined. It is for this reason to impose some
constraints among these components.

In order to seek for a set of reasonable and intutively acceptable con-
straints, we introduce a non-negative weight function W(I, J) associated to
a pattern of the yield function rj(I, /). A purpose of introducing such a
weight function is to develop a unified treatment of the identification prob-
lem in the decomposition (1.1) of the yield function.

The weight function JF(/, /) might be considered as an apriori probability
function over the combination of the levels of the experiment in the wide sense
(the total mass of the distribution of W(I, J) may not be necessarily unity).

Upon introducing the weight function W(I, /), the general mean β is de-
fined as an overall expectation of τj(I, J) with respect to the weight function



358 Sumiyasu YAMAMOTO and Yasunori FUJIKOSHI

, /) by

Σ Σ W{i, j)y(i, j)
(1.2)

v Σ W{i, j)LΛ

The following constraints imposed on the other components might be rea-
sonable and intutively acceptable, i.e.,

(1.3) Σ r( i , /) j-(i, /) = 0 for all /
lί = l

±W(I,j)γ(I,j) = 0 for all 7

where r(J, •)= Σ r(J, ) and r( , /)= Σ JΓ(i, /).
y = i ί = i

It is easy to see that the constraints introduced in a usual two-way classi-
fication design are based on a special weight function with JF(/, /) = 1 for all
/ and /.

Scheffe [6] introduced a system of non-negative weights U(I) and V(J)
r s

with Σ U(ί) = l and Σ K / ) = 15 and imposed a set of constraints on the com-
i=ι y=i

ponents for the identification of the decomposition

(1.4) ΣU(i)r(i,J)=0 for all/
i = l

/, /)=0 for all /.

This set of constraints is based on a special weight function with W(I, /) =
U(I)V(J) for all / and /, provided all £/(/) and Γ(/) are positive. In order to
arrive at Scheίfe's constraints when U(I)=0 for some / (and/or V(J) = 0 for

some /), all we have to do is to impose one additional constraint Σ V(j)γ(I, j)
j = ι

= 0 (and/or Σ U(i)r(ί9 J)=0). Therefore no special mention will be made of
i = 1

such cases.
In a two-way classification design with unequal cell frequencies, it can be

seen in Section 4 that the use of the weights JF(/, /) proportional to the cell
frequencies n(I, J) is necessary to explain the appropriateness of the analysis
of variances described without introducing the definition of the components
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in (1.1) by Rao [4]. Such a weight function is neither a usual one nor of
Scheffe's type.

In section 2 we show the consistency of our constraints (1.3) and derive
the necessary and sufficient conditions for a set of weights to be identifiable.
These conditions show that the weight function W(I, J) may assume zero
without violating the identifiability. A balanced incomplete block design and a
partially balanced incomplete block design with replication may be considered
as typical examples of such a two-way classification design. In section 3 we
investigate some properties of the components. In section 4 we treat the
analysis of variances of the two-way classification design under our general
model. An important special case of interest will also be considered there.
In section 5 we treat the orthogonality property in the analysis of variances.

The considerations given in this paper may be generalized to the multi-
way classification design*. Similar considerations may also be possible for
the multivariate analysis of variances.

For simplicity, we denote a(i\ /?(/), γ(I, /), W(I, /), ΪΓ(7, •), ΪΓ( , /),
7/(1, J) and τι(7, /) by ah βh γih wih w{., w.h rjij and nih respectively in the
following discussion.

2. Identifiability

We shall first prove the consistency of our constraints (1.3) in defining
the components μ, a^ βj and γij.

(a) Consistency
L e t η r = ( y i n , Vu, •••, y r s - u Vrs), a' = ( a u • •-, a r \ β ' = ( β ι , ••-, β * \ a n d γ =

(7Ίi5 7Ί2, •••, ΐrs-u Yrs) Then the decomposition (1.1) and the constraints (1.3)
can be expressed in matrix notation as follows

(2.1) -η =j

j'rsDalIr <8>j,la = 0, j'rsDwljr 0/,]/9 = 0

(2.2)

wherej^ = (l, •••, 1), Ip denotes the unit matrix of order/?, XξZ)Y denotes the
Kronecker product of Xand F, and Dw= diag(wn, wί2, , wrs-u wrs)-

The problem is to prove the consistency of the constraints, i.e., the matrix
equation

* (c.f. Yamamoto and Fujikoshi (1967). Models and ANOVA in factorial designs (in Japanese).

Res. Memoir of Res. Inst. Math. Set. (Kyoto). No. 25, p. 240-260.)
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(2.3)

0 j'rtDκUr®j,l 0 0

0 0 j'rsDwtjr®IsJ 0

0 0 0

has at least a solution with respect to μ, a, β, γ for every -η in the rs dimen-
sional Euclidean space E r s .

THEOREM 1. The equation (2.3) is consistent.

PROOF. It is sufficient to show that

0 0 0

]Ir<g)jsJDwjrs 0 0

0 Lj'r<S>IsDwljrs 0

0 0 Dw\ilr<g>jt,m

(2.4) (R

j'r®j'.

Ir®fs

JrQ9-ls

Ir(

ΓΛ(

(c.f. Yamamoto and Fujikoshi [7J, p. 213), where
spanned by the column vectors of X. Suppose that

0 0

0 \J'r®I.lDujr.

0 0 £>„

denotes the space

0

0

0

iτ®j.,]τ®i.l

h o l d s f o r s o m e v e c t o r s u' = (un, uί2, •••, urs) a n d (a, b, c', d')=(a, b, a, •••, cr,

dι, ..., ds). Then we have

A/ / \

r s s r

where u.. = Σ Σ u%h ui- — Σ uih a n d u.j= Σ /̂y If Wij = 0 for all ί and j , we
r s

easily get ξ = 0. Assume that w..= Σ Σ^/y>0 Since aw.. = u.., bw.. = u..

and ^ . . = 0 , we have a = b = 0. Thus we have zz;. = O, u.j = 0 for all / and j .
Applying these conditions for uij = (ci

Jr dj)wih we have

= 0.
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Since Dw is positive semi-definite, we get Z^[/r(g)j%, jV(g)/J[V, cΓy^O? i.e.,
(ci+dj)wij = 0 for all ί and /. Thus we have ξ=0. This completes the proof.

(b) Identifiability of a set of weights
Definition A set of weights {WIJ} is called identifiable if and only if the

solution (ju, α, β and γ) of the equation (2.3) is uniquely determined for every
η in E r s .

We have the following

THEOREM 2. A set of weights {w^} is identifiable if and only if one of the
following conditions (i)^(vί) holds;

Dr W

(i) rank

(ii) rank
W'

(iii) rank [_Dr —
_ 1 _ 1

(iv) The maximum latent root of Dr

 2 WD~ι W'Ώr 2" is simple.
_ 1

(v) There exists a positive integer I such that each element of (Dr

 2 WD~x

W'D~~2 )ι is positive.

(vi) For any i, ί' = l, • ••, r there exists a chain ί, j u ih j 2 , ••, //_i, j h i' such

that wiSl Wi1J1 Wi1j2 -Wiι_ιjι Wi'jt>0.

Where At^Ir-^Gr^fjs—G^ Gp=jpj'p, Dr = diag(w1., ..., wr.\ Ds =

diag(w.i, ..., w.s\ and W^Ww^W.

PROOF. The proof of Theorem 1 shows that a set of weights {w^} is
identifiable if and only if the rank of the coefficient matrix of the equation
(2.3) is r5 + r +5 + 1. From (2.4) it can be easily seen that the rank of the co-
efficient matrix of the equation (2.3) equals to rs + 2+ rankDw[^Ir (S)js<>jr07J.
This shows that a set of weights {wij} is identifiable if and only if (i) holds.

Since Dw is positive semi-definite and rank X— rank XrX= rank XX\ we
have

(2.5) rank^[7 r (g) j s , j r(g)7J = rank D$,[_Ir<g)j89jr<g)I8l

~Dr W~
= rank DwUr<g)jsJr<g>Is~J\ = rank

W

Furthermore,

(2.6) τznk Dw[_Ir< )/s, jr<8>IsJDw

r s - Af1)Dw =
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w h e r e A \ ^ ( l r - - r ) ® s , lι r ® t J 0 rg
\ r / s r \ s / r 5

and A\λ defined above are mutually orthogonal symmetric idempotent
matrices. Thus the conditions (i) and (ii) are equivalent.

The condition (ii) shows that Wi. and w.j must be positive for all ί and /.
So we have

(2.7) rank
Dr W

= rank
J Dr W

W Ds

Hence we have (iii). The converse is obvious.
Since each element of the matrix D~ιWD~ιW is non-negative and

Ό-^WΌ-^W'jr^jr holds, the matrix D^WD^W is a stochastic matrix. By
the well known results concerning the bound of latent roots of a stochastic
matrix (c.f. Bartlett QΓ], p. 52), we have | p | < 1, where p denotes a latent root
of the matrix D~ι WD~ι Wr. We, moreover, can show that 0 < p < 1 , since the
latent roots of D^WD'^W coincide with those of the symmetric positive

semi-definite matrix D~ * WD'1 W'Ώr^ = (D~ ~* WD~ ^){D~ * WD~ 2)'. The condi-
tion rank (Dr— WD~ιW')=r—1 is equivalent to the condition rank(/ r —
D~1WD~1W/)=r—1. The latter is necessary and sufficient for that p = l is
simple. Thus p = l is simple and the maximum latent root of the matrix
D~ι WD~λ W. Hence (iii) and (iv) are equivalent.

Suppose that (iv) holds, then we have the spectral resolution D~~*WD~vWr/D~~*

= Bf + ρ2Bl-i VQqBl, where 0 < p z < l , i = 2, ..., q and B\ = -^-D}GrDJ, B\,

..., B\ are mutually orthogonal idempotent matrices. Since each element of

B\ is p o s i t i v e a n d (D~~z WDs

ι WfD~^)ι = B\ + ρι

2B\ + ••• + Q[B% w e h a v e (v) .
Conversely, suppose that (v) holds. From Perron's theorem (c.f. Bellmann [2],

p. 278) the maximum latent root of (D~* WD~ι W'B~~*)1 is simple. Since 0 <
p < l , we have (iv).

The equivalence of (v) and (vi) can be easily seen by using the facts that

wυ>0 for all i, j and (*, i') element of (D~* WD'1 W'D~~*)1 can be expressed
as

vH-ih Wi,

It is worthwhile to note that a set of weights {wij} is identifiable when
non of Wij is zero. Some of the weights wih however, can assume zero without
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violating the identifiability property.

363

3. Interaction effects

In this section we investigate some properties of the components /*, a^ βj
and Xij defined by our general set of identifiable weights {w*/}, i.e., a solution
of (2.3).

First, we show one of the extremal properties of the interaction effects.

Multiplying (2.1) on the left by

(3.1)

Dw and using (2.2), we have

β
a
β.

This shows that the components /*, α, , and βj are so determined as to mini-
mize the quadratic form

\ N ηjfj .( ηn . . // £V . Q . j y y •T/J 7" .

where \\x\\ denotes the modulus of the vector x. Our set of constraints is
so contemplated as to minimize the weighted dispersion of the interaction
effects.

Next we show that a theorem due to Scheffe ([6] p. 93) still holds for our
components defined by a set of identifiable weights.

THEOREM 3. If the interaction effects {γf-} are all zero for some set of
identifiable weights {wf }, they are all zero for every set of identifiable weights.
In that case every contrast in main effects {α, } or {βj} has a value that does
not depend on any set of identifiable weights {WJJ} .

PROOF. Suppose that the components defined for a particular set of
identifiable weights {w{$} are A ( 0 ), af\ βf\ γfj, and suppose that all γ{% = 0.
Then

(3.2) -η =jrsJu
(0) + [ 7 r (g) j jα ( o ) + [_jr ® Is~]β(0)

w h e r e a{0)/=(a[°\ ..., a{

r

0)) a n d β{0)/ = (β[0), ••-, β{

s

0)). A f t e r s u b s t i t u t i n g (3.2)

i n t o (3.1) w e c a n w r i t e

(3.3)
wr w

W

'β — βκ J-

—p — p

= 0
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where w'r = (wi., • ••, wr.) and w's = (w.h • •-, w.s). By using Theorem 2 we have

rank
Wr Dr w

Ds.

= rank
~Dr

W

w
Ds

= r + s — 1. It can be seen that two in-

(0)

(0)

— 1 ~

jr

.. 0 -

+ b2

— l-i
0

js

dependent vectors ( — 1, j r , Or) and ( — 1, O\jf

s) are orthogonal to every row
vector of the coefficient matrix of (3.3). The general solution of (3.3) is, there-
fore,

(3.4) |α-α-

or β-β{0) = -b1-b2, ai-af) = bι for all ί, and βJ-β(

j

0) = b2 for ally, where όi
and ό2 are arbitrary constants. From (3.2) and (3.4) we get ju + cti + βj=
β{0) + α(

I

 0) + β{

j

0) = 'ηij. This implies that ϊij=0 for all ί and /. We, moreover,
r r s s r

can easily get Σ c, α l = Σ c, αi 0) and Σ djβj= Σ ŷ/?}0> for any contrast Σ c, α,
ί = l ί = l . 7 = 1 J = l ί = l

and Σ djβj, respectively.
3=1

THEOREM 4. If the main effects {a\0)} {or {βf]}) and the interaction effects
{γfj} are all zero for some set of identifiable weights {wf-}^ they are all zero

for every set of identifiable weights.

PROOF. Suppose that α^0) = 0 for all af] = 0 and all 7-^ = 0. From Theo-
r r

rem 3 we have that all r*v = 0 and Σ ^ = 0 for any {c{} such that £]c, = 0.
i = 1 / = 1

The main effects {α, } satisfy the constraint Σw;.α^ = 0. Thus we have αz = 0
* = 1

for all ί.

4. Analysis of variances

In this section we discuss the analysis of variances of a two-way classi-
fication design with unequal cell frequencies. The components of the yield
function -η^ are assumed to be parametric and they are assumed to be deter-
mined by a set of identifiable weights {wij\.

Let yijk be the &th yield in the (ί, j) cell, i.e., the value of the A th observa-
tion obtained when the factor A is applied at level i and the factor B at level
j . Let j be a column vector in which those yields are arranged in the lexi-
cographical order with respect to the factors A, B and replication.

Let Πij be the number of replications in the (ί, j) cell. We only assume
that there is no level that has no observation at all in the marginals, i.e.,

s r

in.— Σ rbij>0 and n.j= Σ ^*7>0 for all ί and /. Nevertheless, the number n^
y=i ί = i

may assume zero for some pair (ί, j).
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Our basic model under which all the hypotheses are to be tested is as fol-
lows in matrix notation,

< y is distributed as N[_0, (J2In^ i β., the multivariate normal

distribution with mean Θ and dispersion matrix σ2ln

(4.1)

/.<£>/:

where n = Σ Σ

\ 1, if the combination of ith level of the factor A with

γgι = : j th level of the factor B is applied to g th yield.

0, otherwise.

φ(n x Γ) = and Ψ(n Xs) =

We now consider the tests of the following hypotheses Hh H2, H3 and
under Gw assuming that some of the π,fy>2, where

Hi: γ = 0

H2\ a — 0

H3: β = 0

(interaction effects zero)

(main effects of A zero)

(main effects of B zero)

(general mean zero).

The underlying model Gw can be specified by θ 6 Ω, a linear subspace in EΛ.
Each hypothesis Ht is a linear hypothesis and is specified by θ e 60ί? a sub-
space of i2. Let PΩ and Pωί be projection operators to Ω and ωu respectively,
then the likelihood ratio criterion for testing Ht is equivalent to

(4.2)

where / e = ^-dimension (Ω)= ^-(number of non-empty cells) and ft = dimension
(J2)-dimension (wt). Ft has a central F distribution under the hypothesis Ht

and a non-central F distribution under the alternative with fh fe degrees of
freedom.

In the following we give the explicit expressions of those projection oper-
ators and discuss some of the properties of the likelihood ratio criterions.
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Under Gw, since g(y)=jnJu + Φa + ¥β + Γγ=Γy, ?eE r 5 , we have Ω =
and consequently, we have Έ>

Ω={<P[_Γ']i:) where 9\JC\ denotes the projection
operator to (k\JC\.

The space ω\ can be expressed as

a
β

o yrεDaιir®js-] o

Lo o yr.Dκijr®i.Ί\

β

a = o

= (R\LΦ, ΨJ

The last equality follows from the arguments similar to those in the proof of
Theorem 1. The likelihood ratio criterion for testing Hλ under Gw is, there-
fore, equivalent to

(4.3)

The test statistic (4.3) shows that its value does not affected by a set of
identifiable weights {wy}. Since our set of constraints is consistent, it is in-
teresting to note that the condition of the identifiability of the set of weights
is not necessary in deriving the test statistic (4.3).

Although each of the spaces o)2, a>3 and 0)4 is defined in the form {θ\θ —
Aτ. Bτ = 0}, neither 6?[Λ'~]D(R[_B'l, nor OZtΛ'JΓλ(ZlB'Ί= {0} is in general
true (see Yamamoto and Fujikoshi [7]). The explicit expressions of Pω j, Pω3

and Pω< are very complicated. For example we give an explicit expression of
Pω in the following.

=°
βl

β\.

rJ

0

0

J'r.DwUr®*

0
-JΆ

0

£)
/

where VΊ+ V2 denotes the sum of vector spaces V\ and V2. Using the theo-
rem in Yamamoto and Fujikoshi [7J, we get ω2 = (H[Ψ^\ + &[_Q~], where Q—
r(rτyr' - r{ΓΊys'{s{rτys'γs(r'Γ)gr', s1 = -δί(7r+s-^[β2]), B[ =
ΦLΓ'JDκ\:ir<8>j,,jr®I,J, Bί, = (Irs-ΦtΓJ)Dw[_Ir®js,jr®IJ and the symbol
Xg denotes a generalized inverse of a matrix X. Therefore we can express

(4.4) Pω2 =

Similarly we can obtain the explicit expressions of Pω3 and Pωi.
In general, the likelihood ratio criteria for testing H2, H3 and H4 depend
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on the set of weights {u;, y}. This means that the sums of squares appropriate
for testing Ht (ί = 2, 35 4) depend on how the components β, ah βj and rv are
defined.

Let us consider an important special case in which the set of cell frequ-
encies {πij} is chosen as a set of weights {wij}. Choice of such a set of weights
is plausible not only in a usual two-way classification design with equal fre-
quencies but also in a fairly general class of designs with unequal cell frequ-
encies in which the unequality comes from the stochastic structure of data
collection. The former applies to the case where the yield function is con-
sidered to be a deterministic function of the levels. The latter applies to the
case where rnj may be considered as aposteriori estimates of apriori weights
or probabilities Wij.

We further assume that {mj} satisfies the identifiability conditions. It
is easy to see that the identifiability of the set of weights {mj} is equivalent
to the connectedness of the two-way classification design.

The constraints (2.2) can be expressed as

jfβa = 0 or
ί = 1

or Σ:
(4.5)

ψ>
• = U o r

Σ>
ί = 1

0

0

0

0

for

for

all i

all ,

and our basic model can be expressed as

y is distributed as N[_d, (T2InJ

(4.6)
j'βa = 0, Φ'

ψ>

We already know that the statistic for testing Hi is not affected by the set
of weights and is given by (4.3). Noting that B[ = Φ[Γ'^\Γ'\_Φ, ΨJ = Γ'[_Φ, Ψ~],
B'2 = 0 and ΦiΓXΦ, Ψ3=£Φ, ΨJ, we can express Pω2 in (4.4) as

Hence the likelihood ratio criterion for testing H2 is equivalent to
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an F - f' /

Similarly the likelihood ratio criterion for testing H3 is equivalent to

Since ω4 and 6£[j'J are mutually orthogonal and ύ>4 + (%ZjnΊ = (%![_Γ~], we get
Pω4 = ίP[T] — Φ[_j^\. Hence the likelihood ratio criterion for testing H4 is
equivalent to

From (4.3), (4.8), (4.9) and (4.10) we have two types of ANOVA (the analy-
sis of variances);

(4.11)

j 5ΓH — ΦϋPDy is called the sum of squares due to a eliminating β and

its noncentrality parameter is given by -(y-2S(γy(§^\^Φ,¥J — ̂ }[ΨJ)S(γ) =

~2a
rΦr(In-φ[_Ψ~])Φa. Similarly yXΦ[_Φ, Ψ~}-Φ[ΦΊ)y is called the sum of

squares due to β eliminating a and its noncentrality parameter is given by

-~-^β'ψ'{ln — φ\_φ~^)ψβ. If all the 71,7 are positive, we can easily recognize the

agreement between the ANOVA (4.11) and the ANOVA being described by
Rao [_4Γ\ under the heading "Two-way classifications with unequal numbers in
cells" without introducing the definition of the parameters.

In connection with the ANOVA given in (4.11) we have the following
theorem.

THEOREM 5. A necessary and sufficient condition that the noncentrality
parameters of the component sum of squares y'Ψ\_j ^\y^ yr{Φ[β^ ^D — Φ\y~J)y
and y'(jP[_Φ, Ψ~] — jP\lΦJ)y depend only on general mean ju, main effects {cίi}
and main effects {&•}, respectively\ are that these parameters are so identified
by the set of weights {nij\.

PROOF. Sufficiency of the theorem has been shown above. Necessity
can be proved as follows. From the conditions we have j'nΦa = 0, j$Fβ=O,
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j'nΓγ=0, (φ[β, ψ~]-φ\ΎJ)Γr=0 and (#>[0, ΨJ-Φ[βΓ\)Γγ=0. Since Ul{Φ, Ψ~\
= &Un1 + &\L@L®, ¥3-&t¥J] + &\:g>\:Φ, ^ : - ^ M l we have ΦTr=0 and
¥'Γγ=0. This completes the proof.

This theorem shows that the appropriateness of the ANOVA described
by Rao [4] can not be explained by any set of weights given by Scheffe [6].

5. Orthogonality

In this section we derive the necessary and sufficient conditions for the
hypotheses Hu H2, Hz and HA to be orthogonal with respect to the basic model.
The orthogonality of the hypotheses implies that the likelihood ratio criteria
for testing those hypotheses are quasi-independent (Roy and Gnanadesikan
[5]), i.e., the projection operators PΩ—Pωi, FΩ — Pω2, VΩ — Pω3 and VΩ — Pω4 are
mutually orthogonal, or equivalently, the linear spaces ΩΓ\ω{, ΩΓ\ω^ Ωr\ω3

and ΩΓ\ω\ are mutually orthogonal (Darroch and Silvey [3]), where ωL de-
notes the orthogonal complement of the linear space ω.

At first, we consider the case where the basic model is GN. From (4.3),
(4.8), (4.9) and (4.10) we have

ΩίΛω{ =

(5.1)

THEOREM 6. The hypotheses Hu H2, H3 and HA are orthogonal with respect
to GN if and only if nij=tii.n.j/n.

PROOF. Since &1J^r\((k[_Φ, r ] ) \ (k{Φ, Ψ^ΓΛ{(k\Ψ~}y\ (k[_jnΊ (or
, Ψ~]Y, (k[Φ, Ψ~]Γ\((Jl\iΦiy, (k\Ljnl) are mutually orthogonal, it is suffici-

ent to show that (k[_(In - ^ [ F ] ) Φ ] and &[(In-§)\jtJ)F3 are mutually ortho-
gonal if and only if m^m.n.j/n. The condition Φχin-Φ[¥J)χin-φ[ΦJ)Ψ
= 0 is equivalent to that {mj\ satisfies the condition, (Ir — NJ~1N'J;1)N=0,
where N=Φ'Ψ=\\nij\\9 Jr = Φ/Φ=dmg(n1., ..., ^ r . ) a n d J8 = ΨΎ=dizg(n.u ...,

n.s). From Theorem 2 we have rank (I.-NJ^N'J;1)^ rank(Jr-A^J;17V/)
= r—1. Hence we have that (Ir—NJ~1N/J~1)N = 0 holds if and only if rank
JV=1, i.e., Πij—Πi.n.j/n.

Next we consider the case where the basic model is Gw.

THEOREM 7. Assume that all the THJ are positive. Then the hypotheses Hh

H2, H3 and HA are orthogonal with respect to Gw if and only if n^ — rii.n.j/n and
Wij—priij for all ί and j , where p is a positive constant.

PROOF. Sufficiency of the theorem was proved in Theorem 6. Necessity
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can be derived as follows. Consider the hypothesis H: β = 0, a = 0, β=0.
We can express the hypothesis H in the form &(y) e ω, a subspace of Ω. Since

we have
U'r

ΩΓ\ωA-= {θ\θ = Γζ, ζrDnγ = 0 for any γ such that

where Dn= diagOn, n12, ••-, nrs-i, nrs). From (4.3) we have

ΩΓ\ω{ =

Since Ωίλω^ and Ωr\ω{ are mutually orthogonal, we have

I
fc == 0 for any ξ such that

Therefore there exist matrices U(r + sxr) and V(r + sxs) such that

Comparing the elements of both matrices and noting that all the ny are posi-
tive, we can derive that wij/nij=p, a positive constant, for all ί and /. Apply-
ing Theorem 6 we get nij = m.n.j/n. This completes the proof.
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