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Introduction

The Schwarz reflexion principle is well-known in the theory of harmonic
functions in a plane. In the three dimensional euclidean space (=3-space),
however, it seems that some problems remain to be discussed.” In this paper,
we shall show that any harmonic function 4, defined in a domain D within an
open ball 7 and having vanishing normal derivative on a part E of 4DNoV,
can always be continued across E but in general only radially.

J. W. Green [ 2] treated the case where D coincides with /. He showed
that % is continued harmonically through E to the entire outside of 7 if and

R
only if S h(r, 0, ¢)dr is constant as a function of (6, ¢) on the set {(6, ¢);
0

(R, 0, )€ E}, and that there is a case where & cannot be continued harmonical-
ly to the entire outside of 7.

§1. First we explain notation. Throughout this paper, / means the
open ball with center at the origin 0 and radius R in the 3-space, S=0V its
boundary, D a subdomain of ¥, 0D its boundary, E a two dimensional open set
on DN S which contains no point of accumulation of #D—E, A a harmonic
function in D, and, for a point P& D, P’ the symmetric point of P with respect
to S. This point is called also the point of reflexion or the mirror image of
P.

The case when A vanishes on E is known and stated as

ProposiTiOoN. If h is continuous on D\UE and vanishes on E, then h is
extended through E to a harmonic function in the domain D which is the re-
flexion of D with respect to S.

Proor. Choose any Q€ S and let 2 be the spherical surface with center
Q and radius R,. Invert the space with respect to 2 and denote by P* the
image of P by the inversion. The image of S is a plane, and P* and P’* are

symmetric with respect to the plane. Define a function 2*(P*) by 0Q-h(P)/R,

1) O. D. Kellogg suggested to “derive results similar to (the result in the case where =0 on E),
where- it is assumed that the normal derivative of U vanishes on that portion” in Exercise 4 at p.
262 of [3]. It is stated at p. 244 in Lichtenstein [4] that .- (plane case) ---. Analoge Sitze gelten im
Raume.” However, this turns out not to be the case.
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on the image of D\UE and by —0Q-h(P)/R, on the image of D’. The function
is harmonic on the image of D=D\UEUD'. Therefore, if & is extended to
P'eD by MP")=(R,/QP)W*(P'*)=—(QP/QPh(P)=—OP-h(P)/R, then h is
harmonic in D.

§2. Our interest in the subject of the present paper lies in the case
where the normal derivative 8h/0n vanishes on E. The situation is less sim-
ple in this case than in the case where A vanishes.

The case where 0h/0n=const. c on E is reduced to the case ¢=0 if % is
replaced by A+ cR?/r in D—{0}. However, in case D coincides with ¥ and
Oh/0n=c=~0 on E, h can never be continued through E to the entire outside
of V7 as is shown in Theorem 3 of [2].

We begin with

Lemma 1 ([2])). The function roh/or is harmonic in D.

Proor. If the origin is not included in D, we have, with polar coordin-
ates,

o Oh\ _ 0 za(rah/@r)> 1 jl( . 0(r0h/9r)>
’ A<r0r>_0r<r or ) sing a6 B0 50
1 0%roh/or) 0 , ., _
+ S0 0p7 r—aT(r 4h) = 0.
If the origin is included in D, it is a removable singularity for roh/or.
Hereafter we assume that 2 is continuous on D\UE together with its

partial derivatives 0r/0x, 0h/0y, 0h/0z and that 0h/0n=0 on E. Denote by
Dy, the set of points of D’ which can be connected to points of E radially by
segments lying on D"UE, and by Dy the domain D\UEUDj,. We shall prove

Tureorem 1. One can continue h to a harmonic function in Dg.

Proor. By the proposition, roh/0r is extended to a harmonic function H
in D=DUEUD'. It is equal at P'€ D’ to the value of —r*R '0h/or at P.
Define 4 in Dy by

i, 0, )= bro, 0, )+ | Har
where (ro, 0, ¢)€ D is chosen so that the segment between this point and
(r, 0, @) is contained in Dz. The definition of % is independent of the choice
of ro and A=A at (ro, 0, ¢). Let us show that 4 is harmonic in Dz.
Denote by Ay the operator

1 0 . 0 1 0°
sing 95 (055 )+ sinre 9ot
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This is not defined on the axis 6=0, = but the values Ayf for any C? function

f are independent of the choice of an axis, because

sof =riaf— 5 (1 50).

We have
AL ! H ,8_ 2,(2_ ’ E
TAh—A@h 7:ru+groA@<T>dr+ or <r or (gro r dr>>
— "1/ 0 (.0H 0
= Aoh ,:70+S70 r < or <r or >dr)+ or (r ).
Since
0 [ 20H 82(rH)
or <r 0r> or
we have
rah=ach| + 2em| = Zoem+ D om
r=ry or r=ry or or
_ 0 (2 0h _ 2 _
—A@h + 6r 0r> r:ro—r Ah r=r0_—0'

Thus /4 is harmonic in Dg.

Being different from the case in plane, 4 is not always symmetric with
respect to S. Actually, if A(, 6, ¢)=A(r, 0, ¢) with '=R?/r>R, then

oo sk () ) S0

By a simple computation we see that the right hand side is equal to —2roh/0r.
It follows that & is independent of r in D.

On the other hand, if the Kelvin transform OP-A(P)/R is the harmonic
continuation, its normal derivative must vanish on £. On E we have

R 0

10 _ R

R o CHn 00| == b,
_ R oh ho_
- r’<h+”ar> e B

Thus A vanishes on E. Therefore —OP-h(P)/R is the harmonic extension into

D’ as was seen in the proof of the proposition. Thus OP-h(P)= —OP-h(P) for
every P<€ D and hence A=0 in D.
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It is not always possible to extend # harmonically to the entire symmetric
domain of an arbitrary domain D as an example will show it later. However,
we have

Tueorem 2. Let H be the harmonic extension of roh/or in D. Let Py=
(ré, B0, o) be in D', and b’ be a function harmonic in a meighborhood U of P}

such that r'ok’/or =H({r', 0, ¢) wn U. Let P] be a point of D’ such that the

segment P{P; is included in D" and lies on a ray issuing from the origin. Then
k' is defined harmonically in a neighborhood of PiP;.

Proor. Define A’ in a neighborhood of P;P; by
WG, 0, ) =K Gi, 0, )+ L dr

where (r{, 0, ¢) is in U. As in the proof of Theorem 1 we have r'*Ah’=0.

CoroLLARY. If h is extended harmonically to P' € D', then it is extended
harmonically to P; so far as P'P; is tncluded in D' and lies on a ray issuing
Sfrom the origin.

We give a condition for extensibility in a special case. First we give a
lemma which is similar to Lemma 1 of [27].

Lemma 2. Let (ro, 0, ¢) € D and suppose h is extended harmonically to the
point (R*/ro, 0, ¢). Denote the extension of h by h. Then

2 Oh

=rop—=—
07‘ r:ro’

A@(Rl;(r()) - Toh(ro))

where h(r, 0, ¢) 18 written simply as h(r) and k(r, 0, ¢) as k(r).

Proor. We have

(D Oh(r)/or = —r*R %0h(r)/or.

Hence
TCIN Tl r’ af; A WA 1(¢7 %
h(r)_h(r0)+sr;5r,, dr' = h(r)+ T%S,Or oL dr

)

— Py T _ To __1_ §
= hr)+ 5 hr)— T-h()— Srahdr.

It follows that

Aoh(r") = Aoh(ri)+ 7, Aoh(r)— 0 Agh(ro)— %S Aohdr

— Ay — T _r 0 (20hN 1(" 8 (,0h
= 2oh(r)— T Aeh(ro)— 7 o <r o )+ Rgro . <r 2 )dr.
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On the other hand, we have by (1)

s & (B 5 2(50)

Hence

Agh(ry)— % Agh(ro)

r’ oh

Oh _ 1
R or R
0h

r |r,

0°h > 0Oh r* 0% r? oh r3 0h
ot T2 R e T

‘R o* R or ' R or

7o

=

§8. In this section we assume that 8D NS contains a two dimensional
open set B =2 E which has no point of accumulation of 8D — B, that every point
P of B can be connected with a point in D radially by a segment which is
contained in D except for P, and that 0h/0x, 0h/0y, 0h/0z are continuously
extended to D\UB. Assume furthermore that 9°4/06% and 9*h/0¢* can be con-
tinuously extended to D\U B.

Suppose that 4 is extended harmonically to a function £ in D\UEUDj,
where Dj is defined in the same way as D,. Then 6%4/00% and 0°h/0¢p> are
also continuously extended to B from D} by (2). By Lemma 2 we obtain im-
mediately

oh

LEMMA 3. Ag(h—h)=R
or

where K(R, 0, 9)=1lim &', 0, ¢).
7"l R

on B,

TuEOREM 3. A can be continued to a harmonic function h in D\UEUD} if
and only 1f there is a solution g of Agg=R0h/0n on B such that g vanishes on
E.

Proor. Suppose such a g exists. Set p=g+% on B and

»”
R

K(r, 0, ¢) = p(R, 6, ¢>+g f_f &' in D}

On E, p=h and hence A’ is the harmonic extension of 4 into D;. Let us show
that 4’ is harmonic in Dj;.  For (v, 0, ¢) € D5 we have by the same computa-
tion as in the proof of Theorem 1

k= agpt 2| —rOE 2 (b
r A@P+ or <r H> r"=R R Or |r=R +A@h r=R +R or d or r=R
_gOh|  _ 0 (.0h % on|  _
—R al‘ r=R 07‘ <T 07’ > r=R+R 0r2 r:R+RW r:R_O'
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Thus &’ is harmonic in Dj.

Conversely, suppose / is a harmonic extension of 4 in D\VE\Djp. Denote
lilgn k@', 0, ¢) by K(R, 0, ¢) as before and set g(R, 0, ¢)=h(R, 6, p)—h(R, 0, ¢).
r”IR

Then, on account of Lemma 3, g satisfies Ap g=R0h/0n on B and vanishes on
E. Our theorem is now proved.

CoroLLaRrY. Consider the case that D coincides with V. In order that h
be extended across E to a harmonic function outside V, it is necessary and suf-
ficient that there exists a solution g of Agg=R0Oh/0n on S such that g vanishes
on E.

This condition must be equivalent to the already quoted Green’s condi-
R

tion in [27] that S hdr is constant on E. Actually one can show the equival-
0

ence directly as follows:?
If there exists g satisfying Agg=R0h/0n on S and g=0 on E, then

R
SO hdr= const. on E because

on 0o Or or on

R R
and hence S hdr = — R g+ const.=const. on E. Conversely, assume SO hdr=c
0

R R R
Ao\ hdr + Ra)=\ Aehdr+rR2 Ol = (7 0 (208N | g0k _¢ o g9
0 0

R
(=const.) on E. Then g=—71{—<g hdr—c> satisfies Agg=R0h/0n on S and
0

g=0on E

Finally, we shall prove a theorem by means of which we can show that
Theorem 1 is the best possible in case the (two dimensional) boundary of E is
smooth.

Tueorem 4.  Suppose there is a C* function f on S with the following pro-
perties:

@ Aaras=o,

(i) Apf=0on E,

(iii) there exists no two dimensional domain BC S which satisfies B E

and BNE=+Q, and on which a function f is defined so that Agf1=0 on B and
fi=fon BNE.

Then the solution h of the Neumann problem in D=1V for the boundary condi-
tion Oh/0n = R~ 'Aef can mever be continued harmonically to any point of
D—Dp®

2) The author owes this remark to Professor H. Lewy.

3) Let f be a function on S which is twice continuously differentiable with respect to § and ¢ and
satisfies Agf=0. Then the extension f* of fby f*(r, 4, ¢)=f(R, 0, ¢) to the whole space is harmonic
because r?Af*=Ayf*+40(r2df*/0r)/0r =0. By the maximum principle it is concluded that f* is con-
stant.

4) cf. Theorem 1.
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Proor. It is known that the partial derivatives of second order of 7
have limits on S; see [5]. Suppose 4 is extended harmonically to a point
P’'e D—Dg. Then, by the corollary of Theorem 2, there exists a two dimen-
sional domain B on S such that B{ E, BNE=+0 and & is continued harmoni-
cally to DUEUDg;. Theorem 3 implies that there exists g on B such that
Agg=R0h/0n on B and g=0on E. The function f1=f— g satisfies Agf1=0
on B and fi=f on E. This contradicts (iii).

Let us see that a function like f exists actually in case E is a two dimen-
sional subdomain of S bounded by a finite number of closed analytic curves.
Let ¢ be a sufficiently smooth function which is defined on the boundary 0F
of E and which is nowhere analytic with respect to the defining parameter
of 0E, and f, be the function which satisfies Agfo=0 in E and fo=¢ on OFE.
It follows that £, is of C* class on E\UGE; see [5]. Extend f, to a function f
of C* class on S so that condition (i) is satisfied. If there exist B and f; with
the properties as decribed in (iii), then f; as a solution of Agf;=0 is analytic
in B and hence on 0ENB. This contradicts our assumption that, on 0EN B,
fi=f=¢ is nowhere analytic with respect to the defining parameter of OFE.
Thus (iii) is satisfied too.

To the contrary, if a part F of S—FE is small, e.g., if F is a closed set of
logarithmie capacity zero such that S—E— F is closed, then A can be continued
harmonically to the set 4 consisting of points of D—D which can be con-
nected to F radially in D. This follows from the fact that 4 is of Newtonian
capacity zero (cf. [17, p. 92) and hence removable for the extension of # in Dg.
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