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Introduction

Ahlfors and Beurling [17] introduced the notion of a null set of class Np
in the complex plane: A compact set E is a null set of class Np if and only
if every analytic function in D(2—E) can be extended to a function in D(R)
for a domain 2 containing E, where D(®) is the class of single-valued analytic
functions in £ with finite Dirichlet integrals. They characterized a null set
of class Np by means of the span, the extremal length and the others. On
the other hand, the class KD, which consists of all harmonic functions u
with finite Dirichlet integrals such that *du is semiexact, was considered on
Riemann surfaces and various characterizations of the class Oxp were given
by many authors; see, for example, Rodin 5], Royden [77], Sario [8]. We
can consider the class KD also on an N-dimensional euclidean space RY (V>
3) and define KD-null sets as a compact set E such that any function in
KD(R2—E) can be extended to a function in KD(®2) for a bounded domain 2
containing E.

In the present paper, we shall prove some theorems on KD-null sets
analogous to those on null sets of class Np. In §3, we observe some relations
between KD-null set and the span, which was introduced by Rodin and Sario
[6] in Riemannian manifolds. Moreover we show that the N-dimensional
Lebesgue measure of a KD-null set is equal to zero. In §4, we shall give a
necessary condition for a set to be KD-null in terms of the extremal length.

The author is indebted to Professor M. Ohtsuka for his advice and en-
couragement.

§1. Preliminaries

We shall denote by x=(x1, xs,--, xy) @ point in R", and set |x|=
Vx4 x%+ - +x%. By an unbounded domain in RY we shall mean a domain
which is equal to the complement of a compact set. A harmonic function u
defined in an unbounded domain is called regular at infinity if }im u(x)=0.

% |00

Consider a C'-surface r which divides R” into a bounded domain and an un-
bounded domain. When we consider the normal derivative % at a point of

7, the normal is drawn in the direction of the unbounded domain.
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Let G be an open set. Denote by {r}¢ be the class of surfaces ¢ in G
each of which is a compact C'-surface and divides R” into a bounded domain
and an unbounded domain. Let KD(G) be the class of harmonic functions u
defined in G satisfying the following conditions:

(1) the Dirichlet integral Dc(u):gc|grad w|?dV is finite, where dV is

the volume element,

(2) g %dS:O for all ¢ in {c}¢, where dS is the surface element on r,

(8) in the case that G contains an unbounded domain, » is regular at
infinity.

Let E be a compact set in RY and 2 be a bounded domain which contains
E. If every harmonic function u in KD(2—E) is continued to a harmonic
function belonging to KD(2), then E is called a KD-null set with respect to
2. The class of KD-null sets with respect to 2 is denoted by N%p.

§2. Properties of KD-null sets

Let 2 be a bounded domain which contains a compact set E. Generally
RY—E(=E°) is an open set which consists of an unbounded domain and a
bounded open set. First we shall show

Tueorem 1. If E° contains a bounded component, then E does mot belong
to N%p.

Proor. Suppose E° contains a bounded component D. Take two mutu-
ally disjoint closed balls e, e; in D with the same radius. Since the New-
tonian capacity of e; (=0, 1) is positive, there exists an equilibrium mass-
distribution of unit mass on each of e, and e;. Let x# be the measure which
consists of the equilibrium mass-distributions on e, and e;, and set

. du(y) S duly)

(4 == -_— e — —_—_—,
)= e D
Then U*(x) is a harmonic function with finite Dirichlet integral in £ —
eo\Ue;. Using Green’s formula, we have

g OV 15—¢ for all £ in {c}o. p.

Therefore U* belongs to KD(2 —D). Let U* equal U* in 2 —D and 0 in D.
Obviously U* belongs to KD(2—E) but cannot be continued to a function in
KD(®2). Accordingly we conclude E ¢ N%,.

By virtue of Theorem 1 we shall be concerned with the compact set E
such that E° is an unbounded domain throughout the rest of this paper.
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THEOREM 2. A compact set E is a KD-null set with respect to 2 1f and
only if KD(E®) contains only the constant function 0.

Proor. First we assume Ee N%, and let u be a harmonic function in
KD(E®). Let h be the restriction of v to 2 —E. Obviously he KD(2—E).
By assumption there exists a harmonic function 4 in KD(2) such that A=A
in 2—E. Hence u is continued to a harmonic function in RY which is regu-
lar at infinity. Therefore u is equal to the constant 0.

Conversely assume that KD(E°)={0}. Now we take three domains 2,,
2% and 2, such that EC 2,C 2, 2*C 2*C 2, C 2, 2 hold and each of 32,,
02* and 02, consists of one compact C'-surface. For any u in KD{(2—FE),
we set

= L e i) as e,

where r denotes the distance from a point x to the variable on 0.2; and gy is
the surface area of the unit sphere in RY. Then hy(x) is harmonic in RY —
2, and regular at infinity and h.(x) is harmonic in £;. When x lies in the
domain 2, —2,, the equality

u(x) =h1(x)-—h0(x)

holds. Let % equal ho(x) in RN —2, and A, (x)—u(x) in 2,—E. It is easy to
see that % is harmonic in RY —E and regular at infinity. In 2*—F both A,
and z have finite Dirichlet integrals so that Z=h,—u has finite Dirichlet
integral there. On the other hand, Green’s formula gives

0hy
on

Drs g ()| Ihol | 5,0| dS< oo.

It follows that
Drrv_g(h)=Dg*_g(h1—u)+ Drrv_5+(hy) < oo.

Take any ¢ in {c}z- such that the interior of ¢ contains non-empty compact
subset of E. Since ¢ is homologous in E° to some ¢* consisting of a finite
number of elements in {r},,_z, we have

dS=S Oh g5,

* an

o
S@i’@h
+on

In view of Green’s formula and the fact u € KD(2 —E), we have

ST* on ds ST* on s = on dS—O.
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From these facts we conclude % € KD(E®). Therefore we have =0 by as-
sumption. It follows that A, =u in 2,—E. On account of harmonicity of A,
in £,, u can be continued to a harmonic function in £. Since u is arbitrary,
we have E€ N%p.

Theorem 2 implies the following corollary.

CororLLARY 1. The property E € N%,, does not depend on the choice of 2.
We shall omit the suffix £ in the notation N%, throughout the rest of
this paper.

§3. Principal functions

Let E be a compact set such that E° is a domain. Let {2,}7-, be an ex-
haustion of E° with the following properties:

(1) £, 1is a bounded subdomain of E°,

(2) 048, consists of a finite number of C'-surfaces, denoted by 024, j=

19"')j(”’);
(3) gn C .Q,,H(n:]_, 2,) and O gn:Ec
n=1

Take any distinct two points a, 4 in E° and the balls U,, U, centered at a, b
with disjoint closures in E°. We may assume that £, contains U, U, for
all n. -For a function g and a set U, we denote by g|y the restriction of g
to U. There exist the principal functions P;, (i=0, 1) with respect to 2,
with the following properties ([6]):

(1) P;,is harmonic in £,—({a}\U {b}),
1

-t 4k
O‘le—a|N"2 + b

@) Piulv,=

-1
Pi,n]U,,:W“f*ﬂ,m

where h; , and f; , are harmonic in U, and U, respectively and f; ,(6)=0,

(8) %:0 on 082},
on
o 0P , N . .
Py | 007=C} (constant) and agja‘n'dS—O, for j=1,..., j(n).

On letting n— oo, we can see that the following limits exist:
P1:11m Pi,m h,=llm h,',n, f,=11m fi,n (l=0, 1)

Nn—>o00

Here the convergence is uniform on every compact subset of E¢ and these
limit functions do not depend on the choice of exhaustion; see [6].
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Let {2,}7_, be an approximation of E° towards E such that

(1) £, is an unbounded subdomain of E°,

(2) 04, consists of a finite number of compact C'-surfaces such that
the interior of each surface of 342, contains at least one point of E,

3) £,CHi(n=1,2,.)and \ /3, =E".
n=1

Let g and u be harmonic functions which are defined in Ur—E and have
finite Dirichlet integrals on Uz—E, where Ur is an open neighborhood of E.
We may assume that Uz contains 0£, for all n. Then the limit of

S _ g%dS exists and does not depend on the choice of an approximation

{2,}. Therefore we use the symbolic expression

. ou
S a“dS—LHES 85,95

For the purpose of observing a relation between KD-null sets and the prin-
cipal functions we shall give the following lemma and introduce the notion
of span.

Lemma 1. The following properties hold regarding gand P;(i=0, 1):

0P, N
@ gaEg on d§=0,

2) of g 5 on 08 35=0 1is satisfied for every component 82 of any 08,

then g P08 15—0.
2E ~On

For the proof, see [6]. From this lemma we can derive

g P, aP°d5=§ P, P g
oF on 9E on

Let u be a harmonic function defined in E°¢ such that
(1) Dgpu)<oo, (2) u()=0,
(8) there exists a constant C, such that v+ C, is regular at infinity,

@ Xg“ dS=0 for all ¢ in {} ..

Using Green’s formula and Lemma 1, we have the equality

3.1 Dge(u—Py+ P)=Dg(u) —2u(a) + ho(a) —hi(a).
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We set S(a, b)=ho(a)—hi(a) and call it the span of E° with respect to (a, b)
(cf. [6]). If we set u=0 in (38.1), then we obtain S(a, b)=Dg.(Py— P)).
From this we have 0 < S(a, b) <eo. Accordingly the property S(a, 5)=0
means that P,— P, is a constant.

TueoreM 3. A compact set E belongs to the class Nxp 1f and only vf the
span S(a, b) of E° is equal to zero for all couples (a, b) of different points in
E°.

Proor. Assume that there exist two different points a, b such that S(a,
b)==0. Then P,— P, is a non-constant harmonic function in E° with finite
Dirichlet integral. By using the properties of P,, P, and the maximum
principle, we can conclude that P,—P; is a bounded harmonic function out-
side a sufficently large sphere. Since any bounded harmonic function de-
fined outside a compact set is expressed as the sum of a constant and a
harmonic function which is regular at infinity, there exists a constant C
such that P,— P, —C is regular at infinity.

Using Green’s formula and the boundary properties of P;(i=0, 1), we
have that for all ¢ in {r} g

g a(PO—PI> dS=0
T @n ’

Accordingly P,— P, belongs to the class KD(E°). This shows that E ¢ Ngp.

Conversely assume that S(a, 6)=0 for all points @, b6 in E°. Let u be a
harmonic function in KD(E®). By making use of Green’s formula and Lem-
ma 1, we have

WO PP 45 ()~ uh).
oF on

Dye(u, Pi—P)=—
Since S(a, b)=0 implies P,— P, =const., it follows that u(a)=u(d). Letting
a vary in E°— {b}, we have u=const. in E°. Since u is regular at infinity,
we have u=0. By Theorem 2 we conclude that £ ¢ Ngp.

Remark. From the latter half of the above proof we can derive E€ Ngp
under the condition that S(a, 6)=0 for any point a« in an open set G in E°
and some b in E°.

Let us observe a relation between V(E), the N-dimensional Lebesgue
measure of E, and E € Ngp.

Lemma 2. If S(a, b)=0 for two distinct points a, b, then V(E)=0.
Proor. Set

! 11
P= 5 (o maprrTamse)
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Using Lemma 1 we have
Py+ P,
D c< ———0)—1-> S + =
eel P 2 - 0 dS S(a b).

Since P is harmonic on E, from the definition of Dirichlet integral that Dz(P)
:inf Ds(P), where G runs over all open sets containing E, it follows that

SaE gNPdS Dg(P). By the assumption that S(a, 6)=0 we have that

0 gDEc(P_lfo “ZLP L): — D(P)=0,

so that Dg(P)=0. On the other hand, since the N-dimensional Lebesgue
P
%{_:O, i:1,.--,N} equals zero, we conclude V(E)=0.

measure of the set {x

By Lemma 2 and Theorem 3, we have the following corollary.
CoroLLARY 2. If E€ Ngp, then V(E)=0.

The converse of Corollary 2 is not always true. In fact, let E be a com-
pact part of a hyperplane and £ be a bounded domain containing £. We set

du(y) S duy)

7
UH(x) = Se(,'x le elx—le

where ¢, and e, are disjoint compact (N—1)-dimensional balls with the same
radius on E and x is the measure which consists of the equilibrium mass-
distributions on e; (i=0, 1). In the same way as the proof of Theorem 1, we
see that U* belongs to KD(2—E) but does not belong to KD(£). Therefore
E ¢ Ngp. In this example V(E)=0.

Now we shall consider another class of harmonic functions and compare
this class with the KD-class.

Let HD(2) be the class of harmonic functions defined in a bounded do-
main £ with finite Dirichlet integral. The expression E € Nyp is defined in
the same way as Ngp. It is well known that Ee€ Nyp if and only if the
Newtonian capacity C(E) of E is equal to zero; see [2]. We have obviously
the inclusion HD(2 — E) DKD(R —E), which implies Nyp C Ngp.

We take a compact set E in £ such that V(E)=0 and C(E)>0. Let «
be the equilibrium mass-distribution of unit mass on E and consider the
potential

S du(y)

E|x—y| N2
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It is easy to show that this function belongs to HD(2—E) but does not be-
long to KD{(2—E). Accordingly the inclusion HD{2 —E) > KD{2 —E) is pro-
per. Sario [9] showed a relation between Nyp and the span for the identity
partition of E. Thus our Theorem 3 gives a result corresponding to Sario’s.

§4. Extremal length

Let y denote a locally rectifiable curve in RY and /" be a family of such
curves. A non-negative Borel measurable function o is called admissible in

association with 7" if g ods=1 for each y € I". The module M(I") is defined
v
by inf gpde, where o is admissible in association with /7, and the extremal
p

length A(I") is defined by ﬁ . The following properties are known:

4.1) if I"CI, then M(I'") < M(I'),
4.2) if '=ryurly,and M(I";)=0, then M(I")=M(",).

A property will be said to hold almost everywhere (=a.e.) on I if the ex-
tremal length of the subfamily of exceptional curves is infinite.

Let £ be a bounded domain in RY which contains a compact set E and I”
be the family of locally rectifiable curves 7 in 2 each of which starts from a
point x, of £ and tends to 2. We shall denote by BLD(R2) the class of
Borel measurable functions f defined in £ which are absolutely continuous
along a.e. 1 € I’ and which have finite Dirichlet integrals. We shall write
f() for the limit, in case it exists, as the variable starts from x, and pro-
ceeds towards 02 along y. We know that for f ¢ BLD(®), f(7) exists and is
finite for a.e. y € I'; see [4].

Let ay, a1 be non-empty compact subsets of 02 such that ayN\a; =0 and
I’; be the subfamily of I" such that each curve of I'; tends to «; (i=0, 1).
We shall denote by D(£) the class of functions belonging to BLD(R) such that
F(r)=0 for a.e. re, and f(y)=1 for a.e. yel';. Let I'(resp. I”) be the
family of locally rectifiable curves in 2 (resp. £ — E) connecting «, and «;.

The following lemma, is important.

Lemma 3. (Ohtsuka) Set

Ca, ax)zif}f Do_(f),

where f runs over all elements of D (2 —E). Then there exists a unique har-
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monic function fo,€D (2—E) such that Clao, a1)=Dq_g(fs). Moreover we
have the equality Cla,, ay)=MU"").

Proor. The proof of the first half is the same as that in [4] when we
replace a Riemann surface by £ —E. Regarding the latter half, we sketch
the proof given by Ohtsuka in his lectures: Extremal length in 3-space.
First, note that

S Igradfoldsg|g dfo| =1 for a.e. €.
v v

Accordingly we have M(I"") < C(ay, 1) by property (4.2). On the other
hand, for any ¢, 0< s<%, we can take a C~-function #(«x) in £ —F such that
0< B (x)<dist (x, (2 —F)) and | grad 5| <e hold. We denote by U(x, r) the
closed ball with center x and radius r. Take any p admissible in association
with 7. Let

fla)y=—1>1 av

onB(x)N gU(x, B(x))p
in 2 —E and extend it by 0 on the rest of RY. This function is continuous
in 2—E. We can see that (1+¢)f is admissible in association with /" and
obtain the inequality

g deV§(1+e)S 0*dv.

2-F 2-FE

For this reason we may restrict admissible o to be continuous in 2 —F in
defining M(I"™"). Suppose M{I"')< 0. For a continuous function p admissible
in association with 7, we set

g(x)=inf S ods in 2—E,
7 v
where 7y is a curve in £ —FE starting from x € 2 —F and terminating at a

point of a,. Then we can see that g(y)=0 for a.e. y €¢I, and g(y)=>1 for
a.e. y € I'1. If the segment x#x’ is included in 2 —E, then

g —gGOI=|_p ds

From this inequality we infer that g is absolutely continuous along every
curve in 2—E. Moreover, by Rademacher-Stepanov’s theorem we see that
grad g exists a.e. in 2 —E, and that |grad g|<p a.e.in 2—E. Accordingly
min (g, 1) € D(2—E), and hence

C(ao,al)gg lgrad min (g, 1)|2dV§g 02dV.
Q-

Q2-E
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This implies that Cla,, a;) < M(I™).
Next, we shall show a necessary condition for E € Ngp.
TuEOREM 4. If E € Ngp, then M(I"N)=M(I"") for every 2, a, and a;.

Proor. In view of M(I"") < M(I"), we may assume M(/")<oco. Let fo
be the extremal function in Lemma 3 such that Do z(f,)=M(I""). Take an
open set G such that ECGCGC 2 and 06 consists of a finite number of com-
pact C'-surfaces. Since f, is the harmonic function with the smallest Diri-
chlet integral in the class of harmonic functions defined in G—E and having

boundary values f, on 0G, we have S %J%dS:O for all ¢ in {c}¢_g; cf. [ 3],

T

Satz 15.1. Since any ¢ in {r},_r is homologous to a finite number of sur-
0/
on
KD(2—E). Hence there exists a harmonic function f, belonging to KD(2)
such that f,=f, holds in 2 —E. It follows that

faces of {t}¢_g, we have S dS=0 for any ¢ in {r}. 5. Therefore f,¢

-

S |grad foqufglg dfo] =1 for a.e. 7€ 1.
v v

By property (4.2) this shows that M(I")<<Dgy( fo). Accordingly we have
Do 5(fo)=MU") < MI") =< Do( fo).

By Corollary 2 the equality Dg( fo):Dg, £(fo) is true.
These imply M(I")=M{").

It is open whether the converse of Theorem 4 is true or not.
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