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1. Introduction

In this paper we are concerned with the first and the second boundary
value problems for the one-dimensional heat equation

(1.1) ut(x, t) = uxx{x, t) (0 ̂  x ^ 1, 0 ̂  0

with the initial condition

(1.2) u(x, 0) = φ(x) (O^

For the numerical solution of this problem by the finite-difference
methods, there are known the two-level explicit formula with the truncation
error of order h2, Crank-Nicolson's method GlβH10? Douglas' high order correct
method Q4Γ), three-level difference formulas [J3H, and so on.

The object of this paper is to construct two-level explicit formulas with
truncation errors of orders h4 and h6, to determine their ranges of stability,
and to derive the unconditionally stable two-level implicit formulas of higher
order accuracy. Although the formulas obtained here are not all new, the
stability conditions are considered in a somewhat unified form. These
formulas will be useful not only for the direct use but also for the approxi-
mation of the truncation errors of the formulas of the lower order accuracy.

2. Preliminaries

2.1 Difference formulas

Let h and k be the mesh-sizes in the x- and ^-directions respectively and
put r — k/h2. Then, for the function u(x, t) which is sufficiently smooth and
satisfies the equation (1.1), using the relations

(2.D J ^ !£

1) Numbers in square brackets refer to the references listed at the end of this paper.
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we have the following results:

(2.2) Δtu(x, t) = u(x, t + k) — u(x, t) = rh2ut(x, t)+ -^-r2hAutt(x> t)

(2.3) δ2u(x, t) = u(x + h, ή-2u(x, t) + u(x-h, t)

o o

h A u ( x t ) + h , t)

(2.4) d'u(x, t)=hAutt(x, t)+^Γ
Ό

(2.5) d*u(x, t)=h6uttt(x, t)+^h*utttt(x, t) + O(h10),

(2.6) δ2u(x, tJrk) — δ2u(x, t)=rh4utt(x, t)^rr(—^~Jr~^Ίyjh6uίtt(x, t)

x, t) + O(h10),

(2.7) (Ϊ4

U(Λ;, i + A;)-i4!i(x, t)=τh6u,,,{x, t) + r(^- + ̂ ^hsutttt{x, t)

+ O(h10),

(2.8) <y2u(x (

where Jt is a forward difference operator and δ is a central differecne opera-

tor.

From these we obtain the following formulas:

(2.9) Atu(x, t)-rδ2u(x, t)-r(-£---^)δ4AI{X, t)

(2.10) Δtu(x, t)-rδ2u(x, t ) -
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7 „ 3

(2.11) Δtu(x, t)-(^-^)δ2u(x, ί + i)-(-£- + -ί-)ffV*, 0

12 V 20 / m v ' J 24 V 6 20

,t) + O(h10),

(2.12)
30

1

(2.13) Jtu(x, t)-rδ2u(x, t + k) + ̂ -(r + ̂ λδAu{x, t + k)

2.2 Boundary conditions

In the sequel, we are concerned with the following three cases of bounda-
ry conditions:

Case 1. case where ^(0, t) and u(l, t) are given;
Case 2. case where ux(0, t) and ux(l, t) are given;
Case 3. case where ux(0, t) and ̂ (1, t) are given.

We assume that the initial and boundary data are sufficiently smooth.
Corresponding to the above three cases, we choose the mesh-size as

A = l/(iV+l), h = l/(N— 1) and h = 1/N respectively, and replace u(—ph, t) and
u(l+ph, t) (/? = 1, 2, 3) by the following formulas:

(2.14) u(-ph, t) = 2u(0, t)-u(ph, t)+p2h2ut(0, t) + -^pAhiutt(<d, t)

6!
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(2.15) u(l+ph, ί) = 2u(l, t)-u(l-ph, t)+p2h2ut(l, , t)

, t) + O(h10),

(2.16) u(-ph, t) = u(ph, t)-2phϊuxφ, t) + ~p2h2uxt(0, t)

(2.17) u(l+ph, t) = uθ—ph,

Then we obtain the systems of linear equations in N unknowns of the form

(2.18) Xn+i=M{xu+fn (n = 0, l,.. ; i = l, 2, 3)

in the case of explicit formulas, and those of the form

(2.19) PiXn + l=QiXn+fn {n = 0, 1, . i = 1, 2, 3)

in the case of implicit formulas, where M, , P, and (?,- are iVxiV matrices, and
«/ and/;- (j = 0, 1, •••) are iV-vectors.

2.3 Special matrices

Let i , (ί = l, 2, 3) be the Nx N matrices such that

(2.20)

0, 1

1, 0, 1

i, b,Ί
l, o

, L2 =

0, 2

1, 0, 1

i, b,Ί
2, 0J

, £3 =

0, 2

1, 0, 1

i, 0/1
1, 0

Then, as is easily checked, the following relations are valid:

5, - 4 , 1

- 4 , 6, - 4 , 1

1, - 4 , 6, - 4 , 1
(2.21) ( L χ - 2 7 ) 2 -

1, - 4 , 6, - 4 , 1

1, - 4 , 6, - 4

1, - 4 , 5)
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(L2-2I)2 =

(L3-2I)2 =

(2.22)

(2.23) (L2-2I)3 =

6, - 8 , 2

- 4 , 7, - 4 , 1

1, - 4 , 6, - 4 , 1

1, - 4 , 6, - 4 , Ί

1, - 4 , 7, - 4

2, - 8 , 6 J

6, - 8 , 2

- 4 , 7, - 4 , 1

1, - 4 , 6, - 4 , 1

Ί, - 4 , 6, - 4 , ϊ
1, - 4 , 6, - 4

1, - 4 , 5

-14, 14, - 6 , 1

14, -20, 15, - 6 , 1

- 6 , 15, -20, 15, - 6 , 1

1, - 6 , 15, -20, 15, - 6 , 1

Ί , - 6 , 15, -20, 15, - 6 , Ί

1, - 6 , 15, -20, 15, - 6

1, - 6 , 15, -20, 14

1, - 6 , 14, - 1 4

-20, 30, -12, 2

15, -26, 16, - 6 , 1

- 6 , 16, -20, 15, - 6 , 1

1, - 6 , 15, -20, 15, - 6 , 1

Ί , - 6 , 15, -20, 15, - 6 , Ί

1, - 6 , 15, -20, 16, - 6

1, - 6 , 16, -26, 15

2, -12, 30, - 2 0 ,
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-20, 30, -12, 2

15, -26, 16, - 6 , 1

- 6 , 16, -20, 15, - 6 , 1

1, - 6 , 15, -20, 15, - 6 ,
(2.24) ( L 3 - 2 / ) 3 =

1, - 6 , 15, -20, 15, - 6 , 1

1, - 6 , 15, -20, 15, - 6

1, - 6 , 15, -20, 14

1, - 6 , 14, - 1 4

From these results it can readily be seen that, corresponding to the differences
d2pu(xy t) (j0 = l, 2, 3) and the boundary conditions of the Case i (ι = l, 2, 3),
we obtain the matrices ( i , —2/)* (ί, p = l,2, 3).

Put

(2.25)

(2.26)

(2.27)

( 2 c o s 0 , u 2 c o s 0 , 2 , •••, 2 c o s 0 l 7 ί ) (i = l, 2, 3 ) ,

Hi=diag ( ίΰu, ω, 2, •••, ωiN) ( i = l , 2, 3 ) ,

= (sin(iθυ)), JR2 = (cos(i-l)02i), R3 = (cos(ί-l)θv)

( £ , ; = !, 2, ...,JV),

where

(2.28)
/—l)τr (2/-l)τr

ΔJ ΛΓ 1 5 "άJ— OAT ' υ

Then it is evident that

(2.29) Gi = 2I-4Ήi (i = l, 2, 3).

In our previous paper [JL5], we have shown the following

LEMMA. There hold the relations

(2.30) i , = RiGiRj1 (ί = 1, 2, 3)

(i = l, 2, 3) cα^ be represented as follows:

2

2 *

(2.31) Λ j i =
J R r β 2 s

where

(2.32) D2 = diag(l/2, 1, ..., 1, 1/2), D3 = diag(l/2, 1, ..., 1, 1).

By this lemma we can express the matrices (£, — 2I)P as follows:
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(2.33) (Li-2iy = Ri(-ARi)
PRi1 (h p = l, 2, 3).

Hence we can directly find out the eigenvalues and eigenvectors of the

matrices Mh Pi and Q{ (j = l, 2, 3), so that the stability conditions can be

obtained easily.

The elements of the matrices R{ (i = l, 2, 3) need not be stored but can

be generated through recurrence formulas [14], so that the systems (2.19)

can be solved without the direct inversion of matrices. Needless to say, they

can also be solved by the Gaussian elimination method with interchanges or

by the ^^-decomposition method.

3. Explicit formulas

3.1 Formula with truncation error of order h4

From (2.9) we have the following formula [13~] and matrices:

(3.1) u(x, t + k) = a[u(xJ

Γ2h, t) + u(x-2h, ί)]

+ b[_u(x + h, t) + u(x-h, t)^ + cu{x, t)+T(x, t),

(3.2) Mi = a(Li-2I)2 + r(Li-2I) + I,

where

(3.3) α = -£-( r—L), ft=2r(-|—r), c = l — | - r + 3 r 2 ,

(3.4) T(x, ί) = - ^ ( r 2 - - r

T + ̂ )heum(x, t)+O(hs).

Let λn (y = l, 2, • •-, TV) be the eigenvalues of Af, (ΐ = l, 2, 3). Then, since

by the lemma

(3.5) Mi = i

it follows that

(3.6) λij = ]

From this we find that λy> -1 (j=l,2, •••, N; ί = l, 2, 3), because 05Sω, 7<;

and

(3.7) fa, +1)/2 = (2rα)y - σ,y)
2 + 1 - σjj > 0,

where
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On the other hand, the inequalities 1^1 (y = l, 2, . ••, TV; i = l, 2, 3) are

valid, if r<^—~-. The sign of equality holds when i = 2, j = l and when ί = 2,
o

2
j=N and r = -^-5 but then λ2Λ and /l2,^ are eigenvalues corresponding to

linear elementary divisors because the matrix M2 is similar to a diagonal
2

matrix. Thus the difference scheme connected with (3.1) is stable if r<J

3.2 Formula with truncation error of order h6

From (2.10) we have the following results:

+ du(x, t) + T(Λ;, ί),

(3.9) Mi = a(Li

where

(3.10) α = - ^ f r 2 -

13r

(3.11) Γ(Λ, ί ) = ^ ( r 3 - r 2 + ̂ - r — ^ - ) Λ 8 ^ U , t) + O(h10).

Since

(3.12)

it follows that

(3.13) λij^l-4τωij-2βω2

ij-l^wij

where

(3.14) /9 = 2r - s — 2r , a = 8a = -ίi-(r-
3 " V 3 V 4 7 ' 180" '

It is easily seen that λy<Jl (/ = 1, 2, ..., iV"; t = l, 2, 3), because 0<ΞJα)y<|l and

(3.15) l - i , 7 :

The equal sign is valid only when i — 2 and j = l.
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Now we seek for the condition under which Λ//̂ >— 1. From (3.13) it
follows that

(3.16)

Corresponding to (3.16) we put

(3.17) f

and transform (3.17) as follows:

(3.18)

and

(3.19) h(z) = g(z + l) = z3 + Clz
2 + c2z

where

(3.20) C l = 3 - 2 r , c2 = 4 r 2 - ^

It can be shown by means of the discriminant that the cubic equation c3 = 0
has one and only one real root r0, which is given numerically as follows:

(3.21) ro = O.84136O228O ...

Then, since ci>0 for r < > 0 , c 2 >0 and c 3 >0 for r<r0, it follows that/(:*;)^>0
for r ^ r 0 , and the sign of equality holds only when x = l and r = r0. Hence
λij^> —1 for r ^ r 0 and the equal sign is valid only when ί = 2, y = iVand r = rQ.

Thus the difference scheme corresponding to (3.8) is stable if r < > 0 .

4. Implicit formulas

4.1 Formula with truncation error of order hA

From (2.11) we have the following formula [4] and matrices:

(4.1) a[u(x + h, t + k) + u(x — h, t + k)~] + bu(x, t + k)

=atu(x + h, t) + u(x-h, t)~] + βu(x, t)+T(x, 0,

(4.2) Pi = a(Li- 21) + 127, &• = #(£,—2 J) +127,

where

(4.3) α = l - 6 r , ό = 10 + 12r5 α = l + 6r, /9 = 10-12r,

(4.4) T(x, t)
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Let jUij, Pij and λ^ (y = l, 2, ..., N) be the eigenvalues of Pt , (λ and P ^ φ

(i = l, 2, 3) respectively. Then, since

(4.5) Pf =

it follows that

(4.6) jay = 12 + 4(6r - l > l 7 , P/y = 12 - 4(6r

it is easily seen that 1^>Λ,7>—1 and that the sign of equality holds only
when ί = 2 and/ = l.

Thus, the difference scheme corresponding to (4.1) is unconditionally
stable.

4.2 Formula with truncation error of order h6

From (2.12) we have the following results:

(4.7) a[u(x + 2h: t + k) + u(x-2h, t + k)^ + biu(x + h, t + k)

+ u(x—h, t + k)J + cu(x, tJrk)=a\^u(x + 2h, t)

+ u(x-2h, t)J + β[u(x + h, t) + u(x-h, ήj + γu(x, t)+T(x, t\

(4.8) Pi = a(Li-2I)2 + (b + 4:a) (Zί -2/) + 90/? ft = a ( ^ - 2 / ) 2 + 90/5

where

(4.9) a = 30r2 - 1 , b=- 120r2 - 90r + 4, c = 180r2 + 180r + 84,

a=-β/4, £ = 60r2 + 30r + 4, r= -90r 2-45r

(4.10) T ^ ( ^ ^

Since

(4.11) Pi = R

it follows that

(4.12)

and

(4.13) βij - 90 - (240r2 + 120r + 16)α)f j.

It can be seen that 1^>A#> —1 and that the equal sign is valid only when i — 2
andy==l, because

Pij + βij = 148 + 240rβ)y ( l + rωij) + (1 - ωίy) (32 + 32ίθ,7 + 120rίθfy) > 0
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and

Uij - Pij = 120rβ)t £ 3 + (1 + 6r)ωtjl :> 0.

Thus the difference scheme connected with (4.7) is unconditionally stable.

REMARK. For the boundary value problem of the Case 2, the matrices M2

and iV(?2 have eigenvalues equal to one in modulus, so that the persisting
errors Qll, 7] will be observed.

5. Numerical example

We consider the problem (1.1) with the following conditions:

I * • 1 1 T / i /v* I I I • UJ I y i Tt W* 7 / ί I I T" l ~' ~t / ί I / i ~^~~ I I

\O.XJ Ll\X) \J) — blil/LX, Ll\\J) I) — ί-fĉ x, L)—U.

Its exact solution is given by

This problem is solved numerically first by the well-known formula

(5.3) U{x, t + k) = rtU(x + h, l)+U(x-h, l)JJr(l-2r)U(x, t\

and then by the formulas corresponding to (3.1), (3.8), (4.1) and (4.7), with

The approximate values ofthe uniform mesh-sizes h = -^- and r = - 1 — .
o 4

w-n-, t) are given in Table 1.

Table 1.

t

formula

(5.3)

(3.1)

(3.8)

(4.1)

(4.7)

(5.2)

0.25

0.83457281847-01

0.84808500771-01

0.84805045131-01

0.84799916378-01

0.84805117504-01

0.84804972470-01

0.5

0.69651178933-02

0.71924818031-02

0.71918956799-02

0.71910258176-02

0.71919060356-02

0.71918833555-02

0.75

0.58128980711-03

0.60998359853-03

0.60990903771-03

0.60979838803-03

0.60991027361-03

0.60990746996-03

1.0

0.48512867266-04

0.51731794488-04

0.51723363470-04

0.51710852311-04

0.51723498613-04

0.51723186198-04
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