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Introduction

The present paper deals with the problem of an integral representation of
harmonic functions of the laplacian on real hyperbolic spaces.

There are some types of theorems on Dirichlet problem, which show that
certain classes of harmonic functions on the unit disc are given by the Poisson
integral (cf. [1]). However, in order to obtain arbitrary harmonic functions we
should consider the ,,Poisson transform of hyperfunctions”, as S. Helgason showed
in [6]. He proved there that any eigenfunction of the laplacian on the unit disc
(with respect to the Poincaré metric) is given as the Poisson transform of a hyper-
function on the unit circle. In the case of Euclidean space [3], the situation is
different. In this case we should consider a space which properly contains the
hyperfunctions on the unit sphere.

It is our object to prove that, in the case of real hyperbolic spaces, the Poisson
transform is an isomorphism of the space of hyperfunctions on the boundary
onto the space of harmonic functions of the laplacian (Theorem 4.6 in § 4).

This paper consists of four sections. In §1, we characterize the hyperfunc-
tions on a compact real analytic riemannian manifold by their Fourier coefficients
with respect to the eigenfunctions of the laplacian. In §2, we show that any
harmonic function on a symmetric space of rank one can be expanded in an ab-
solutely convergent series of K-finite harmonic functions. In §3 we restrict our
argument to the case of real hyperbolic spaces and determine the K-finite harmonic
functions by solving differential equations. In the final section we define the
Poisson transform of hyperfunctions, and making use of the characterization of
hyperfunctions, we prove Theorem 4.6.

§ 1. Hyperfunctions on a compact riemannian manifold.

In this section we characterize the hyperfunctions on a compact real analytic
riemannian manifold by their Fourier coefficients with respect to the eigenfunc-
tions of the laplacian on the manifold.

Let B be a compact real analytic manifold with a riemannian metric g, @
the laplacian corresponding to g and L2(B) the space of square integrable func-
tions on B with respect to the measure induced by g. We denote the unitary inner
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product and the norm of L2(B) by (, ) and || || respectively. We denote by «#(B)
the space of analytic functions on B equipped with the usual topology.

As is well-known, the eigenvalues of w are non-negative and countable, and
the space of eigenfunctions of each eigenvalue is finite-dimensional. Let IN°
be the set of non-negative integers. We denote the eigenvalues of w by 4, (n N°)
and order them so that 4,<4,, if n<m. Let E,=E;_ be the space of eigenfunc-
tions of w with eigenvalue A, and d(n)=d(4,) be the dimension of E,. Then as
an orthonormal base of E,, we can choose analytic functions ¢? on B (neN?°,
1=5i<d(n)), and

{¢7l neN°, 1<i<d(n)}

makes a complete orthonormal base of L2(B).

LemMA 1.1. For seC such that .@e(s)>—;‘—dimB, the series

2, dn)(1+4,)7*
neN©°

is convergent and holomorphic in s.
For a proof, see [11].

LEMMA 1.2. For t>0, the series
2, d(n)exp(—1ta1/2)
neN©O

is convergent.

Proor. Fix an arbitrary t>0 and put s=dimB+1. Since there exists
an M R such that

(L+A,)exp(—tA/2) =M
for ne N°, we have
2 d(n)exp(—1tAL/2)
neN©°
=M 3 dm)(1+4,)75
neN©

which is convergent by Lemma 1.1. This finishes the proof.

Let C*(B) denote the space of C®-functions on B. It is well-known (cf. [11])
that any ¢ € C*(B) can be expanded in an absolutely and uniformly convergent
Fourier series

o= 2

neN

2 (4, O1) 1.

d(n)
° {=1
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In the following we write this as

d(n)
b= T ar

neN©° j=

for ¢ € C*(B), where a}=(¢, ¢¥). Since

d(n)
wp= 2. A, 2, ar¢l,
=1

neN© i

the series

12 d(n)
x4 agr

neN

converges also absolutely and uniformly on B and defines an element of C*(B).
We denote it by w1/2¢. It is easy to show

LeEmMMA 1.3. Let ¢ and yC=®(B). Then
(@29, Y)=(9, 0'/2y).

Analogously for any t=0 we can define a mapping exp(—tw!/?) by
d(n)
exp(—tw'/?)p= 3, exp(—tA;/?) 2, ard}
neN© i=1
for = C=(B). We have

LEMMA 1.4. Let ¢, y=C=(B) and t=0. Then

(exp(—tw!/2)¢, Y)=(¢, exp(—tw'/2)}).

Now we define two systems of semi-norms | |, and || ||, (h>0) on C=(B).
They are defined by

191h= sup 0™l

—_ 1 m/2
Iélla= sup —m-llw™24].

For h>0, we put
Lo, (B)={p€C*(B)| |pl,< o},
A (B)={¢pC=(B)| ||¢|l<oo}.

It is easy to check that | |, and || ||, are norms on 7, ,(B) and «,(B) respectively.
About these semi-norms, we have
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LEMMA 1.5. Let ¢=C®(B). Then

M pln=lloll

® 61h<+/2 [Bln2-
Proor. (1) For me NO, the equality

gy 190" =y gyl (@) 276

means that [¢], < (|}l 5.
(2) When m=2] (I N°), we have

1 m/2
o™ 9|

1
= th—)r” w'ell,
which means that

1
L llom $ll< 61,2

m

When m=2[+1 (I N°),

(el 1)’

_ ((w1/2)21+1¢, (w1/2)21+1¢)
= {(21+1)'}2 h22i+1)

By Lemma 1.3 and Schwarz’s inequality, we have

(b leom2a1l)’

_ (wl+l¢, wl¢)
T {@I+1)}2 R2EED

™| o'

IA

= 204D (1g1,02 .

2(1+1)

Since 0< 2+ 1

<2 for l=N°, we have

{QIF1)1}7 p2CHD
llo'* 1] o'l {20+D)! @D
RU+DIIGEHFT QDI @RI+ D! T RI+D!

(1.1)
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o281 22164, (1.2)

Therefore we have from (1.1) and (1.2),

om0l Y216,

for meN°. Taking supremum we obtain the required inequality

lplh=210lh,
which completes the proof.

The above lemma implies that the inductive limit of &7, ,(B), denoted by
lim &7, 4(B), coincides with that of «7,(B), denoted by lim . ,(B), as linear
h—=> o

h— o0

topological spaces. On the other hand, «/(B) is equal to lim &7, ,(B) (see [10]).
h— o

Therefore we have the following
ProPOSITION 1.6. &Z(B)= lim <7 ,(B).
h—o0
We define a subset #,=%,(B) of CN = HOC“(") by
neN
d(n)
Fo={@D1¥lzamlai€C, 3 2, latlexp(t}/2) <oo for some >0}
- ne i=1
and a mapping ¢ of «/(B) into CN by
&(p)=(ay),

where ¢ =.o7(B) and a?!=(¢, ¢}). As is easily seen, F,is a vector subspace of
CY and & is a C-linear mapping of /(B) into C¥. On this mapping we have

ProrosITION 1.7. @ is an isomorphism of o/(B) onto & (B). Let (a}) € F,.
Then the inverse mapping = of ® is given by

d(n)
o i@= 3 Y ar

which converges in «/(B) and defines a unique element of </(B).

Proor. Let ¢=(B). Then by Proposition 1.6, there exists an hy>0
such that

1
sup
meN© ’11!}53

l|0™2 | =|plln, < co.

On the other hand, since ¢ has an absolutely and uniformly convergent Fourier
expansion
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n)
arer,

o= 2

d(
neN©° =

=

we have

1 d(n) n
= _lm/z n
”¢“ho ,,?:leo m’h}g “ n§V° igl Qailn ¢l”

1 d(n)
P I 2, 2 @

n §

v

31291

-
[

1
m!h

v

Anl?|a

for n, me N°, Multiplying 2~™ and summing the above inequality with respect
to m, we have

|atlexp(—5— 2472 )=2[19ln, (1.3)

for ne NO. Putting t0=L, we obtain
4h,

d(n) 1/2
51 latlexplohis?)

1 1/2>e — 1 1/2)
=2/, "ezl:vod(n) c=,xp<———4ho Ay XP( 2k, vk

= —_L s
=201y 3, 4n) exp( == 4412),

which is finite by Lemma 1.2. This implies fhat (P eF,.
Next, let (a})eF,. By the definition of &, there exists a ¢t,>0 such that

d(n)
neZJ:VO l_; latlexp(to1Al/2) < oo, 1.4

On the other hand, for ne N°, 1<i<d(n) and h>0,

1
I 2lly= sup e Api2

1
< —— A2
- m§v° m !hm "

exp (472,

which means that ¢? €.«7,(B). Therefore putting h=t, we obtain
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~

N+l d(n

N+l d(w)
2 2, aiot| = 2 20 lall ot
n=N i=1 n=N i=1
N+l d(n)
= latlexp(ts1A4/2),
n=N i=1

which implies by (1.4) that the sequence
N d(n)
( ﬁz: ig% a?qb?)

=0 NzO
is a Cauchy sequence in the Banach space o, (B). Therefore there exists a uni-
que element ¢ in o7 (B) such that
d(n)
2 aip?

neN©° i=1

converges to ¢ in «/(B). Since the above series also converges absolutely and
uniformly on B, we conclude immediately that &(¢p)=(a?). This shows the
surjectivity of &.

Finally we prove the injectivity of ®. Assume ®#(¢)=0 for p=/(B). Then
(¢, d»)=0 for neN° and 1<i<d(n). On the other hand

d(n)

o= 2. 2 (9 o191,

neN© i=1

which means ¢=0. This completes the proof.
In the proof of the above proposition we have proved the following

CoROLLARY 1. For ¢ =./(B), the Fourier series
d(n)
2 2 (9, dDdr
neN©° i=1

converges to ¢ in o/(B).

COROLLARY 2. Let hy>0 and 1/(2hy)>t=0. Then for ¢z, (B), the
series

= exni) L (4, 901

converges in Z(B) and defines an element of </(B), which we denote by
exp(twl/?) ¢. Furthermore we have

llexp(tw!/2)@ | < 2|,

Proofr. From (1.3) in the proof of Proposition 1.7,

(b, $DI=2/1¢llo eXp(__z_}K wz)
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for neN° and ¢ =, (B). Putting t,=1/(4h,) —1/2, we have

Lo d(;) (¢, ¢7) exp (145/2)] exp (tod5/%)

< 3,2 (2 lh, exp — 5 2472) exp(t+10)241%)

neN©° i=1

=2l¢llne 3, dmexp((t+t0=—5—) 2472).

Since t+ty—1/2hg=—1,<0, it follows from Lemma 1.2 that the sequence
(¢, dMexp(tri/?))e&F,. By Proposition 1.7, we conclude that the series

3T (@ dpexpiting,

converges in &/(B) and defines an element exp(tw!/2)¢ of «Z(B) since «/(B) is
complete. Therefore

lexp(tot/®)¢ll= 35 o Ilw"‘/2¢ll

= 5 (ko)™ mizg

m=0 l?l!/&??

gl 01 Y 5, @hor)
é(:‘e‘gomzhg“w oI [ 5, (tho)
<—L_ g
= 1—th, ho
<2( s

which completes the proof.

We denote by # =% (B) the space of continuous linear functionals of .7(B)
into C. It is known [12] that on a compact real analytic manifold, # coincides
with the space of Sato’s hyperfunctions. Henceforth we call the elements of %
the hyperfunctions on B.

We define a subset F,=%,(B) of CV¥ by

d(n)
Fy={@)1LzamlareC, n§V° ;l |a?lexp(—tA}/2)< oo for any >0}

and a mapping ¥ of #(B) into CN by
¥Y(T)=(a}),
where T € #(B) and a}=T(¢?), ¢} denoting the complex conjugate of ¢?. Then
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&, is a vector subspace of CN and ¥ is a C-linear mapping of #(B) into C¥. On
this mapping we have the following

THEOREM 1.8. V¥ is an isomorphism of #(B) onto &,(B). Let (al)e
F(B). Then the invesrse mapping ¥Y~! of ¥ is given by
d(n)
L CHORI I

which converges absolutely and defines an element ¥~1(a?) of %(B).

Proor. At first we prove that the image of T #(B) by ¥ lies in #,. It
is enough to show that
d(n)
2 2. latlexp(—tA;/2)< oo
neN©° i=1
for any t>0, where a?=T(®?). Take an hy>0 such that t>1/h,. As is shown
in Proposition 1.7, @7/, (B). Since Tis continuous on 7, (B), there exists
a constant ¢ such that

lap| = [T(¢7)]
< c i,

—_— 1 m/2
=csup gl o™ el

Am/Z
= c sup —2%—
mel?o m 'h'g

1 1/2>
=c exp(h0 Al
forne N°, 1<i<d(n). Hence

da()
2, |ailexp(~123/7)
i=

< ¢ d(n) exp (hL 1;/2>exp(—u,1/2)
(1]

= ¢ d(n) exp ((hLO —-t) A,}/2>.

Since 1/hy—t<0, we have by Lemma 1.2 that

d(n) 12
> Jatlexp(~123/2)

<c n;}vod(n) exp((%— t ) ,1;/2)

< oo,
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which proves that ¥(T)e #,.
Let (a?)= &, and take an arbitrary h>0. Then by Corollary 2 to Proposi-
tion 1.7, exp (Tlﬁwl/ 2)¢E.521(B) for =, (B). From Lemma 1.4, we have

@1 ®=(91, exp( — 01/ Jexp( 4p-02 )p)
(o~ o )

- 1 1/2> n ( (L 1/:) )‘)
-(exp( 7? 2, | exp 75 ® o) )
Therefore by Corollary 2 to Proposition 1.7, we have

d(n) _
5 S Ll (@n B

o & 11 (o =g )on (so(grots)e) )|

d(n) 1 1
n ——l/2)pr —— _l/2
= neN° iég; Itl'[ e)(I)<: 4h @ j>le l e)(I)<:‘1}i @ :)qbl
d(n) 1
<20l 3, '3 latlexp( = 247%) (1.5
neN©° i=1
< oo,

since (a¥)e F,. Therefore the series

d(n)
%, ar, )

neN

converges aboslutely. We put
d(n)
T@)= %, 2 alel. .

It is clear that T defines a C-linear mapping of «7(B) into € and T(¢¥)=a}. Since
h is arbitrary and (1.5) implies the continuity of T on .«7,(B), we can deduce by
Proposition 1.6 that T is continuous on &/(B), which proves the surjectivity of ¥.

Finally we prove the injectivity of ¥. Assume that ¥ (T)=0 for T 4.
That is, T(¢?)=0 for neN°, 1<i<d(n). On the other hand, by Corollary 1 to
Proposition 1.7, the series

d(n)
2, 2 (B $DeF

neN
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converges to ¢ in &/(B) for =/ (B). Therefore
)= 5. @ s TG
=0,

which means that T=0. This complets the proof of the theorem.

RemARkK. The following two conditions are equivalent.

d(n)
1 2, X laflexp(—ti}/?)<oo forany ¢>0.
neN©0 i=1
a(n)
2 23 D) lar?exp(—sil/?)<co for any s>0.
neN° i=1

Assume that (1) is satisfied. Since
d(n)

X
=1

neN©° i

jatlexp( =5 14/2) <o,
there exists an integer N such that
]a;'|exp(——;—,l;/2><l
for n>N and 1<i<d(n). Then we have
Jat 7exp(—s241%) < lafl exp (=3~ 4412,

which means that

(n)
> S |ar|zexp(—s21/?)
i=1

neN°

d(n

)
< > % latlexp( —-3-24/7)

neN©° i=1
< o0,

Conversely, using Schwarz’s inequality, we have

neN
(n)
<( 5 S jarzexp(—t22/2)( X d(n)exp(—1A/2)),
neN©O i=1 neN©°

which is finite by Lemma 1.2.
Therefore &, is also given by

131

d(n) d(n) t t
=, % latlexp(—12yH= 3 (5 latlexp( — 51412 ) Jexp( —5-2412)
0 =1 neNO\ i=1 2 2
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d(n)
{@DlareC, % la}|? exp(—t4;/2) <oo for any t>0}.

neNO i=1

§2. Poisson transform of K-finite functions.

In this section we assume that G is a connected real semisimple Lie group
with finite center and of real rank one. Let g, be the Lie algebra of G, go=%,+ P,
a Cartan decomposition of g, and 6 the corresponding Cartan involution of g,.
We denote the complexification of g, by g. Let a, be a maximal abelian sub-
space of p,. Since we assume that the real rank of G is one, a.. is one-dimensional.
Let ao be a maximal abelian subalgebra of g, containing a,. Then ay=a_+a.
(direct sum) and a;=a,NPy, Where a_=ay,N¥,. Complexify £y, Py, ag, a4
and a_ to I, p, a, a, and q, in g respectively and introduce compatible orders in
the spaces of real-valued linear functions on a, +\/ —1a_and a,. Let P be the
set of positive roots of (g, a) under this ordering. For a root «, we denote the root
subspace corresponding to o by g*. Put P, be the set of a with a-0=q,
n= ), g% nyg=1Ng,and p#i >, o Let K, A and N denote the analytic

aeP 4+ aeP+

subgroups of G with Lie algebras f,, a, and n, respectively. Then G=KAN
is an Iwasawa decomposition. Since this decomposition is unique, we can define
an element H(x) in a, for x&G by xeK(expH(x))N. Let X=G/K and B=
K/M, where M is the centralizer of A in K. We define a real analytic function
P(xK, kM) on X x B, called the Poisson kernel, by

P(xK, kM)=exp(—2pH(x~1k)).

We denote by R the set of the equivalence classes of irreducible unitary re-
presentations of K and by R° the subset of R which consists of the representations
of class one with respect to M. For each ye R, we take and fix a representative
(z?, W")ey and choose a base {w], ..., w}.,} of W? orthonormal with respect to
the unitary inner product (, ) of W? so that w} is an M-fixed vector for yeR°,
where d(y) is the dimension of W?». " Since rank(G/K)=1, w{ is unique up to a
scalar for yeR%.  Put 17;(k)=(c"(k)w}, w}), ¢!;=d(y)1/2%}; for yeR and
¢!=¢!, for yR°. We identify the functions on B with those on K which are
right M-invariant, and define the representation = of K on C*(K) and C*(X) by

n(k)¢(ko)= (k™ 'ko),
n(k)f(2)=f(k™'2).

We denote by V, the space of the elements in C®(K) which transform according
to y by the representation #. It is easy to see that

v d(7) v oy
n(k) ij= 1§ Tli¢zj
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for yeR, and
$1(km) = 1(k)

for yeR®, k€K and meM. Therefore for yeR, ¢!;€V, and in particular
V,cC=(B) for yeR®. As is well-known, {¢];| 1<, ]Sd(y)} is an orthonormal
base of V, (yeR) and {¢}| yERO, lgigd(y)} is a complete orthonormal base
of L%(B).

Let g be the G-invariant riemannian metric on X induced by the Killing form
of go and 4 be the laplacian corresponding to g. We identify the functions on
X with those on G which are right K-invariant. We denote by B the universal
enveloping algebra of g and regard the elements of B as left G-invariant differential
operators on G. Then 4 can be identified with the Casimir operator 2 on G by

(4f)X2)=@f)x),
where z=xKeX. We put
H(X)={feC=(X)| 4f =0},
# (X)={f €s#(X)| f transforms according to y by n}.
For simplicity we write often s#(X)=# and #(X)=#,.
Now we define the Poisson transform 2¢ of ¢ €C>(B). Put
(28)x) = PGK, kM) (R)dk,

where xe G, ke K and dk is the normalized Haar measure on K. Clearly 2¢
is a function on X, and the following results hold.

ProposITION 2.1. (1) 2 maps ¢=C®(B) into s#(X). When y RO, the
restriction of 2 on V, is an isomorphism onto # (X).
(2) Ifo#,(X)#{0}, then yeRO.

For the proof of the proposition, see Lemma 1.2 and Theorem 1.4 in Chap.
1V in [6], where more precise results are found.
We put f!=2¢}. Then we have

ProprosiTION 2.2. (1) For f € s#(X), there exists a unique complex number
a! for yeR° and 1<i<d(y) such that

aw)
f@= 3, 2, aifie)

which converges absolutely for any z in X.
(2) Put ¢7(k)=f(kz). Then

b= T Ao 8 e,

yJj=
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which converges absolutely and uniformly on K.
(3) Let || || denote the norm of L*(K). Then

6512= 3 do)( & latiax £ L@

Proor. By the theory of Fourier expansion of C®-functions on compact
Lie groups (cf. [14]),

b= 5 2 b 1)

which converges absolutely and uniformly on K and b};(z) is given by
b1, ={ flea)F1 Rk

Since
)
n(k)b;.’j(z)= &, T;’j(k)b?z(z),
b}; lies in 5#,. From (2.1), putting k=1, we have an absolutely convergent series
bli(2), 2.2

@)= 5 doyr g

a(y)
since ¢);(1)=d(y)!/26;;. If ig b};=~0, we can deduce by Proposition 2.1 that

yER® and that there exist complex numbers a] (yeR°, 1<i<d(y)) such that

]

a() a)
do)*2 3, b= 2, alfl. @23)

Since z is arbitrary, replacing z by kz in (2.3) we have

12 % by ky=diyriz 5P k1)
a2 ) brdey=demrz 57 <)
)
= bl(2)¢1(k) 24

i,l=1

and

fitke)={ PGz, koM)@I(ko)dk
={_ PG, ke koM)1Co)k,

=, PGz, koM)pi(ko)dky
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—1/2 a()
=y % | PG koMGH(DBIKo)ko

d)
=d(y)~1/2 ;=Zl J1(@ehi(k), (2.5)
for 1<i<d(y). From (2.3), (2.4) and (2.5) we have
a() 4
5 bl@en=dm) it B arfig

Since ¢}, are linearly independent we can deduce that
bl =d(y)"'/%a] f{.

Putting i=1 in the above equality, we obtain from (2.2) an absolutely convergent
series

)
f(@)= 2. aifi(2),
7€RO i=1
which proves (1) in the proposition.
Next, from (1) and (2.5) we have

#100=50= % % alfia)

= 3 dor L alri@enm,

y€R
which proves (2) and (3) immediately. This completes the proof.

Let us®Bf. Then as is easily seen, uf =0 on X for f€C®(X). On the
other hand, as is stated before, (4f)(xk)=(Q2f)(x). Therefore we may transform
Q modulo Bf. In the following we transform Q modulo Bf to obtain the
differential equation on A which the elements in s# satisfy.

For an element A of the dual space a* of a, let 7 denote the restriction of 4
on a,. Let P, be the set of ae P such that @=+0. For every root «, we select
X,=g* so that <X,, X_,>=1 where <, > is the Killing form of g. Then
[X,, X_,]=H, where H, is the unique element such that <H, H,> =a(H) for
any Hea. Choose bases H; and H,, ..., H,, of a, and a, respectively so that
<H;, Hj>=4¢;; for 1=i,j=m. Then H,, ..., H, together with X,, X_, (x€P)
form a base of g. Put P_=P—P,. Since X,, X_,(asP_) and H; 2<i<m)
liein f,

Q=H2+H +..+Hy2+ 3 (XX +X_X)

=H*+ ¥ (X.X_,+X_.X,) mod BT, (2.6)
aEr +
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ForacsP,,let X,=Z,+Y, where Z,€f and Y,=p, and put X°=Ad(a)X where
a=expH and Hea, —{0}. Then
Xe=Z3+7Y?
and
t=erZ +erY
Therefore
Z3+Yi=esZ +ea)Y 2.7
Since 6(Z2+ Y2)=Z2"' — Y% !, we have also
Za ' —Ya l=ertDZ —ea(DY (2.8)
In (2.7), replacing H by — H, we have
Z3 ' 4 Yd =g eDZ, e DY 29
From (2.8) and (2.9) we obtain
Y,=(cotha(H))Z,— (sinha(H))~1Z2™". (2.10)
On the other hand, since _
XX _o=X[(Z_,+Y_))
=X, Z_,+X,Y_,
=X,Y_,
=(Z,+Y,)Y_,
we get from (2.10) that
X, X _,={(1+cotha(H))Z,— (sinha(H))"1Z2"'}Y _,
=(1+cotha(H))[Z,, Y-, 1+ (1 +cotha(H))Y _,Z,
—(sinha(H))~1Z4-1Y _,
=(1+cotha(H))[Z,, Y _,]—(sinha(H))"1Za" 'Y _,. (2.11)
Thus we have
X_,X,=(1—cotha(H)[Z_,, Y,]+ (sinha(H))"1Z2,'Y,.
Repalcing H by — H in the above expression, we have

X _,X,=+cotha(H))[Z_,, Y,]— (sinha(H))"1Z2,Y,.
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Therefore
(X _,X)=—(1+cotha(H)[Z_,, Y,]

+(sinha(H))~12Z2,'Y,, (2.12)
since [Z_,, Y, ]€p. (2.11) together with (2.12) gives
X X _+0(X_,X,)
=(1+cotha(H)X[Z,, Y -]+ [Y, Z_,])

— (sinha(H))~}(Z8™ 'Y _,— Z2,'Y ).
Since

[Zuo Y1+ (Yo Z_J=—5-{[Xeo X1~ [0X,, 6X T}

= {H,-oH}=H,
we obtain that
X X_,+0(X_,X,)
=(1+cotha(H))H, —(sinha(H))~Y(Za™ 'Y _,—Z3,'Y ). (2.13)
As is easily seen, 0Q=Q. Therefore from (2.6) and (2.13) we find that

1
o=-1(+00)
=H 2+ 3 XX o+ 0 X))+ (X X+ OX X )}
=H 2+ 53 {(1-+cotha(H)H, — (sinha(H)) (28~ Y-y~ 23 Y,)

+(1—cotha(H))H _, + (sinha(H))~1(Z22,'Y,—Z3" 'Y _)}.
Taking H_,= — H; into account, we get

Q=H.2+ ZP} {(cotha(H))H 5+ (sinha(H))"1(Z2,'Y,~Z2" 'Y _)}.

Since Y,=(cotha(H))Z,— (sinha(H))~1Z2" "' from (2.10), we find that
Q=H2+ 3, (cothw(H))H,— Y, (sinha(H))"2(Z2 'Z3,'+2Z2,'Z2").
aeP 4+

aeP 4+

Now, let Ly(X €g) be the differential of the left regular representation of
G on C*(G) and extend it to the representation of B. Then

XN =(L-xf)x)
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for x€G, fe*C(G) and Xg. Therefore for ac A4,
[ ]
@N)@=[{H,>+ 3 (cotha(H)H,

- X (Sinh“(H))_zL(z.,z_au-az,,)}f](a)- (2.14)

aeP

Let uo be the restriction of an a= P, on a, such that —:lz—uo is not equal to

the restriction of any root a=P, on a,. Then @=py, or 2y, foracP,. Let P,
(resp. P,,,) be the set of ac P, such that @=p, (resp. 2u,0), and let p(resp. q)
denote the number of roots in P,, (resp. P,,)). We normalize H, in a, so
that uo(Ho)=1. Then <H,, Hy,>=2p+8q and H,=(2p+8¢)"'/?2H,. For
teR, put a,=exptH,. Then t can be regarded as the coordinate function on
the one-dimensional Lie group 4, and we write often f(t) for f(a,). It is clear
that H, =(2p+8q)~'H, and

_ 1 d*>  pcotht d qcoth2t.j_}
(Qf)(t)_{2p+8q ai” Y 2p18q dr T 2p+sq Zars’®

1
_[{W ae; L(Z“Z“a“'z—aza)

#o

1
+—(sinh—2t)2_aez L(Zaz_a+z_,,za)} f](t)

quo
We define D, w, and w, by
-1 d? d }
D—m{—dt—z+(p coth t+2g coth 2t)—0-i7 .

;= Z (ZaZ—a+Z—¢Za)a
acP 4+
Wy = Z: (Zaz—a'l'z—aza)'
aePz,,o
Then we have

PrOPOSITION 2.3. Let feC®(X). Then

1 1 I
QfO=DfO)~ g 5yz Lo S (‘)‘{ (inh 217 ~ (sinh 7)? }szf @.

COROLLARY. Let fes#(X). Then

1 i 1
Df()~~simp pyz Lo S (’)‘{ (inh 2)7 ~ (sinh 7)? } Lo, 1(0)=0.
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§3. K-finite harmonic functions on real hyperbolic spaces.

From now on, we assume that G=S0,(n, 1) (n=3), the generalized Lorentz
group. That is, we deal with the real hyperbolic space X=G/K. We keep to
the notation in §2.

At first we review the structure of the Lie algebra go=so(n, 1) (cf. [15]).
The Lie algebra g, consists of real matrices X of order n+ 1 such that

tXJ+JX=0,

where

As a base of g,, we can take the matrices
Y; (I=isn)
and
X (I=si<j=n),
where
Y;=Ey;+E;, X;;=E;;—Ej,

E;; denoting the matrix of order n+1 whose (i, j) entry is 1 and others are 0. By
this base the Killing from < , > of g, is given by

<X, Y>=n-DTr(XY)

=2(n—1)( Z cd;— pay cijdij)s
1sSisn 15i<j=n
where
X= 2 oY+ €ijXijs
1sSisn 15i<j=n
Y= Z diY,'+ dleij'
15isn 15i<j=n
Put
fO= RXij’ Po= RYt
15i<j=n 1<i=n

Then go=%,+p, is a Cartan decomposition and the corresponding Cartan in-
volution is given by

9( Yi) == Yi, B(X ij) =X ije
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Let m be the integer determined by n=2m or n=2m—1 according to the
parity of n, and put

E =Y, E2=\/?1 D CYVIN Em=\/——1 X2m—2,2m—-19
and

a,=RE,, a_.=/-1 Y RE, aj,=a,+a_.

25ism

Then a, is a maximal abelian subspace of p, and a, is a Cartan subalgebra of
go- Put g=g¢°, a=ay° and introduce a lexicographic order in the space of real-

valued linear forms on a, +./—1la_ with respect to the base (E;, E,, ..., E,).
Let (1 <i<m) be the elements of a* difined by 4(E;)=96;; (1=i, j=<m). Then
the set P of positive roots of (g, a) is given by

P={}(1=<ism), L+A;(1=i,jsm)} (n=2m),
P={}t2;(1=i,jsm)}  (n=2m-—1),

and P, is given by

Po={k, MtiQsjsm)} (n=2m), 3.0

P.={ytl Qsjsm)}  (n=2m—1). (32)
Put

X, =X,

1 S
X11+/1,=—2*(\/—1 Xaj-2+X55-1)s

1 S
X).;—AJ=T(\/"1 X2j—2_X2j-1)a

X—ll*l'lj:eXll +2j°
X"ll_}-j::eXll_lj (2§j§m)’

where X;=Y;+X,; 2<i<n). Then they are the root vectors of g=o(n+1, C).
Since

<Xll’ X_Al>=—4(n—1)
and
<Xi+ap Xoay-2,>=<Xj, -2 Xojy42,>=2n—1),

it is easy to see that f-components Z., (x€ P, ) are given by the following



Harmonic Functions on Real Hyperbolic Spaces 141

LEMMA 3.1. Z}.|=Z—ll=

1 S
ZA;+;.,=Z—11+/1,= 2\/2(?1—)(\/“‘1 X1,2j—2+Xl,2j—1)s

1 —
Zzl—z,=z—zl—z,= 2/2(n—1) (\/—1X1,21—2"X1,2j—1)-

As is easily seen, po=4, P,,=P, and P,, =@. Therefore w,=0 and we
have only to compute w,. When n=2m, from (3.1) and Lemma 3.1 we have

o= T @Z-+Z-2)

aeP+

Xln

_2( 2\/n

+2(2\/2(n—1))2 5 AT X224 X 2m )V =1 X 22— X1 25-1)

25jsSm

+(\/——1X1,2j—2—X1,2j-1)(\/——1X1,2j—2+X1,2j—1)}

1 1 '
(_2X%,2j-2_2X%,2j—-1)

—_ 2
=D X T g1y o &

— 1 2 1 2.
h 2('1—1)X“' 2(n—1) 2§i§n—1X1'

__ 1 2.
T 21 2§i§nX“'

Similarly, when n=2m — 1, we have from (3.2) and Lemma 3.1,

1
;= T3m=1) » 2 (X}2j-2tX%25-1)

Sjsm

1
- e
2(n—1) 2§Zi:§n 1

Consequently for any n, we have

-1 2
= S=1) 2§Zi:§nX“' 3.3)

Let <, >, be the Killing form of f, and w, be the Casimir operator of f,.
Since f,=s0(n),

<X, Y>,=(n-2)Tr(XY)
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for X, Ye¥t,. Therefore

D= —ﬁ 1§i§j§n Xip 34
since Tp= 1§i,Zj§n RX;;and <X;;, X,>;= —2(n—2)5,0;s.
Let m, be the Lie algebra of M. It is easy to see that
m0=2§i§§n RX;;.
Therefore, from (3.4) we have
w=—sL__ 3 X3 mod mB. (3.5)

From (3.3) and (3.5) we obtain the following

n—

LemMmA 3.2 oy =— zwk mod myB.

-1
Let m, be the integer determined by n=2m, or n=2my+1 according to the
parity of n. Put

Hj=\/=1X,;_1,5; (1=j<my)
and

f)o=\/:—11

Then b, is a Cartan subalgebra of £,. Put h=0h,° and introduce a lexicographic
order in the space of real linear forms on./—1 b, with respect to the base (Hy, ...,
H, ). Let ¢ be the elements of h* defined by e,(H;)=46;; (1=i, j=m,). For
yER, let 4, be the highest weight of y with respect to b, where R is the set of equi-
valence classes of irreducible unitary representations of K. From the represen-
tation theory of compact Lie groups, the mapping R=y—>4,bh* is injective.
We denote by L° the image of R® by this mapping. Then L, is given by

LO ={A1[Al= lel, lENO}

5, RH,

sj=

(cf. [13]). From now on we identify L° with N° and write t,, 4;, V;, #,, ¢}, f}
and d(l) instead of 7,, A,, V,, #,, ¢}, /7 and d(y). Put p,‘=% %, b, where Q is
pe
the set of positive roots of (£, h). Then from Proposition 2.1 and Schur’s lemma,
Ly f=<4;+2py, 4>, f (3.6)
for fe s, By a simple computation we see that

I(l4+n-2) G.7)

<Al+2pk’ Al>k= 2(”—2)



Harmonic Functions on Real Hyperbolic Spaces 143

By the way, since M normalizes A4, f((exptY)a)= f(aexptY) for ac 4, teR and
Yemy. Therefore

(L.fNa)=0
for a4, feC*(X) and uemyB. Using Lemma 3.2 and (3.6), (3.7) we have
LEMMA 3.3. Let fes#,. Then, for acA

Lo @ =1G1222) f(a).

PropoSITION 3.4. Let I€LO and f € s#,. Then f(t) satisfies the differential
equation

2
Zt{ + (n—1)coth t —— df %%%)I

Proor. Since Qf=4f=0 and p=(n—1), g=0 in case of gy=s0(n, 1),
we have this proposition immediately from Proposition 2.3 and Lemma 3.3. This
completes the proof.

2
We introduce a new parameter z=(tanh%> . Then the differential equa-

tion in Proposition 3.4 turns into
42120297 d f [ 42(1 = 2)(nz —4z+m) YL df —1(l+n—2)_(1:.zi)if=o,
A fundamental system of solutions of this differential equation is given by
12 -n n.
z F(l, -2, 1+ 2 ,z>

and

_I+n-2
2

F(-l—n+2,1—7 —1-242; z)

where F is the hypergeometric function. Since f(f) is a C*-function in ¢, there
exists a complex number c such that

12 _n n .
f)=cz F(ll 21+ ,z).

Thus we have

PROPOSITION 3.5. For f €4#,, there exists a complex number ¢ such that

-t 1= 10 ().
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By the above proposition, there exist ¢} for I€L® 1=<i<d(l) such that

fla)=c! <tanh )F(l 1- ” l+ <tanh2> >
On the other hand, A.W. Knapp proved ([7], Theorem 1.1) that in case of rank(X)
=1,
lim (2¢)ka)=¢p(k) a.e. keK,
t—oo

where ¢ is an integrable function on B=K/M. Since F(l, 1——'2'—, 1 +% ;1>

exists and

lim F(I,1— n l+ <tanh )2)

t—>o

_ _n g.n.
—F<l,1 2 1+ ,1)

= F(z—i) rr(§1+%))
r _ﬁ. +n—1 ’
2

where I' denotes the gamma function, we have

(26, = F(é)l) rr(gitf%

We put

F(%) I'(I+n—1) F(,, -7, 1+%;z>-

F(2)= T'(n—1) F(l +%>

Then we have

PROPOSITION 3.6. Let I€L®. Then
fll(az)=d(’)”’(tanh—é—)’F,((tanh—;-)z)

fHa)=0 2=i<d().
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§4. Poisson transform of hyperfunctions.

In this section we keep to the notation in the previous sections. We can
take the Casimir operator wg as the laplacian w on B introduced in §1. Then
there exists an isomorphism ¥ of the space of hyperfunctions #(B) onto £ ,(B),
where

'~

aa

Fy(B)={(a)<alaieC, P lajlexp(—t4}/?)<co for any ¢>0}
- eL® i=1
and
Lo lU+n=2)
1 2(n—2) ’

At first we prove two lemmas. It is easy to see

LEmMMA 4.1. For integers 120 and n=3, we have

ﬁél,‘“gl.

LemmA 4.2. For 0<r<1, we have

r'(+n—1)
W IR s EdEEa

@ ?EZ’_ZK}’(,Z” 7] 3 (1—r2y=1 SF(r2).

ProoF. (1) From the definition of hypergeometric function, we have

F(” 1=5, I+ r2)= 3 (1),,<1_%)p r2r

|
p=0 <l+ﬁ_> p‘
2 p

where (¢),=a(x+1)...(a+p—1) for xeC. Since we have

l@pl=lal |a+1]...Ja+p—1]
<lo| (jo| +1)...(Ja| +p—1)
=(laD),
by triangle inequality, it follows that

o (D 5—1
\F<l, 1__’21—’ l+%; r2>‘ = ,,;0 <;<+2%>p>p r;f

=F<l, %—1, l+%; rz). “4.1)
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On the other hand

F(l, 2ot 14+, 1)
r(1+—;i)

F(%)F(l +1)

exists ([9]) and is equal to

Therefore, from (4.1) we have
r(l +3)
‘F( L1-2, 140y ) 2
r( )r(1+ 1)

since F(l, n/2—1, 14+n/2; r?) is a positive term series of 2. From the definition
of F; (§3), we find that

IFi(r)| < F@)F(””‘nl) r(1+%)
re-or(1+5) r(§)ra+y

_  I+n-1)
T I'(n—1DIr(I+1) °

(2) We notice the equality ([9], p. 248)

- 2o \=(1=2)p1t (1 - L

F(L1-2, 142 52)=(1-2) F(5 14n—1, 142 5 2).

Since F(n/2, l4+n—1, 14+n/2; r?) is also a positive term series of 2, it follows that
n
(%, 1+n—1, 25 )21,

Therefore we have

( )F(1+n—1)
r(n—l)r(1+-)

F(r?)= 1—r2)"‘1F(%, I+n—-1, l+-g— ; r2>

r(%)r(un— OB

N F(n—l)l"(l+%>\ A
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which completes the proof.

For s>0, put
U,={z=ka,Ke X|keK, |tanh -é—l <exp(—2s)}.

Let (a)e#,. We consider the series
a)
S@)= 2 2, laillfi2)|
leLO i=1
for z=ka,Ke U, Since

a)

fi(ka)= J§1 fia)(k), |zh(R)I=1,
we have
d(1

s@s 3 % lall £}

i,j=1

~

From Proposition 3.6 and Lemma 4.2, we obtain

i) AV +n—1),
SO = 2 & 1 re=nravn @2

where r= Itanh l Put

_d(D2r(+n—1)
“D="Fa=Dra+n

Since d(]) is a polynomial function in I (Weyl’s dimension formula), c(l) is also
a polynomial function in I. It is easy to see that

lim ¢(l)1/'=1.
1=
Therefore there exists an integer [, such that
c(D'exp(—2s)<exp(—s)

for I>1,. Then from (4.2) we have
lo 4Q)

S(2) = laile(Dr!

=0 i=1

+ 5% lall(e)riry

[=)
-~

= laile(D)

+ 2 |ailexp(—sl),
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since z=ka, K= U,. On the other hand, from Lemma 4.1, we have
exp(—sl) <exp(—si}/?).

Therefore we find that

—

lo dU

S(z) = lalc())
=0 =1
@ d(1)
+ 2 |laflexp(—sA}/2),
I=lo+1 i=1

which is finite uniformly for z€ U,, since (a})= &,. This implies that the series
a(1) Ll
P 2 aifi(z)
leL® i=1

converges absolutely and uniformly in U,. Since fles# (IeL® 1<i<d(l)) and
every compact set is contained in U, for some s> 0, it follows that

|~

daQ)

™

aifi(z)

1
defines an element of »#. Thus we have
LeEMMA 4.3. Let (a))eF,. Then the series
a(1)
2,
leLO =1

12

aifi(z)

converges absolutely and uniformly in every compact subset of X and defines
a harmonic function on X.

Conversely, if f € s, by Proposition 2.2, we have an expansion
) el
f@= 2 2 aifi(2).
leL® i=1
About this expansion we obtain the following

LemMMA 4.4. The sequence (at) in the above expansion lies in F .

ProofF. From Proposition 2.2 in § 2, we have
2 _ () (0)
le512= 3,40 1tz ) 2 111@12)

2 2 (8 o ek,
] i=1

eLO\ i

Put z=gq, and r= I tanh%l. Then from Proposition 3.6 and Lemma 4.2 we have
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"(z)

< >2 a() F(l+n—'1) 2
6312 2(1 = r2yze=n( 2L <——> afrat
! re—-n/ < &\ r(i+2)

Since
— 2
LUXn= DN 21 for 120 and n23,
F<l+—>
2
we have
da(1)
6512 Z a1 —r2)20-D 32 57 at2p2, (4.3)
leL9 i=1

where ¢,=I'(n/2)2I'(n—1)"2. Take and fix an arbitrary s>0. Then we can
find a t= R such that

= 2 . 5 ____
r= I tanh 5 ' exp( 2J2=2) )
Then from (4.3) we obtain
6512z e, 0 -r2yemn 3 5 jaljrexp( -—=2L),
F="n 1eLo =1 ' J2(n-2)

Using Lemma 4.1, we find that
aw)
712 =e,(1—r2)2=D 37  lail?exp(=sa}/?)
leL% i=

-

for z=a,, which implies that (a!) € #, by the remark following Theorem 1.8 in
§ 1. This completes the proof.

We define the Poisson transform of a hyperfunctionon B. Let T %. Since
P(z, b) is a real analytic function in b, we can operate T on P(z, b). Then
T(P(z, b)) is a function on X. We denote this function by 2(T) and call it the
Poisson transform of T. By Theorem 1.8, there exists an isomorphism ¥ of #
onto F,.

LEMMA 4.5. Let Te# and (a))=¥(T). Then for any z€X,

~

2D@D= T, 3 afie)

i=1

which is absolutely convergent.

Proor. Fix an arbitrary z in X. Then from Corollary 1 to Proposition
1.7, P(z, b) has an expansion
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aQ)

P(z, b)= %

leL® i

810, Pz, kMBI, ¢4

1

which converges in «/(B). Since P(z, b) is real-valued and
i@ ={_ PG, mpitodk,
K
taking complex conjugate of (4.4), we have

)
Pa b= 3 3 FIRFO),

eL

which also converges in «/(B). Therefore
o :
T(P@ b)= 5. 3 FIT@,
since T'is continuous on «/(B). From the definition of ¥Y(T), a! is equal to T(¢}),
which finishes the proof.
Now we are in position to state the main

THEOREM 4.6. Poisson transform £ is an isomorphism of %(B) onto
#(X), where X is a real hyperbolic space.

ProoF. From Lemma 4.3 and Lemma 4.5, we can see that the image of
hyperfunctions by £ is contained in s#. Lemma 4.4 together with Lemma 4.5
implies that the mapping £ is surjective. Let 22(T)=0. Then, putting ¥(T)=
(al), we have

~

aua
aifi(z)=0

leL® i=

e

for any zeX. Replacing z by ka,, we have from (2.5) and Proposition 3.6,
¢ ht lF ht2d(l) llk 0
. () £ (k") 2 alei=

for ke K. Since ¢! are linearly independent, we can deduce that a!=0 for /e L°
and 1<i<d(l). Hence T=0, which completes the proof of the theorem.

ReEMARK. We can indentify a C*-function ¢ on B with the hyperfunction
defined by

o (B)S Yo anlz(k)d)(k)dk.

Then the Poisson transform of a hyperfunction ¢ coincides with the Poisson trans-
form of a C®-function ¢ defined in §2.
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