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Introduction

The present paper deals with the problem of an integral representation of
harmonic functions of the laplacian on real hyperbolic spaces.

There are some types of theorems on Dirichlet problem, which show that
certain classes of harmonic functions on the unit disc are given by the Poisson
integral (cf. [1]). However, in order to obtain arbitrary harmonic functions we
should consider the ,,Poisson transform of hyperfunctions", as S. Helgason showed
in [6]. He proved there that any eigenfunction of the laplacian on the unit disc
(with respect to the Poincare metric) is given as the Poisson transform of a hyper-
function on the unit circle. In the case of Euclidean space [3], the situation is
different. In this case we should consider a space which properly contains the
hyperfunctions on the unit sphere.

It is our object to prove that, in the case of real hyperbolic spaces, the Poisson
transform is an isomorphism of the space of hyperfunctions on the boundary
onto the space of harmonic functions of the laplacian (Theorem 4.6 in § 4).

This paper consists of four sections. In § 1, we characterize the hyperfunc-
tions on a compact real analytic riemannian manifold by their Fourier coefficients
with respect to the eigenfunctions of the laplacian. In § 2, we show that any
harmonic function on a symmetric space of rank one can be expanded in an ab-
solutely convergent series of K-finite harmonic functions. In § 3 we restrict our
argument to the case of real hyperbolic spaces and determine the K-finite harmonic
functions by solving differential equations. In the final section we define the
Poisson transform of hyperfunctions, and making use of the characterization of
hyperfunctions, we prove Theorem 4.6.

§ 1. Hyperfunctions on a compact riemannian manifold.

In this section we characterize the hyperfunctions on a compact real analytic
riemannian manifold by their Fourier coefficients with respect to the eigenfunc-
tions of the laplacian on the manifold.

Let B be a compact real analytic manifold with a riemannian metric g, ω
the laplacian corresponding to g and L2(B) the space of square integrable func-
tions on B with respect to the measure induced by g. We denote the unitary inner
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product and the norm of L2(B) by ( , ) and || || respectively. We denote by
the space of analytic functions on B equipped with the usual topology.

As is well-known, the eigenvalues of ω are non-negative and countable, and
the space of eigenfunctions of each eigenvalue is finite-dimensional. Let N°
be the set of non-negative integers. We denote the eigenvalues of ω by λn (n e ΛΓ°)
and order them so that λn<λm if n<m. Let En=Eλn be the space of eigenfunc-
tions of ω with eigenvalue λn and d(n) = d(λn) be the dimension of En. Then as
an orthonormal base of En, we can choose analytic functions φ? on B

), and

makes a complete orthonormal base of L2(B).

LEMMA 1.1. For seC such that ^(s)>--dimB, the series

is convergent and holomorphic in s.

For a proof, see [11].

LEMMA 1.2. For f>0, the series

is convergent.

PROOF. Fix an arbitrary f>0 and put s = dim£ + l. Since there exists
an Me R such that

for ne]V°, we have

<ΞM Σ d(n)(ί+λnr
s,

neN°

which is convergent by Lemma 1.1. This finishes the proof.
Let C°°(J5) denote the space of C°° -functions on B. It is well-known (cf. [11])

that any φ e C°°(B) can be expanded in an absolutely and uniformly convergent
Fourier series

*-A£
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In the following we write this as

d(n)
0= Σ Ω Σ ajφj

neN° i=l

for φ e C°° (B), where a1} = (φ, φγ). Since

d(n)

Σ «?#,

the series

ΛΣ ajφj
neN°

converges also absolutely and uniformly on B and defines an element of
We denote it by ωί/2φ. It is easy to show

LEMMA 1.3. Let φ and ^eC°°(5). Then

Analogously for any ί^O we can define a mapping exp(-ία)1/2) by

for φ e C°°(β). We have

LEMMA 1.4. Let φ, \I/^C«>(B) and t^Q. Then

Now we define two systems of semi-norms | |Λ and || ||A (h>0) on
They are defined by

\Φ\h= sup * t / > u < \\ω"φ\\,
meNo (2m) in

= sup
m\h

For ft>0, we put

It is easy to check that | |Λ and || ||ft are norms on ^f0fh(B) and <tfh(B) respectively.
About these semi-norms, we have
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LEMMA 1.5. Let φ <Ξ C°°(£). Then

(1)

(2)

PROOF. (1) For meN° 9 the equality

means that |^|fc
(2) When m = 2/ (/ e= ̂ °), we have

which means that

\\ω^ φ\\^\φ\hl. (1.1)

, (ωl/2)2l+ίφ)

By Lemma 1.3 and Schwarz's inequality, we have

m\hm "

(ωl+iφ, ω'φ)

{(2/+1)!}2 A2<2 1 + 1>

l)}l (27) !
'(21+1)1 (21+1)1

Since 0 < 2 1 ^2 for ί <Ξ ]V°, we have
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*. (1-2)

Therefore we have from (1.1) and (1.2),

for rneΛΓ0. Taking supremum we obtain the required inequality

which completes the proof.

The above lemma implies that the inductive limit of ja/0>Λ(B), denoted by
liiQ j^0 ή(β), coincides with that of jtfh(B)9 denoted by KIQ jtfh(B\ as linear

ft-»oo ' Λ-+OO

topological spaces. On the other hand, jtf(B) is equal to lirq j^0 Λ(J5) (see [10]).
Λ-»oo

Therefore we have the following

PROPOSITION 1.6. ja/(B)= liπj jtfh(B).
Λ-+OO

We define a subset &a = 3ra(E) of CN = Π Cd(/l) by
«eJV°

Σ Σ |β7|exp(ίλi/2)<oo for some ί>0}
«eΛΓ° i=l

and a mapping Φ of s/(B) into CN by

where φ^^(B) and aΐ = (φ, Φ?). As is easily seen, J^ is a vector subspace of
CN and Φ is a C-linear mapping of jtf(B) into C .̂ On this mapping we have

PROPOSITION 1.7. Φ is an isomorphism ofjtf(B) onto ^a(B). Let (a?)e J^β.
Then the inverse mapping Φ"1 of Φ is given by

Φ~1(a?)= Σ ϊfβ?Ψ?
»eJV° ί=l

converges in jtf(B) and defines a unique element

PROOF. Let φej/(B). Then by Proposition 1.6, there exists an

such that

On the other hand, since φ has an absolutely and uniformly convergent Fourier
expansion
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dOt)
Φ= Σ0 Σ aϊΦl,

neN° i=l

we have

mlh S ".is

1 <ι ml?
β m!A5 " '"

for n, m^N°. Multiplying 2~m and summing the above inequality with respect
to m, we have

X t \.

(1.3)

for n e ΛΓ° . Putting ί0 = -TT— , we obtain

Σ0neN°

which is finite by Lemma 1.2. This implies that
Next, let (0?)e .Fβ. By the definition of J^"α, there exists a ί0>0 such that

Σ Σl^|expOό1^1/2)<^. (1-4)
neN°

On the other hand, for n e ̂ V°, 1 ̂  i ̂  d(n) and Λ > 0,

which means that φ?^jtfh(B). Therefore putting h = t0 we obtain
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I N+l d(n) I I N+l d(n)

Σ Σ β?0? ,„£ Σ Σ l«?l \\Φΐ\\,0I n=N i=l II n=N i=l

N+l d(n)
^ Σ Σ |α?|exp(f3U'/'),

which implies by (1.4) that the sequence

/ N dOi)

( Σ Σ aϊΦ"\ n=o i=ι

is a Cauchy sequence in the Banach space jtftQ(B). Therefore there exists a uni-
que element φ in st(B) such that

din)

Σ 0?0?
d

neN°

converges to φ in jtf(B). Since the above series also converges absolutely and
uniformly on B9 we conclude immediately that Φ(φ) = (αjf). This shows the
surjectivity of Φ.

Finally we prove the injectivity of Φ. Assume Φ(φ)=0 for φ e jtf(B). Then
(φy φn)=o for n e N° and 1 ̂  i ̂  d(ή). On the other hand

which means $=0. This completes the proof.
In the proof of the above proposition we have proved the following

COROLLARY 1. For φ&jtf(E)9 the Fourier series

ΣO (Φ, ΦϋΦi
neN° i=l

converges to φ in jtf(B).

COROLLARY 2. Let hQ>Q and l/(2/ι0)>*^0. Then for φ^^ho(B)9 the
series

d(n}"
Σt (Φ, ΦϋΦΊ

converges in jtf(B) and defines an element of jtf(B), which we denote by
exp(ίω1/2) φ. Furthermore we have

PROOF. From (1.3) in the proof of Proposition 1.7,

I(Ψ,Ψ?)|S
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for n e N° and φ e A?ho(B). Putting ί0 = 1 /(4ft0) - ί/2, we have

d(«)
exp

£ Σ 0 Σ? (zil^lLo exp(— jJ-Aί
we2V° i=l \ \ ^ΛO

Since t + t0 — l/2/ι0= — ί0<0, it follows from Lemma 1.2 that the sequence
((φ, 0Jf)exp(fλi/2))e J^β By Proposition 1.7, we conclude that the series

d(n)

we]V0 ί =
Σ. Σ (Φ,

converges in J/(B) and defines an element eκp(tω1/2)φ of Λ^(B) since s/(B) is
complete. Therefore

which completes the proof.

We denote by ̂  = ̂ (B) the space of continuous linear functionals of
into C. It is known [12] that on a compact real analytic manifold, ̂  coincides
with the space of Sato's hyperfunctions. Henceforth we call the elements of ̂
the hyperfunctions on B..

We define a subset ^r

b = ̂ r

b(B) of CN by

foranyί>0}

and a mapping !F of (̂β) into CN by

where Te^(B) and aϊ = T(φ?), φϊ denoting the complex conjugate of φϊ. Then
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IF i is a vector subspace of CN and Ψ is a C-linear mapping of 38(B) into CN. On
this mapping we have the following

THEOREM 1.8. Ψ is an isomorphism of &(B) onto ^b(E). Let (α?)e
&b(B). Then the invesrse mapping Ψ'1 ofψ is given by

Ψ~\a^φ )= Σ o Σ? «?(<£?,£)
neN° i=l

which converges absolutely and defines an element W-1(a^) of &(B).

PROOF. At first we prove that the image of Te^(B) by Ψ lies in ̂ b. It
is enough to show that

Σ 1?|a?|eχp(
neN° ί=l

for any t>0, where α? = T(^?). Take an /ι0>0 such that t>l/h0. As is shown
in Proposition 1.7, (β1&<ίtfho(B). Since T is continuous on <stfho(B), there exists
a constant c such that

forn e ίV0, 1 ̂  i ̂

= csup

= c sup
m/2

). Hence

Σ |α?|

c d(«)«p(J-λi/*)«φ(-fλί/*)

Since l//ι0-ί<0, we have by Lemma 1.2 that

< oo,
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which proves that

Let (α")e ̂ b and take an arbitrary /z>0. Then by Corollary 2 to Proposi-

tion 1.7, expί-^-T-ω1/2 Jφ^^(B) for φ^jtfh(B). From Lemma 1.4, we have

Therefore by Corollary 2 to Proposition 1.7, we have

dGi)

Σ Σ l f l ? l \(Φί> Φ)l
neN° i=l

d(n)
— y v

Z-l /_!

^ Σ

(1.5)

< oo,

since (a^)^^b. Therefore the series

din)

Σ Σ aj(φj,
neN° i=l

converges aboslutely. We put

)= Σ

It is clear that Tdefines a C-linear mapping of stf(B) into C and T(<j&?) = αf. Since
h is arbitrary and (1.5) implies the continuity of T on jtfh(B), we can deduce by
Proposition 1.6 that Tis continuous on jtf(B), which proves the surjectivity of Ψ.

Finally we prove the injectivity of Ψ. Assume that ψ(T) = 0 for Te^.
That is, T($?) = 0 for ne]V°, l^igd(n). On the other hand, by Corollary 1 to
Proposition 1.7, the series
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converges to $> in ja/(B) for φ^jtf(B). Therefore

n0)= πΣ o Σ? ($, Φ»-τ(?r)

= o,
which means that Γ=0. This complete the proof of the theorem.

REMARK. The following two conditions are equivalent.

din)
(1) Σ Σ |a?|exp(-Ui/2)<oo for any ί>0.

neN° i=l

d(n)
(2) Σo Σ |α?|2exp(-sλi/2)<oo for any s>0.

Assume that (1) is satisfied. Since

there exists an integer N such that

for n > N and 1 ̂  i ̂  d(n). Then we have

which means that

Σ V I n l
Σ lα"r

^ Σ 0 ΣVllexpf—
ttθN i=:l \

< oo.

Conversely, using Schwarz's inequality, we have

d(n)

Σ Σ>|α?|exp(— 4-Ai/2
i=l \ 2

^( Σ

which is finite by Lemma 1.2.
Therefore &b is also given by
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«
Σ |α?l2exp(-ί>U/2) <oo for any ί>0).

§ 2. Poisson transform of K-finite functions.

In this section we assume that G is a connected real semisimple Lie group
with finite center and of real rank one. Let g0 be the Lie algebra of G, g0 = I0 + p0

a Cartan decomposition of g0 and θ the corresponding Cartan involution of g0.

We denote the complexification of g0 by 9 Let α+ be a maximal abelian sub-
space of p0. Since we assume that the real rank of G is one, α+ is one-dimensional.
Let α0 be a maximal abelian subalgebra of g0 containing α+. Then α0 = α_ +α+

(direct sum) and α + = α 0 n p 0 > where α_ = α 0 nI 0 . Complexify Ϊ0, p0> <*o> α+
and α_ to I, p, α, αp and αf in g respectively and introduce compatible orders in

the spaces of real- valued linear functions on α+ +λ/ — 1 α_ and α+. Let P be the
set of positive roots of (g, α) under this ordering. For a root α, we denote the root
subspace corresponding to α by gα. Put P+ be the set of α with α°

rc= Σ 9α> n o = = n Πg 0 and P=-^- Σ α Let K, A and N denote the analytic
αeP+ -ώ «eP +

subgroups of G with Lie algebras Ϊ0, α+ and n0 respectively. Then G = KAN
is an Iwasawa decomposition. Since this decomposition is unique, we can define
an element H(x) in α+ for xeG by x<=K(εxpH(x))N. Let X = G/K and B =
K/M, where M is the centralizer of A in K. We define a real analytic function
P(xK9 kM) on XxB, called the Poisson kernel, by

P(xK,

We denote by .R the set of the equivalence classes of irreducible unitary re-
presentations of K and by R° the subset of .R which consists of the representations
of class one with respect to M. For each γ e#, we take and fix a representative
(τy, Wγ)^γ and choose a base {wj, ..., w2(y)} of PFy orthonormal with respect to
the unitary inner product ( , ) of Wv so that w/ is an M-fixed vector for y^R°9

where d(y) is the dimension of WΎ. Since rank(G/X) = l, w j is unique up to a

scalar for y<=R°. Put τ?/fc) = (τ*(fc)wj, w?), Φlj = d(yγi2τ}j for yeK and
φl^φli for ye.R0. We identify the functions on B with those on K which are

right M-invariant, and define the representation π of K on C°°(K) and C°°(X) by

We denote by Fy the space of the elements in C°°(X) which transform according
to γ by the representation π. It is easy to see that

d(y)
n(kWιj= Σ
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for y^R, and

φ}(km) = φ](k)

for yeK°, fceX and me M. Therefore for ye#, φ]^Vy and in particular
FycC°°(B) for ye£°. As is well-known, {φ]j\ l^i, j^d(y)} is an orthonormal
base of Vy (y&R) and {φ]\ y^R°, l^i^d(y)} is a complete orthonormal base
of L2(B).

Let g be the G-invariant riemannian metric on X induced by the Killing form
of g0 and A be the laplacian corresponding to g. We identify the functions on
X with those on G which are right X-invariant. We denote by 93 the universal
enveloping algebra of cj and regard the elements of 23 as left G-invariant diίferential
operators on G. Then A can be identified with the Casimir operator Ω on G by

where z = xK e X. We put

3>i?y(X) = {/ e JfpOl /transforms according to y by π}.

For simplicity we write often je(X) = jf and ̂ ry(Z) = « r̂

Now we define the Poisson transform 0>φ of φeC°°(£). Put

= (
j

where xeG, keK and dk is the normalized Haar measure on K. Clearly
is a function on X, and the following results hold.

PROPOSITION 2.1. (1) 0> maps 0eC°°(β) into Jf(X). When y<ΞR°, the
restriction of 0> on VΊ is an isomorphism onto j
(2) Ifjry(X)φ{ϋ}, then y<=R<>.

For the proof of the proposition, see Lemma 1.2 and Theorem 1.4 in Chap.
IV in [6], where more precise results are found.

We put fl = έPφ]. Then we have

PROPOSITION 2.2. (1) Forf^je(X), there exists a unique complex number
a"! for y e #° and 1 ̂  i ̂  d(y) such that

/ω= Σ
w/iΐc/i converges absolutely for any z in X.
(2) Putφ*f(k) = f(kz). Then
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which converges absolutely and uniformly on K.
(3) Let || || denote the norm ofL2(K). Then

= Σ
yeK° i=l 7=1

d(y) d(y)
Σ WI 2 X Σ

PROOF. By the theory of Fourier expansion of C°°-functions on compact
Lie groups (cf. [14]),

d(y)
Φ't= ΣR Σ=ί bUzWj, (2.1)

which converges absolutely and uniformly on K and bl}(z) is given by

Since

lies in 3tfT From (2.1), putting fe= 1, we have an absolutely convergent series

/(z)= Σ Φ)1/2 Σ &Jι(z), (2.2)
yeR i=l

since φj'/l) = φ)1/2<5fy. If Σ [̂̂ 0, we can deduce by Proposition 2.1 that

y^RQ and that there exist complex numbers a] (y&R°, 1 ̂  i ̂  J(y)) such that

d(y) d(y)
Φ)1/2 .Σ bl= Σ<*Ul (2-3)

Since z is arbitrary, replacing z by fcz in (2.3) we have

<Kv) <ι(v)
Φ)1/2 .Σ &Jί(/cz) = d(y)i/2 ^τMkrWtz)

= Σ̂  &rι(z)ΨWfc) (2-4)
i , i=l

and

= ( P(z,
J K.
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Σ

Σ

for 1 ̂  * ̂ d(y). From (2.3), (2.4) and (2.5) we have

Σ TOM-dίv)-"2 Σ «r
i, 1=1 i, ί=l

Since <£?/ are linearly independent we can deduce that

Putting i = l in the above equality, we obtain from (2.2) an absolutely convergent
series

d(y)
/(z)= Σo Σ alfXz),

yeR° i=l

which proves (1) in the proposition.
Next, from (1) and (2.5) we have

d(v)

2

 f Σ? a}Γj(z)φ}j(k\

which proves (2) and (3) immediately. This completes the proof.

Let we 231. Then as is easily seen, w/ = 0 on X for /eC°°(X). On the
other hand, as is stated before, (Af)(xk) = (Ωf)(x). Therefore we may transform
Ω modulo 93f. In the following we transform Ω modulo SI to obtain the
differential equation on A which the elements in 3? satisfy.

For an element λ of the dual space α* of α, let I denote the restriction of λ
on αr Let P+ be the set of αeP such that α^O. For every root α, we select
Xαe$α so that <XΛ9 X-Λ>=1 where < , > is the Killing form of g. Then
[Jfα, X_α]=/fα where HΛ is the unique element such that <H, HΛ> =α(H) for
any Heα. Choose bases Hί and H2, ..., Hm of αp and αf respectively so that
<Ht, Hj> =δy for l^i, j'rgrn. Then Hl9 ..., Hm together with XΛ9 X.u (αeP)
form a base of g. Put P_=P-P+. Since JSΓβ, X_α(αeP_) and Ht (2^/^m)
lie in ϊ,

=H1

2+ Σ (^αX-^Z-^J modiBϊ. (2.6)
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For αe/V, let Xa=Zx+ Yx where Zαeϊ and Yαep, and put X"=Ad(ά)X where
α=exp# and #eα+-{0}. Then

and

Therefore

Z +y = e <B>Zβ+e <β>y«. (2.7)

Since θ(Za

a + Yί)=Za

x'
1 - Y"'1, we have also

zr1-yr1=β (fl)z.-ββ(1')r. (2.8)
In (2.7), replacing H by — H, we have

Z - ' + y - ' = e-«<H)Za + e-«(«) yβ. (2.9)

From (2.8) and (2.9) we obtain

r.=(coth«(fl))Z«-(sinho(fl))~1ZΓ1. (2.10)

On the other hand, since

=(zα+yβ)y_α,

we get from (2.10) that

XXX.X s {(1 + cothα(/ί))Zα - (sinhαίίί))-1 Zf '} y _α

= (1 + cothα(H))[Za, y _ J + (1+ cothα(H))y _αZα

=(l+cothα(H))[Zα) y.J-ίsinhα^r^ -'y-α (2.11)

Thus we have

X- xX,=(ί -cothα(fl))[Z-«, yj + (sinhα(H))-1Z-;1 Ya.

Repalcing H by — H in the above expression, we have

X-,XΛ=(ί + cothα(H))[Z_a, YJ-(si
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Therefore

+ (sinhα(ίO)-1Zϋ;'y£[, (2.12)

since [Z_α, ΓJep. (2.11) together with (2.12) gives

=(i+cothα(H))([zα, y_

Since

[z., y-j+[ya,

= ~2'{Haι — ΘHal} =

we obtain that

s(l +cothα(H))Hϊ -(sinhαίH))-1^" ' F-.-Zi;1 Fa). (2.13)

As is easily seen, ΘΩ=Ω. Therefore from (2.6) and (2.13) we find that

Taking H_a = — Ha into account, we get

Ω=#!2+ Σ {(cothα(fl))Ha+(sin
αeP +

Since yα=(cothα(#))Zα-(sinhα(#))-1Zαi-1 from (2.10), we find that

Ω=H1

2+ Σ (cothα(/ί))Ha-
αeP+ αeP+

Now, let LX(X e 9) be the differential of the left regular representation of
G on C°°(G) and extend it to the representation of 33. Then
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for x e G, / e °° C(G) and Jf e g. Therefore for a e 4,
•

Σ
aeP +

- Σ (sinha(#))-2I<ZβZ_.+z_.Zβ)}/](β). (2.14)
aeP +

Let μ0 be the restriction of an aeP+ on α+ such that -~-μ0 is not equal to

the restriction of any root αeP+ on α+. Then a = μ0 or 2μ0 for αeP+. Let P ,̂,
(resp. P2μo) be the set of αeP+ such that a = μ0 (resp. 2μ0), and let p(resp. q)
denote the number of roots in Pμo (resp. P2μo) We normalize H0 in α+ so
that μ0(#0) = l. Then <JfiΓ0, H0>=2/7 + 8^r and H±= (2p + 8«)-1 /2H0. For
ίel?, put at = exptH0. Then ί can be regarded as the coordinate function on
the one-dimensional Lie group A, and we write often /(ί) for /(αf). It is clear
that H = (2p + SqrίH0 and

(sinhί)2 ..-ft

1
(sinh 2t

We define £>, ωj and α>2

«!= Σ (zαz_α+z_αzα),
αeP +

ω2= Σ (ZαZ_α+Z_αZJ.
«eP 2A 0

Then we have

PROPOSITION 2.3. Let f e C°°(X).

COROLLARY. Letf<=3r(X). Then
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§ 3. K-finite harmonic functions on real hyperbolic spaces.

From now on, we assume that G = SOQ(n, 1) (w^3), the generalized Lorentz
group. That is, we deal with the real hyperbolic space X = G/K. We keep to
the notation in § 2.

At first we review the structure of the Lie algebra go = so(n> 1) (ςf
The Lie algebra cj0 consists of real matrices X of order n +1 such that

where

J=

-1

As a base of g0»
 we can take the matrices

Y (i<

and

where

£ί7 denoting the matrix of order n +1 whose (i, /) entry is 1 and others are 0. By
this base the Killing from < , > of g0 is given by

where

Put

Then =
volution is given by

*-!£.

r-ns.
»= ιs.Σ

is a Cartan decomposition and the corresponding Cartan in-
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Let m be the integer determined by n = 2m or n = 2w — 1 according to the
parity of n, and put

£l = ̂ l> E2=^—l X23, •••, Em = ̂ / — l X2m-2,2m-ί9

and

o+ =REί9 α_=V^T Σ

Then α+ is a maximal abelian subspace of p0

 and α0 is a Cartan subalgebra of
g0. Put g = 9ocj cι = α0

c and introduce a lexicographic order in the space of real-

valued linear forms on α+4-^/— lα_ with respect to the base (El9 E2, ..., £m).
Let λ^l^i^m) be the elements of α* difined by λi(Ej) = δίj (l^i, j<m). Then
the set P of positive roots of (9, α) is given by

(n = 2m),

and P+ is given by

(n = 2m), (3.1)

= 2m-l). (3.2)

Put

where Jfj= 1̂ + ̂ ^ (2^ z^n). Then they are the root vectors of g = o(n + 1, C).
Since

and

it is easy to see that I-components Z±α (αe P+) are given by the following
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As is easily seen, μ0 = λί9 PμQ = P+ and P2μ0 = 0 Therefore ω2 = 0 and we
have only to compute ω^ When n = 2m, from (3.1) and Lemma 3.1 we have

α>ι= Σ (ZαZ_β+Z_αZα)
αeP+

n —

V2
lf

Similarly, when «=2m — 1, we have from (3.2) and Lemma 3.1,

Consequently for any n, we have

1
1 2(Λ-1)

Let < , >k be the Killing form of I0 and
Since Ϊ0 = so(n),

n-l

(3.3)

be the Casimir operator of I0.

, Y>
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for X, 7eϊ0. Therefore

^=-2^^^ 0.4)

since Ϊ0 = Σ Rxu and < xu> χ

fs>k=- 2(n - 2)<5/Γ<5/s.

Let m0 be the Lie algebra of M. It is easy to see that

ttt0= Σ
2 ^ i < j 2

Therefore, from (3.4) we have

,.. — 1 τ~* v.
mod m°S (3'5)

From (3.3) and (3.5) we obtain the following

— _ 2
LEMMA 3.2. ω±= - -ωk mod m0S3.

Let m0 be the integer determined by n = 2m0 or n = 2m0 + l according to the
parity of n. Put

and

^0=7^ Σ

Then I)0 is a Cartan subalgebra of Ϊ0. Put ί) = ί)0

c an(i introduce a lexicographic

order in the space of real linear forms on^/— 1 f)0 with respect to the base (JHΊ, ...,
#wo). Let e, be the elements of I)* defined by 61̂ ) = δy (l^z, j^^o) For
y e R, let yly be the highest weight of y with respect to ,̂ where R is the set of equi-
valence classes of irreducible unitary representations of K. From the represen-
tation theory of compact Lie groups, the mapping R^γ-+Λγ^ΐ)* is injective.
We denote by L° the image of RQ by this mapping. Then L0 is given by

(cf. [13]). From now on we identify L° with N° and write τl9 Λh Vl9 ^^ φ\9 f\

and d(ϊ) instead of τr Λ7, Vr 3PT φlfj and d(γ). Put ρk=-\- Σ A where β is
•ώ ^eβ

the set of positive roots of (I, ί)). Then from Proposition 2.1 and Schur's lemma,

Λl>kf (3.6)

for / e « ẑ. By a simple computation we see that

<Λl+2pk, Λl>k=
 /(7+"~2) (3.7)
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By the way, since M normalizes A, f((exptY)a) = f(aexptY) for a&A, t^R and
Yem0. Therefore

for a^A, /eC°°(Z) and wem093. Using Lemma 3.2 and (3.6), (3.7) we have

LEMMA 3.3. Let /e^. Then, for a<=A

PROPOSITION 3.4. Let ίeL° andf^J^t. Thenf(i) satisfies the differential
equation

- .dt (smh /)2

PROOF. Since Ωf = Af=Q and p = (n — 1), g = 0 in case of g0

==50(n5 1)>
we have this proposition immediately from Proposition 2.3 and Lemma 3.3. This
completes the proof.

We introduce a new parameter z = (tanh-y j . Then the differential equa-

tion in Proposition 3.4 turns into

A fundamental system of solutions of this differential equation is given by

z l / 2 F l l 1——
\ ' 2 '

and

l+n-2 /

where F is the hypergeometric function. Since f ( t ) is a C°°-function in ί, there
exists a complex number c such that

Thus we have

PROPOSITION 3.5. F o r f ^ j > ί f h there exists a complex number c such that

1--J, /+A
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By the above proposition, there exist c\ for /eL°, l<^i<^d(l) such that

/{(fl,) = cj(tanh^)V(/, 1-A ι + 2L ; (tanh£)2).

On the other hand, A.W. Knapp proved ([7], Theorem 1.1) that in case of rank(Jί)

= 1,

lim (0>φ)(kat) = φk) a.e.

where φ is an integrable function on B = KfM. Since p(l, 1— y, ί + y

exists and

_

where Γ denotes the gamma function, we have

a-,

We put

_

Then we have

PROPOSITION 3.6. Let /eL°. TTien
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§ 4. Poisson transform of hyperfunctions.

In this section we keep to the notation in the previous sections. We can

take the Casimir operator ωκ as the laplacian ω on B introduced in § 1. Then
there exists an isomorphism Ψ of the space of hyperfunctions &(B) onto

where

Σ *Σ |αί|exp(-α//2)<oo for any ί>0}
ίeL° i=l

and

At first we prove two lemmas. It is easy to see

LEMMA 4.1. For integers /ί>0 and w^3, we have

LEMMA 4.2. For 0^r<l, we ftαt β

<» î ^

PROOF. (1) From the definition of hypergeometric function, we have

n n \ °°

where (α)p = α(α4-1).. .(α + p — 1) for αeC. Since we have

=(N),
by triangle inequality, it follows that

s-o.,-
, ^ -y, *-r 9 » ' = î —7 —v -T^ ^ / I D=O i ι , n \ pi

(4.1)
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On the other hand

ί(/, «--!,/+-*; l)

exists ([9]) and is equal to

Therefore, from (4.1) we have

)I f f / i - - n ' - r Q I - 'V**
IV' ' 2 2 /I ΓΛΛm+

since F(/, π/2— 1, l+n/2; r2) is a positive term series of r2. From the definition
of F, (§ 3), we find that

(2) We notice the equality ([9], p. 248)

F(I, 1-- J, /+A ;z)=(l-z)»-ι f(A i+n-1, /+^- z).

Since F(n/2, l+n — ί, l+n/2; r2) is also a positive term series of r2, it follows that

Therefore we have
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which completes the proof.

For s>0, put

Us = {z = katK(=X\k<=K9 |tanhy|^exp(-2s)}.

Let (αj) e «^"b. We consider the series

)= Σ0 |βίll/ί(z)|

for z = katK e l/s. Since

we have

QT/• \ ^ v~ι τ̂~ι I 11 \ f I f \ I

From Proposition 3.6 and Lemma 4.2, we obtain

where r= tanh-4 . Put

Since d(/) is a polynomial function in / (WeyΓs dimension formula), c(/) is also
a polynomial function in /. It is easy to see that

Therefore there exists an integer /0 such that

c(/)1//exp(-2s)^exp(-s)

for /> /o Then from (4.2) we have

lo d(ΐ)
S(z) =ί Σ Σ

i=0 i=l

+ ι=Σ+ι .Σ

ίί Σ "i? l«ίk(0
ί=0 i=l

+ Σ ΐ |αί|exp(-sO,
Z=/o+l »
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since z = katK^Us. On the other hand, from Lemma 4.1, we have

exρ(-s0^exρ(

Therefore we find that

lo d(0

S(z)£ Σ Σ l«ί|c(0
[=0 i=l

+ Σ Σ |α{|exp(-sλp),

which is finite uniformly for zel7β, since (aβ^&Ί,. This implies that the series

d(0

Σ Σ alf\(z)
leL° i=l

converges absolutely and uniformly in Us. Since /{e Jf (I e L°, 1 <; i <: d(/)) and

every compact set is contained in l/s for some s>0, it follows that

Γ *Y al.fl.(z)ιέέo i-̂  / W

defines an element of «#*. Thus we have

LEMMA 4.3. Let (α|) e .̂ Then the series

ΣQ Σχ a\f\

converges absolutely and uniformly in every compact subset of X and defines

a harmonic function on X.

Conversely, if/e^, by Proposition 2.2, we have an expansion

d(0
/(*)= Σo Σ a\fl(z).

ϊeL° i=l

About this expansion we obtain the following

LEMMA 4.4. The sequence (α{) in the above expansion lies in ̂ b.

PROOF. From Proposition 2.2 in § 2, we have

? i/jωi*)

Put z = at and r= tanh-y . Then from Proposition 3.6 and Lemma 4.2 we have
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(n-l) <τ) ̂ Σ Σ -7—-
leL® i=l \ J~Ί 1 i **

Since

γ-\ =^1 for /^O and

we have

JeL° i=l *

where εw = Γ(n/2)2Γ(n-l)~2. Take and fix an arbitrary s>0. Then we can
find a t^R such that

tanh t
2

Then from (4.3) we obtain

d& , _ , „ _ / J/I^ r2 ) 2(»-l) Γ W | f f'|2CTΐ/ ^ ^1 ' / / i / i W f CλUl .— ——- I.
ieL° i=ι \ ^J2(n — 2) J

Using Lemma 4.1, we find that

Q t

for z = αί? which implies that (αf)e^b by the remark following Theorem 1.8 in
§ 1. This completes the proof.

We define the Poisson transform of a hyperfunction on B. Let T e & . Since
P(z, fc) is a real analytic function in fc, we can operate T on P(z, b). Then
T(P(z, fo)) is a function on X. We denote this function by ^(T) and call it the
Poisson transform of T. By Theorem 1.8, there exists an isomorphism Ψ of 3$
onto 3Pb.

LEMMA 4.5. Let T <Ξ # and (a!) = ̂ (T). TΛen /or anj z e Z,

^(τχ2)= ΣO faί/iω,
w/iic/i is absolutely convergent.

PROOF. Fix an arbitrary z in Z. Then from Corollary 1 to Proposition
1.7, P(z, b) has an expansion
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P(z, ί>)= Σ Σ Φ\(b)\ P(z, kM)φ\(k)dk, (4.4)
leL° i=l JK

which converges in jtf(B). Since P(z, b) is real-valued and

/!(z) = ( P(z,kM)φ\(k)dk,
J K

taking complex conjugate of (4.4), we have

P(z,b)= ΣQ Σ

which also converges in jtf(B). Therefore

0ZeL° i=l

since Tis continuous on ĵ (#). From the definition of Ψ(T\ a\ is equal to
which finishes the proof.

Now we are in position to state the main

THEOREM 4.6. Poisson transform & is an isomorphism of &(B) onto
where X is a real hyperbolic space.

PROOF. From Lemma 4.3 and Lemma 4.5, we can see that the image of
hyperfunctions by 0> is contained in « .̂ Lemma 4.4 together with Lemma 4.5
implies that the mapping & is surjective. Let ^(T) = 0. Then, putting Ψ(T) =

, we have

Σo .Σ 0ί/K*)=o

for any z^X. Replacing z by kat9 we have from (2.5) and Proposition 3.6,

for fceK. Since φξ are linearly independent, we can deduce that α[ = 0 for
and lgί<;d(/). Hence Γ=0, which completes the proof of the theorem.

REMARK. We can indentify a C°°-function φ on B with the hyperfunction
defined by

j3f(B)3^i->\ ψ(k)φ(k)dk.

Then the Poisson transform of a hyperfunction φ coincides with the Poisson trans-
form of a C°°-function φ defined in § 2.
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