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1. Introduction

The objective of this paper is to show the existence of solutions (in a BANACH

function space) of VOLTERRA integral equations of the form

(1.1) x(t)=f(t)+[tK(t,s,x(s))ds,
Jo

where x, f, K are n-dimensional vectors. To achieve this, we assume that "admis-

sibility" conditions hold for a linear equation associated with (1.1). By "admis-

sibility" we mean here the concept introduced by MILLER [12].

Our results are particularly useful in the case of equations of the form

(1.2) x(t) =/(ί)+ Γ K(t, s, x(s))x(s)ds,
Jo

(where K is now an n x n matrix), provided that we know un upper bound for

the norm of the linear operator I — Ru9 where / i s the identity operator, and Ru

is the resolvent kernel associated with the linear equation

(1.2). x(t) =/(*) + [ K(t9 s, u(s))x(s)ds.
Jo

The function u(t) above lies in a suitable closed ball of a Banach function

space. We also show that the same method can be applied to nonlinear pertur-

bations of linear systems.

2. Preliminaries

In what follows, J = [0, oo), £ = {(f, s )eJ 2 ; t>s}, and £ = ( - 0 0 , 00).

For a vector x&Rn we put ||x|| = 2lxil» a n d f°Γ a real nxn matrix A = [aij],

| |;4| |=sup2]|α ί f c |. We denote by Cc the space of all continuous functions / : J

-+Rn

9 associated with the topology of uniform convergence on compact sub-

intervals of J. The letter B will always denote a BANACH space contained in

Cc9 stronger than Cc, and with norm || | |B. C will stand for the space of all
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bounded/£CC under the sup-norm || | | c . For a finite interval J' c J and a conti-

nuous .Revalued function x(ί) on J' we put \\x\\j* =sup||x(ί)|| It is known that

if/ G Cc and K(t9 s) is an n x n real matrix defined and continuous on £, then equa-

tion

(2.1) x(t)=f(t)+{tK(t,s)x(s)ds
Jo

has a unique solution x e Cc, given by the formula

(2.2) x(0 = [(/-K)/](0,

where K is the resolvent kernel operator associated with the kernel K(t, s), i.e.,

(2.3) (Rf)(t) = ['r(t,s)f(s)ds
Jo

for every / e Cc9 where r(t9 s) is the solution of

(2.4) r(ί, 5) = - X(ί, s) + ί'X(ί, t/)r(u, 5)dι/.
J

The pair (JB, β) is said to be "K-admissible", if for every/eJ5, the solution

x(i) of (2.1) belongs to B. Thus K-admissibility is equivalent to the admissibility

of the operator R, i.e., RBaB.

3. Main Results

We first give a result connecting ||x||B to | | / | | B in (2.1), under the assumption

of ^-admissibility.

THEOREM 3.1. For the equation (2.1) assume the following:

( i ) K(t, s) is an nxn real matrix defined and continuous on the set E;

(ii) the pair (B, B) is K-admissible;

(iii) let Y be the linear manifold consisting of all X G B such that

(I— T)x6β, where T is the linear operator in (2.1) defined on Cc.

Then there exists a positive constant Mo such that for each f e B the solution

x(0, * e J o/(2.1) satisfies | |x | |y<M 0 | |/ | |B, where

Proof We first show that Y becomes a Banach space under the above norm.

In fact, let {xΛ}, n = l, 2,... be a Cauchy sequence in Y. Then for every ε>0 there

exists N(ε)>0 such that
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for every m, n>N(ε)9 where fn=(I — T)xn. This implies that there exist
and/e l? such that ||xw — x||β->0 and \\fn— /||β-»0 as n-+oo. Since B is stronger
than Cc9 xn-+x, /w->/as n-»oo, uniformly on every finite subinterval of J. Now
let J' = [0, 6], for some b > 0, and (/ - T)x = j . Then for t e J' we have

l l ( ) (*•(*)-χ(s))\\ds
o

<\\χn-χ\\j>+λj>\\χn-χ\\j>

where λJf =sup\ \\K(t, s)\\ds. It follows that fn-+y uniformly on every finite
ίeJ'JO

subinterval of J, and this implies that (I—T)x=y=f^B. Consequently, X G 7 ,
and this implies that 7is complete. Now consider the restriction Q of I—Ton 7.
Then Q maps Yonto B, and is linear and bounded with norm ||Q|| < 1. From the
fact that solutions of linear VOLTERRA integral equations are unique, it follows,
that β" * (the inverse of Q on B) exists, and is a bounded linear operator on B.
Letting M = | |Q- 1 | | -1 (Hβ"1!! denotes the norm of β"1), we obtain

where/=βx.
It should be noted that β" 1 in he above proof is the operator I — R defined

on B and with values onto Y. Thus, M+1 = | | / -JR | |< 1 + ||Λ||, because R: B-+B
is also bounded (cf. MILLER [12, Lemma 2]).

The following theorem is the main result of this paper. The subsequent
results are important applications of it.

THEOREM 3.2. Assume that the hypotheses o/Th. 3.1 are satisfied, and for
the kernel K in the equation (1.1) assume that

(i) K: ExRn-+Rn, continuous, K(t, 5, 0 )=0 for every (ί, 5) €=£ and

(3.1) \\nx1-x2)-LT0x1-T0x2 ]\\B<δ\\xί-x2\\B9

for every xί9 x2^Sy = {x^B; | |x| |β^y}, where δ is a positive constant with 0 <
<5MO<1 (M O =M + 1 is the constant o/Th. 3.1), and T9 To are the operators

(3.2) (Tu) (0 = [ K(t9s) u(s)ds9 (Toιι) (0 = Γ K(t, s, u(s))ds9

Jo Jo

defined on Cc.
Then iff&B is such that
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there exists at least one solution x e ΰ of (1.1) such that ||x||B<Λ<fx||/||j,<y.
Proof. Consider the operator Q=I—Tof the proof of Th. 3.1 defined on

the Banach space YcB, and the operator Q0=I-T0 defined also on Y. Now
let xl9 x2 ^Sγ. Then we have

(3.3) l|β(*i-*2)

<S\\X1-X2\\y,

and

(3-4)

Thus, Qo is continuous on Sγ. Since we also have Q00=09 it follows from
Th. 1 of GRAVES [8] that there exists at least one solution x e S y of (1.1) such
that ||x|U^]|*lly^Mill/IU^y- This completes the proof.

There is a large class of kernels for which the above theorem can be applied.
This is the content of the following.

THEOREM 3.3. Assume that the hypotheses of Th. 3.1 are satisfied for
B = C9 and for the kernel K(t, s9 x) in (1.1) assume that K(t, s, x)=Kί(t9 s, x)x,
where Kt is a real nxn matrix defined and continuous on ExRn. Moreover,
assume that for each u e S y = {ueC; | |u| |c<y},

supΓ \\K(t, s)-Kt(t9 5, u(s))\\ds<δ9
teJ JO

where δ is as in Th. 3.2 and independent of u(t). Furthermore, for each finite
interval J'QJ and each tθ9

lim supί \\Kyit, s9 u(s))-Kx{tθ9 s, ιι(s))||ds=0.
t-+t0 ueSrJJ'

Then if | |/ | | c<τ(l — <5Ai"0)/Λf0, there exists at least one solution x e S y of
the equation (1.1).

Proof Let Jm = [0, m], m = l, 2,..., Sm = { u e φ m , £»]; ||M||Jm^y}, and
Um be the operator which maps each function « E S W into the unique solution
x m e Sm of the equation

φ)=f(t)+\tKϊ(t9s9u(s))x(s)ds.
Jo
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The function xm(t) is the restriction on Jm of the solution on J guaranteed

by Th. 3.2. Now fix m and let S° be the set consisting of all u^Sm such that

for each tθ9 t€=Jm,

\\u(t)^u(to)\\<\\f(t)-f(to)\\ + yPJm\t-to\

ί, 5, u(s))-Kx(t0, s, u(s))\\ds
uesrJO

= λ(t, to)9

where P J m = s u p \\Kt(t9 s, w)||, (ί, s)^JmxJmΓ\E9 | |w||<y. Then it is easy to

show (cf. KARTSATOS [9]) that the set S° is closed. It follows that S° is

compact because it consists of equicontinuous functions. Moreover, the operator

Um maps S° into S°. To show that Um is continuous, let un^S%, n = l, 2,...

be such that \\un — M||/m->0 as n-»oo. Let Umun=yn, n = l, 2,... and Umu=z.

Since ί/mS° is a set of equicontinuous and uniformly bounded functions, there

is a subsequence {ykn}, n = l, 2,... of {yn} and y<=S° such that \\ykn-y\\Jm-*0

as n-»oo. Consequently, we have

(3.5) \\ykn(t)-z(t)\\ = llJ^X^ί, 5, uMy^-Kβ, s, u(s))z(s)ds

t, 5,

s, u ^ ί s ) ) ^ ^ ) - ^ ^ ; , 5, u(s))z(s)||</s.

Since the integrand in the last member of (3.5) tends to zero uniformly on Jm x

JmΠE, it follows that \\ykn — z| | J m->0 as n->oo. Since we could have started with

any subsequence of {yn} instead of {yn} itself, it follows that every subsequence

of {yn}9 contains a subsequence converging to z(t) uniformly on Jm. It follows

that lb π -z | | j m ->0 asn-^oo.

Thus, \\Umun— Uu\\Jm^0 as n->oo, and Um is continuous. From Schauder's

fixed point theorem, it follows that Um has a fixed point xm = Umxm^S°t. Since

the sequence {xm} m = l, 2,... so obtained is uniformly bounded by 7, it follows

from Lemma 2.1 of KARTSATOS [9] that there exists at least one solution

x(t), f e J of the equation (1.1), and this completes the proof.

The above theorem can be now easily extended to equations of the form

(3.6) x(t) =f(t) + [ K&, s, x(s)) [x(s) + g(s9 x(
Jo

by using Theorem 3.1.

If the kernel in (1.1) is continuously differentiable with respect to x and
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K(t9 s, 0) = 0, then there exists a n n x n matrix Kγ{t, s, x) as above. For a proof,
the reader is referred to LAKSHMIKANTHAM and LEELA [11]. There would
be no essential difficulty in extending these results to equations under CARA-
THEODORY conditions, by replacing the space Cc by the space L of all locally
LEBESGUE integrable .Revalued functions defined on J. One could also extend
the above results to integro-differential equations of the form

x'(t)=f(t) + A(t)x(t)+['κ(t, s, x(s))ds,
Jo

where A(f) is an n x n matrix. However, a more complete study in this case would
require taking int consideration the subspace R0B of Rn consisting of initial
values of B-solutions of the homogeneous equation (/ = 0). For further results
concerning admissibility of VOLTERRA integral equations, the reader is referred
to AVRAMESCU [l]-[4], BOWNDS and CUSHING [5], CORDUNEANU
[7], MILLER [12], [13] and KARTSATOS [9]. For results concerning the
contents of this paper, but for differential equations, the reader is referred to
KARTSATOS [10].
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