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Recently, investigations have been made on the various generalizations of
nuclear operators on the basis of the theory of locally convex topological vector
spaces and the classes of operators in them ([2], [12], [13],[11],[8]). Among
other things, p-absolutely summing operators due to A. Pietsch ([13]) and p-
nuclear, p-integral, p-quasi-nuclear and p-quasi-integral operators due to A.
Persson and A. Pietsch ([11]), 1<p<oco, have played an important role in
the study of classes of operators in connection with the classes of nuclear and
integral operators in Banach spaces. Not only these operators were defined by
making use of the norms of spaces L? and 7, but also their associated domains
and ranges were closely related with spaces L? and I? ([13], [10], [11], [7], [8]).
For instance, these operators were characterized with the aid of operators in
LP and Ir as follows ([11], [13]). A bounded linear operator T from a Banach
space E to a Banach space F is p-nuclear (resp. p-integral, resp. p-absolutely sum-
ming) if and only if T can be factorized in the form T=Q,DP; where P, e L(E, I®)
with ||P,||<1, Q,L(l?, F) with ||Q,||<1 and D is a multiplication operator
by a sequence in [?, (resp. if and only if T can be factorized in the form T=Q,IP,
where P, L(E, L®) with ||P,||<1, Q,eL(Lr, F) with ||Q,||<1 and I is the
identity operator in L(L®, LP), resp. if and only if there exists a positive Radon
measure u on the weakly compact unit ball U° in E’ such that ||Tu1|£p{g .

| <u,u’>Pdu(u’)}!/? for each u E and with a positive constant p). With thels]e
in mind, by making use of Lorentz spaces L?'2 and [?-4 instead of LP and [P, the
definitions and investigations of new classes of operators will be expected to be
made. In the present paper, using the Lorentz spaces we shall introduce the
four distinct types of operators, namely, the (p, g)-nuclear, (p, g)-integral, (p, q)-
quasi-nuclear and (p, g)-quasi-integral operators, 1 <p, g < oo, which, in case p=g,
coincide with the p-nuclear, p-integral, p-quasi-nuclear and p-quasi-integral opera-
tors respectively. The main purpose of this paper is to investigate these operators
and to obtain their properties, their characterizations and the relationships among
them. We also study the properties of the spaces of these operators with adequate
quasi-norms. In these processes we shall be often concerned with Lorentz spaces
Lr-a, [p-4, where the notion and general properties of rearrangements of functions
and of sequences are frequently used. Such utilizations of Lorentz spaces are of
interest in themselves.

Section 1 is devoted to the preliminary remarks. We shall recall the defini-
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tions and the fundamental properties related to Lorentz spaces in view of rearrange-
ment in one way and by making use of the theory of interpolation between Banach
spaces in another way. Especially, a result concerning the rearrangement of a
sequence due to Hardy, Littlewood and Pdlya (Lemma 1), and a generalized Hol-
der’s inequality (Lemma 2) will be frequently used in the subsequent sections.
In Sections 2, 3, 4 and 5, we deal with (p, g)-nuclear, (p, g)-integral, (p, q)-quasi-
nuclear and (p, g)-quasi-integral operators respectively. In these sections we
consider the spaces of these operators and introduce the quasi-norms into
them. We also give there a characterization of the operator of each class by
making use of a special operator of the same kind in /7.9, LP-4, In Section 6
we show that there are intimate connections among these classes of operators.

The author would like to thank Professors S. Togd and F-Y. Maeda for
their valuable comments in preparing this paper.

1. Preliminaries

Let E and F be Banach spaces. We shall denote by L(E, F) the space of
bounded linear operators T from E to F with the usual operator norm

(Tl = sup || Tul.
flulis1

We denote by Ly(E, F) and K(E, F) the subspaces of operators of finite rank
and compact operators respectively.

A Banach space F is said to have the extension property if each operator
T, L(E,, F), E, being any linear subspace of an arbitrary Banach space E, can
be extended to a T € L(E, F) preserving its norm ([9]). It is well known that the
Banach space L® has the extension property ([14], [9]).

We next summarize the notations and properties concerning Lorentz spaces
which will be repeatedly used in the following sections (cf. [1], [6], [4], [15]).
The letter X is used for a locally compact Hausdorff space and u denotes a positive
Radon measure on X. Let Li(X, E), I <p< oo, be the Banach space of (classes
of)E-valued p-measurable functions f on X such that

(f reopau) " <eo it p<eo,
”f”u;,(x,E) ={ X
esssuplf@  <eo if p=oo.

The distribution function of f is defined by

L) =u{xeX] If®I>y},  y>0,

and the non-increasing rearrangement of f onto (0, o) is defined by
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f*O=inf{y>0 | L,(»<t}, O<t<oo.

The Lorentz space L;; (X, E) or L(p, q; X, u, E), 1<p, <o, is the collection
of all f such that ||f|l,q:x,u ) <o, Where

oo 1
[(Sowv-lf*(z)«dQ " it 1<p<ow, 1<g<oo,
”f”L(p,q;X,u,E)=

lsuptl/pf*(t) if1<p<oo, g=oco.
t>0

In particular, if E is a scalar space C or if E is understood, we write L(p, q; X, 1),
L(p, q; X) or L(p, q) shortly instead of L(p, q; X, u, E).

We notice some results concerning Lorentz spaces which will be utilized
hereafter ([6]).

By a scalar valued simple function we mean a function f(x) which can be wri-

n
tten in the form f(x)=2] c,x4.(x), where cy, c,, ..., ¢, are complex numbers and
k=1

Ay, A,, ..., A, are pairwise disjoint sets of finite measure and y,(x) denotes the
characteristic function of the set A. For such a function, let ¢¥>c%¥>--->
¢k >0 be a non-increasing rearrangement of |¢,|, |c,], ..., [c,|, and let A¥ be the
set A; corresponding to ¢; with c¢f=|c;|. Then we have

1 .0 = (P10 19 Zicte(ati” —atiz)} s,

i
where aj= 2 w(A¥), j=1,2,..,n and a,=0.
K=1
For a fixed r:0<r<1, we put

sup ()| IF@lrduco}” i 0<i<pcn),
frH0=
{am{ iseotrduco ™ if 1> u(X).

Then, by making use of this function, the norm of the Lorentz space L(p, q; X,
i, E) is seen to be equivalent to

© 1/
{S tq/l"l(f:"*(t))th} * ifl<p<oo, 1<g<oo,
0
sup !/ f*(1) if 1ISp<oo, g=oo.
t>0

In this case, it is to be noticed for our later purpose that f$*(¢) has the property

(f+DT*O<ST*O+9T*®).
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The third equivalent norm of Lorentz spaces is given from the point of view
of the interpolation theory ([1], [4]). We consider a couple (E,, E,) of Banach
spaces which are both continuously embedded in a Hausdorff topological vector
space &. For 0<f0<1, 1<qg< o0, the space

(Eo, Eo.g={a€ Eo+Ey| | (K (t, a)yedife< oo}
with the norm
lallo, o = {J (0K, apsarge}

is called an interpolation space between E, and E,, where

K(t, a)= inf o 1(”“0“&,‘*"”“1 llg,)-

a=aotai,a ek, i=

Then, in the particular case E,=L!, E, =L?, we get
K(t, f) =§' fHs)s,  0<t<oo,
0

for each feL;+Ly,
and we have L(p, q; X, #)~(L;1n Lj',")l-l/p, q °

where ~ means that both sides coincide algebraically and their norms are equi-
valent. Therefore, by the interpolation theory of spaces, it is noted that if X is
a compact Hausdorff space, the norms of L(p, q; X) are monotonically increasing
(resp. decreasing) with respect to p (resp. g). Namely, if 1<p,<p; <o, 1<q,,
g, <o, then we have

“f”L(PO:qo)S‘”f”L(plqu) for eaCthL(pb q:; X9 I“),

and if 1<p<oo, 1<g,<q, <o, then we have

I L, a0y <IfllLep,a0) for each f € L(p, q¢; X, ).

Since Lorentz spaces for the case of sequences are frequently used later,
we notice some of their results. Let [?(E) be the collection of sequences {a;} C E
such that
(2lla;fP) /P < oo if p<oo,
I{ai}liecey= .
suplla;| <o if p=oco.
1

The Lorentz space I[P4(E), I(p, q; E) or shortly I(p, q), 1<p, <, is the
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collection of all sequences {a;} €co(E) such that ||{a;}|l;p,q;5)<oco. Here, de-
noting by {|la;|[*} the non-increasing rearrangement of {||a;||}, we put

(Zie/p=1]|a,|*9)1 /4 if 1<p<oo, 1<g<oo,
7

{ai} iz, q:8)= l

sup i1/?||a;||* if1<p<oo, g=oco.
i

The following inequalities show that this norm is defined. When we calculate
WS Neip, as1,u, ) With f(i) =a;, i€ I, the set of positive integers, and with the counting
measure p on I, we have

(D=1t ag|e} /s
<@resp. 2D lLep, o 1.0,my= P/ 1L X llasl|** {#9/P — (G = 1)2/ry ] /e
< (resp. 2){X 0P~ |layf[* 4} /e
for 1<p<g<oo (resp. 1<g<p< o)
and
“f(i)”L(p,oo;I,u,E)=S?p(i1/p”ai”*)
for 1<p<oo, g=o0.

If it is necessary to specify the suffix of a sequence in the norm, we write |[{a;}
lli,ip.qy- The interpolation theoretical description of Lorentz spaces l(p, q; E)
is

I(p, q; E)y~(IY(E), I°(E))1-1p, q-

According to this, by the result of interpolation theory it is noted that the norms
of I(p, q; E) are monotonically decreasing with respect to both p and q. Namely,
if 1<po<p;<oco, 1<qy, g, <o, then we have

”“”t(p,,ql)S “u”l(po,qo) for each uel(py, q0; E),
and if 1<p<oo, 1<gy<q;<oco, then we have
““”t(p,qns ”“”z(p,qo) for each uel (p, qo; E).

We shall notice the following two lemmas which are the fundamental tools
of our subsequent discussions.

LemMA 1. (Hardy, Littlewood and Pélya [3]). Let {c}} and {*c;} be
respectively the non-increasing and non-decreasing rearrangements of a finite
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sequence {¢;} <i<n of positive numbers. Then for two sequences {a;},<i<, and
{b;}1<i<n of positive numbers we have

2af*b; < Yab;<Yaf bt

i

Generalizing the usual Holder’s inequality, R. Hunt proved the next

LemMMA 2 (Hunt [6]). Suppose 1<p,q,p’,q’,p",q" <o, 1/p+1/p'=
1/p” and 1/q+1/q'=1/q". Then for any feL(p, q; X, 1) and gEL(p’, q';
X, u) we have fgeL(p”,q"; X, p) and

“f'g”L(p",q";X,n)SC”f“L(p,q;X,u). ”g”L(p',q';X,n)

with a constant C>1. In particular when p”" =q" =1, we have

| £COgEICN < gm0 19 s 000

The case of sequences is as follows: If {a;}€l(p, q) and {b}<lp’, q')
then {a;b;}€l(p”, q") and

{abi} i, 4y <Cl{a;} o,y 1B} i a7

Throughout this paper, unless otherwise stated, E’ stands for the dual space
of E, and U° denotes the weakly compact unit ball in E’. We denote by ||'||g
the norm in E, and briefly by |||| if there is no confusion.

Throughout this paper, for brevity, we only deal with p, g: 1<p, g<oo
unless otherwise stated and we denote by p’, g’ the conjugate exponents of p, q: 1/p
+1/p'=1, 1/q+1/q' =1 respectively. Concerning the general properties of inter-
polation spaces and Lorentz spaces we may refer to [1], [4], [6] and [15].

2. (p, q9)-nuclear operators
We shall first define (p, g)-nuclear operators as follows.
DerINITION 1. T €L(E, F) is said to be a left (p, q)-nuclear or simply (p, q)-

nuclear (resp. right (p, q)-nuclear) operator, 1 <p, g< oo, if T can be written
in the form

) Tu=3<u, uj>v; foreach ueE
with {u}cE', {v}cF  such that

I{lui I lip, gy < o0
and

su <v;, V' > by < 00
||v’||gl”{| i '}”l(p ,q’)
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(resp. sup [[{| <u, ui> [}y gy < oo
lull<1
and {11011} ligp,q) < )

The collection of (p, g)-nuclear (resp. right (p, g)-nuclear) operators is denoted
by N, (E, F) (resp. N?-4(E, F)). The quasi-norm (as proved later) is defined by

BT =0 QL 103 52 JH1 <00 07> )
(resp. v79(T) =inf|(|us||usp1 ||{| <u, uip> l} ”t(p',q')' ”{ HUIH} ”l(p,q))’

where the infimum is taken over all representations (1) of T.

REMARK 1. Ingase of p=g, a (p, g)-nuclear (resp. right (p, g)-nuclear)
operator coincides with a p-nuclear operator (resp. of type N?) introduced in

[11] (resp. [10]).
For TeN, ,(E, F) and for each u€E, the series (1) is convergent. In
fact, for any finite set J of natural numbers and for each u € E we have

125 <u, ui>v,||< sup 23| <w, ui>||<v;, v'>|.
fed o' <1 ied

Applying Lemma 2 to the right hand side of this inequality, if g> p (resp. ¢ <
p), with |lujl|= “u.'n(i)”* (resp. | <v;, 0'>‘| =| <,y v'>|*) we have

125 <u, ui>vil
ieJ
<llull-(Zm@*~ Hup i |*) e sup [[{<vi, >}, e
ieJ v’ I<1

(resp. Sllull'll{lluéll}Ilz(p,qﬁ;)S,hlgl(ign(i)q'/P"‘1<v,.(,~),v'>|*‘1’)”«’),
which shows the convergence of the series (1). A similar fact is valid for
TeNrE, F).

From these considerations we obtain the following

ProrosiTION 1. Let TEN,, ,(E, F) (resp. Te N»4(E, F)).
Then

ITI<v,,(T)  (resp. |T||<vP4(T)).
Concerning the connection between N, , and N?-4 we have

ProrosiTION 2. If TEN, ,(E, F), then its adjoint T' belongs to NP 9(F’,
E’) and it satisfies

o i(T') <w, (T).

Furthermore assume E and F are reflexive. Then, if T'e N?4(F', E’)
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we have
TeN, (E, F)
and
v (T =p, (T).
Proor. If TeN, (E, F), then for any £>0 it can be written as

<Tu,v'>=)<u, u\><v;, v'>
7

for each ue E and v’ €F’, with
) ”{”“5”}llt(p,q)'"f}l"gln{<”i, UI>}”l(p',q')syp,q(T)-l_e'

Hence we have
T =; <v', v;>uj,
and (2) shows
o (T <p, (T).
When E, F are reflexive, in the same way T’ Nr 9(F’, E’) implies
TeN,(E, F)
and
v, (T)<pra(T').
Thus
v, (T)=pP4(T").

This completes the proof.
We shall next show that N, (E, F) (resp. N7-4(E, F)) turns out to be a quasi-
normed space ([12]) with respect to v, (") (resp. ¥?-4(")).

THEOREM 1. Let TkeNp,;l(E, F) for k=1, 2,..., M, M being a positive
M
integer. Then kZFkENP»q(E’ F) and
M M
Yy (LT <MIP=1al (3w, (T).
k=1 k=1
A similar statement holds for elements of N7 9(E, F).

Proor. For any ¢>0 T, can be written in the form
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T =23 <u, Uy ;>0 k=1,2,... M
i

such that

20 g i |[* <), (Ty) +e/2*
13
and
sup 2T/ <o, 00> ¥ <p, (Ty) +e/2, k=1,2,..., M.
v i1 T
In order to calculate the I(p, g)-norm o of the countable set {{||u’ ;||*}1<icoo»
{llus, ¥} 1<icoos -5 {11, i1*} 1<icwo}> let N be any positive integer and let oy be the

I(p, g)-norm of the first N terms of the non-increasing rearrangement of {{|uf,;|*}
1<i<oo 11U, 11*} 1<iceor s {I1he,3l*} 1<ico).  Next, rearranging {{llu},:[*}1<i<n»
{llu’, ¥} 1<ichs ---» {Ilus,:]1*} 1<i<n} in non-increasing order we denote by n(k, i)
the number corresponding to the term |juj; ;||*. Then, on account of Lemma 1
and the fact that {n(k, i)|1 <i<N, 1<k<M} is a permutation of {1, 2, ..., MN}
we obtain

o

M N
<2, 2un(k, D)UP~ ug | *

k=1i=1

N
2 L(Mi—k+ DY u i* ifg>p,

k=1i=1

”” Hlag, il ifg<p

IA
—_——
<

] [_\jg

M N
<max (1, Ma/r—1). 3 Z alp=1|yy ;||*
k=1i=1

M
<max (1, M‘I/P"l)-{kzlvp,q(Tk) +¢}.

Since N is arbitrary, this shows
M
o <max (1, M'/p=1/9)- {5y (T,)+e}lla.
k=1

In the same way, in order to estimate the I(p’, q’)-norm ¢’(v") of the sequence
{l<vy0 V> 1*} 1cicms -0 {| <M V> |*}1<ica}, fOr each fixed v': [jo|| <1, let
aj(v’) be the I(p’, q’)-norm of the first N terms of the non-increasing rearrangement
of {{I<vyi '>*}1cicos o> {|<Upi» V' >|*}1<ic}. When we rearrange the
sequence {{| <v;;, v'>|*}1<i<ns -+ {| <Uar.i v >|*} 1<i<n} i nON-increasing order,
we denote by m(k, i) the number corresponding to the term |<u,; v’'>|*.
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Then we have
(ap(')?”

M N
<2 2m(k, TP <py 00> |*
K=1i=1

. ’ ’ M N. . ’ "
<max (1, MY/P'=1)- 57 >0IP =1 <p, 0" >|*
k=1i=1

M
<max (1, M“'/P"l){Zlup,q(Tk)+e},
k=
which shows
M
o'(v)<max(l, M'/P"=12) {3y, (T,)+e}!/7.
k=1

Therefore

and this satisfies
M M
”""‘(kle") < a-"s%g a'(v)< M=l (3, (T))+e).
= v’ 1 k=1

Since ¢ is arbitrary, this completes the proof.
For some special parameters p, ¢, we have the following inclusion relations
between the spaces IV, ,.

ProrosiTION 3. (i) If 1<p<p,, 1<q9<q,, pq<pq, and 1/q—1/q,<
1/p—1/py, then

N, (E, F)CN,, ,.(E, F)

1,91

and v, ,(T)<Cyp, (T) for each T €N, (E, F), with some positive constant C.
(i) If1<p<p,;<q, then

N, (E, F)cN,, (E, F)
and
v,.(D<Cp,(T) foreach TeN,(E, F).
Proor. (i) For TeN, (E, F) and for any ¢>0 we may write

Tu=73,<u, u}>vy for each ueE,
7

with
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(N1} ip, gy <1

and

I f}ﬁgl”{ <v;, v'> } ”I(p’,q’) <Dp,q(T)+8,

where
1/p+1/p'=1 and 1/q+1/q'=1.

Here we may assume |juj||*=|lu}|, u;#0. We put

= gal O Jug|maleu;
and

y=i/P=al@an) a0,

with 1/q,+1/s=1/q. Then, since by the assumptions we have q/(pq;)—1/p, <0
and

l* = isrean=1/ms g oras,
we have

e/t ag*e = Dieetugra<1,

On the other hand, by Lemma 2 we have

H{ <D v > s, ap S ClI{E Pr=ai®ad g} ||y, 60 I <vi v > i o)

with 1/p,+1/r=1/p, 1/p,+1/p{ =1, 1/q,+1/q{ =1 and with a constant C>0.
Furthermore, since s/r—1>0, by Lemma 1 we have

”{il/pl—‘l/(PQI)“u;“q/S} “I(r,s)= (Zi:l‘s/r—l !il/pl—q/(pqx)“u;”qlsl*s)l/s
< (1m0 g0y = (S0 ) < .
i i

Hence we have
H{<0i v > Hior,an < C(¥,,o(T)+e)

and

Tu=Z<u, a;>ﬁ,,

which shows ~TeN,, ,(E, F)

P1,41

and Y,.,0a(T)<Cp, (T).
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(i) Let1<p<p,<q,1/p,+1/r=1/p,1/p+1/p'=1, 1/p,+1/pi=1, 1jg+
1/qg’=1and let TeN, (E, F). Then for any e>0 Tu may be written as

Tu=3<u, u}>v; for each u€eE,
i

with [HIEAH TP

and nus'lnlgx I{<vi "> i gy <¥p.oT)+E.
Here we may assume [laaf][* = [|as}]].

Putting

) =jt/r=1ipay;
and p,=il/pi=1/py,
as in (i) we have
Tu=Zi:<u, a;>0;,
2ialp=t|qy||*a
i
S;i‘l/l’“liq/"“””’llu§||“ by Lemma 1

= T g [*< 1
and
1{ <D v > iiar)
SCl{ 2= 2} |,y l{ <1 v > }ligpr,qy by Lemma 2
=Cl{<vs;, "> }Hlipa)
with some positive constant C. This completes the proof.

PROPOSITION 4. Let E, F and G be Banach spaces. If TN, (E, F) and
SeL(F, G), then STEN,, (E, G)
and

Y5, (ST)<[IS]I¥,(T)-

If TeL(E, F) and SN, (F, G), then STeN, (E, G)
and

”p.q(ST) < ”p.q(S)' .

The analogues for the operators of N?-4 are valid.
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Proor. For each ucE, by the assumption that TeN, (E, F) and SeL
(F, G) we have

STu=3.<u,u}>Sv; foreach u€kE,
with
({111} i,y < o0
and

su <Sv;, w' > .
Iw "GI’)SHI{ i }“l(p ")

<|IS||- sup [{<v; ISI"*S'W > }Hipr 0y
Iwlle <1
<|IS|| su <v;, V' > TN
ISl sup_ (<05 ">}l 0

where S’ denotes the adjoint of S. This implies STeN,, (E, G)
and

v, (ST)|IS||'w, (T).
If TeL(E, F) and SEN, (F, G), then we observe
STu=2,<Tu, v;>w,

=|]T||-IZ<u, |TI"*T'vi>w;  foreach uecE,

I T2 T 03 i, a5 ) < IO Hl o,y < 00

and
<w; w'> ;<< 00,
uw?h‘é’,s'l{ Wi W' Hligrar < 0
Hence
STeN, (E, G)
and

Yy, (ST) <, (S) T

This completes the proof.
PropPOSITION 5. Lo(E, F) is dense in N, (E, F) and in N?-9(E, F).

ProoF. Let TEN, (E, F). Then Tu=};<u, u}>v; for each u€E,
i
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with
o0
S Jug]*9 < o0
i=1
and

0
sup  2,i0 /P <py, 0" > ¥ < oo,
o' <1 =1
where * stands for the non-increasing rearrangement of sequences with respect
to i. Putting

k
Tu ='Z1< u, u,>v;,
f=

we obtain
T,eLy(E, F)

and

(T-Tyu= aj<u, Uiy ;> Vg4

Assume first g>p. In order to estimate the I(p, g)-norm (resp. I(p’, q')-
norm) of the sequence {|[u};ll}1<iceo (r€SP. {| <Vsi V'>|}1<icw)s IeArranging
{llug+:ll} 1<ico (X€SP. {| <U+i> V' >} 1<ice) in non-increasing order we denote the
rearrangement by {||u} ;[|**} 1<i<w (resp. {|<vii v/ >|**}1<i<w). Let m(k, i)
(resp. n(k, i)) be the number corresponding to the term |Juf,||** (resp.
| <vp,; v'>|**) in the non-increasing rearrangement {||u}||*};<ic. (resp. {|<v;,
V> *}cico) Of {{[4ill}1<i<e (resp. {|<v;, v'>|}i<ic)- Since mk, i)=i, we
have

0 00
2P ug 19 < Zim(k, D) [ug, ][ **9,
i=1 i=1
where the right hand side tends to 0 as k— co because
o]
2P uj||*"< oo  and m(k, i)— oo as k— .
i=1

On the other hand, taking in mind that | <v, ; v'>|**<|<v, v'>|*, i=1,2, ..,
we have
wo ’ ’ ’
DR A RSP d
flo ISt i=1
ma ’ ’ ’
<sup Xi?/P Tl <u, v > |* < oo,
Jor <1 i=1
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Next, in case g<p (q’'>p’), we similarly have
o0 a0
ol [0 < o= u[#1.< oo,
i=1 i=1
and

0
sup Ziq’/p’—1|<vk'i’ v,>l**q'
o <1 i=1

Q0
< sup Yn(k, DYIP T <vy y, v7 > | *¥*
o I<1i=1

—0 as ko oo.

Hence we have

”p,q(T_ Tk)
o0
<SP0 JJup [ **9) e sup (50171 | vy p, 07> [FAC) 1
i=1 o' [S1 i=1
—0(as k— ),

as desired.

In the same way we can show that Ly(E, F) is dense in N?-4(E, F) and the
proof is complete.

By making use of Propositions 1 and 5 the following corollary is readily shown.

CoroLLARY 1. N, (E, F)cK(E, F) and N*4(E, F)CcK(E, F).

ExamPLE 1. Let {6;}l(p, q) and D, be the operator from I® into I(p, q)
defined by

D,({a;})={6;a;}  for each {a;}sI~.
Then
Dl ENp,q(lo.o’ l(p’ q))
and
”p,q(Dl) = ”{5;} ”l(p,q)'
/L\
In fact, let ¢,={0,...,0, 1, 0, ...} in I(p, q), and define u}(I°)’ by <u, ui>
=4,a; for each u={a;}I*. Then

Diu=3<u,ui>e¢
i
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and

”{ [l ”} ”I(p,q) = ”{5:} ”l(p,q)’

su <e;, V' > N |
IIv'Iln(p'I.)qfl)lil o 0> iy =1

which shows
D,eN, (I°, I(p,q)) and v, (D;)<I{0:}llip.0)
On the other hand for e={1, 1, ...} €1® we get
[{6:}licp,qy = ID1ell < |IDy | v, (D).
Hence
Y,,4(D1) =1{0:} licp,q)-
In a similar way we obtain

EXAMPLE 1’. Let {8;} be the same one as in Example 1, and D,: (p’, q')
—1'be defined as

D,({b;}) ={0:b;} for each {b}elp, q').
Then
D,eNP(l(p', q'), I') and P 9D;)=|1{6:;}llip,e)

These examples illustrate the fact stated in Proposition 2.
By making use of these examples, a (p, g)-nuclear (or right (p, q)-nuclear)
operator is characterized in the following decomposition theorems.

THEOREM 2. TeL(E, F) is (p, q)-nuclear if and only if T can be
factorized in the form T=Q,D,P,:

E-Z5 1225 1(p, q)-2%

where P, L(E, I°) with |P,||<1, Q,=L(l(p, q), F) with ||Q,||<1 and D, is
the operator in Example 1.

Proor. The sufficiency is evident by Proposition 4 and Example 1. The
necessity is proved by virtue of the definition of T€ N, (E, F) and the following
natural decomposition of T. Since

Tu=3,<u, uj>v;
7
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with
H{Hu;||}l|,(p,q)<up,q(T)+s, u;—=/=0
and
<v;, V> F <1,
fllllgl“{ Vi, V' >}l )
we can get the decomposition of T:
E-Z5 125 1(p, )25
defined by
Pu={<u, uj/|juj||>}sl» for each u€eE,
D,({a})={lluilla;}cl(p, 9)  foreach {a}el~
and
0:({<u, u;>} =2 <u, u;>v,eF.
It is easy to verify that ||P,||<1 and ||Q,||<1.

Repeating the same procedure with the aid of Proposition 4 and Example
1" we get

THEOREM 2'. TeL(E, F) is right (p, q)-nuclear if and only if T can
be written in the form T=Q,D,P,:

E-L20(p, q) 2511 224 F,
where
P,eL(E, I(p’, q")) with ||P,||<1, Q,L(l', F)with ||Q,||<1

and D, is the operator in Example 1'.

3. (p, q)-integral operators

Before introducing (p, q)-integral operators, we shall begin with the definition
of (p, g)-majorizable measures.

DEerFINITION 2. Let X be a compact Hausdorff space and denote by C(X) the
set of continuous functions on X. If MeL(C(X), F) satisfies the following
condition, M is said to be a (p, g9)-majorizable measure on X, 1<p, q<oo:
There exists a positive Radon measure ¢ on X such that



116 Ken-ichi M1vAzAKI
3 IM@I<ll¢llp,q:x,wy  for each ¢eC(X).

M(p) is described symbolically as S o(x)dM(x).
X
The collection of (p, g)-majorizable measures is denoted by M, (X ; F) and
m, (M) is defined as

mp.q(M) =(p/q)'/4 inf{p(X)} 1/p,

where the infimum is taken over all u satisfying (3).

PROPOSITION 6. If 1<po<p;<oco, 1<gqy, <o, then M, ,(X;F)cM

Pl.qn(X; F)’

If 1<p<oo, 1<qy<q,<o0, then
M, . (X; F)>M,,(X; F).

Proor. This is easily shown by the definition of M,, and the monoto-
nicities of norms with respect to p and ¢q in L(p, q; X, u, F) mentioned in Section 1.

ProrosiTION 7. Let MeM, (X; F). Then for any scalar o
oMeM, (X; F)
and
m, (aM) =|a|'m, (M).

Proor. By the assumption we have M € L(C(X), F) and there is a positive
Radon measure u on X such that

IM@I<llellLp,aix,y  for each ¢ C(X).
Therefore
|laM(¢)||Sl&l'”?llL(p,q;X.u):”90“L(p,q;X,|m|Pu)s

where the last equation is obtained by the definition of the norm of L(p, q; X, p)
in Section 1. This shows aMeM,, (X ; F) and

m, (uM)=|oa|'m, (M).
This completes the proof.
ProrosITION 8. Let M, and M, be in M; (X; F). Then

M, +M,eM, (X; F)
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and
mp,q(Ml + MZ) < C(mp,q(Ml) + mp,q(Mz))
with a positive constant C.

ProoF. By the assumption, for every e>0 and k=1, 2 there exists a positive
Radon measure u, on X such that

“Mk(90)|[$“90“L(p,q;x,llk) for each ¢eC(X)

and

(ol (X))} P <m, (M) +¢[2.

If we put v,={m, (M) +¢/2}' Py, p=v,+v, and M =M, +M,, then we have
W) < (@l /5 Sm (M) +2),
whence
(DI U0} P < (S, (M) + ).

On the other hand, for each ¢ € C(X) we have

M)
<ML+ Moo
< 3 M)+ 21217, 3,

where the last inequality is obtained by the same calculation as in the proof of
Proposition 7. Furthermore, by Holder’s inequality the right hand side of the
above inequality is majorized by

2 2
(kglm""‘(Mk) +e)l/p (k§1|l¢I|i(p.q;x,vk))1/”

with 1/p+1/p’=1. We here denote by ¢¥(t) and ¢*(¢#) the non-increasing
rearrangements of ¢ with respect to the measures v, and p respectively. Then,
by the definitions of the non-increasing rearrangement and the norm of Lorentz
spaces, taking into account of the fact ¢¥(f) <¢*(f) we obtain

2
kglny’”zw,q;x,v;‘) —<—2”§0“{(p,q;,\’,u)‘

From the above discussions we have
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M) <215 F i M)+ 5,0

Since £>0 is arbitrary it follows that
M=M,+M,eM, (X; F)
and
m, (M, +M,)<2'?(m, (M,)+m, (M,)).

This completes the proof.
By the aid of (p, q)-majorizable measures we shall define (p, gq)-integral
operators.

DerFINITION 3. TeL(E, F) is called a (p, q)-integral operator, 1<p,
g < o, if there exists an Me M, (U°; F) such that

@) Tu =S <u, u'>dM(u’) for each uE,
uo

where U° is the weakly compact unit ball in E’.

Let ¢, ,(T) be inf {m, (M)}, where the infimum is taken over all M satisfying
(4). The collection of (p, g)-integral operators is denoted by I, (E, F).

By the definition and by Proposition 6 respectively, the following two pro-
positions are immediately obtained.

ProrosITION 9. For any Tel, (E, F)
ITI<e, (T).

ProPOSITION 10. If 1<po<p;<oco, 1<q9, q,<co, then I, ,(E, F)C
Ipx.qn(E’ F).

If1<p<oo,1<qg<q;<oo, then I, (E, F)OI, , (E, F).

By making use of Propositions 7, 8 and by Definition 3 we also have

ProrosiTiON 11. (i) Let Tel, (E,F) and o« be any scalar. Then
aTel, (E, F) and

¢, (aT)=|a|-¢, (T).
(ii) Let T, and T,€l, (E, F). Then T,+T,€l, (E, F) and
‘p,q(Tl + TZ) S C(‘p,q(Tl) + ‘p,q(TZ))
with the constant C in Proposition 8.

ProrosiTION 12. For Tel, (E, F) and Se€L(F, G), we have STel,,
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(E, G) and ¢, (ST)<|IS|| ¢, (T).
When TeI(E, F) and Sel, (F, G), we have STelI, (E, G) and ¢, (ST)
<6, S)IIT].

Proor. Let Te€l, (E, F). Then for any ¢>0 there exists an MeM,,
(U°; F), U° being the weakly compact unit ball in E’, such that

Tu =S <u, u'>dM(u’)
vo

and m, (M)<¢, (T)+e.
Putting N=SM with S€L(F, G), we have NeM, (U°; G),

STu=S <u, u’'>dN(u")
Uo

and m, (N)<||S||'m, (M) as in the proof of Proposition 7. This shows ST &
I, (E, G) and

¢, (ST)||S||"¢,,(T).

Next, we assume that TeIL(E, F) and S€1, (F, G). Then for any >0
there exists an Ne M, (V°; G), V° being the weakly compact unit ball in F’, such
that

SU=S <v, v'>dN(v")
vo
and

m, (N)<ec, (S)+¢/2.

NeM, (V°; G) means that there exists a positive Radon measure v on V° such
that

INWI<IWllLip,gve,vy  for each yeC(V°)

and
(pl@)' /2 {v(VO)} /P <m,, (N)+e/2.

We now define M(p), that is,Suogo(u')dM(u') by

) M@=ITI| o(Tw/ITNN@)  for each p(uw)e CU),

where U° is the weakly compact unit ball in E’ and T’: F’—E’ is the adjoint of T.
Then we have
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IMI<ITI (T 0 /I T Lp, g v0, )

and

MeM, (U%; G),
that is,
(6) m, (M) <[ T||(p/q)/*{v(VO)} ' /».

Consequently we obtain by virtue of (5)

STu =gyo< Tu, v'>dN(v")
=Im{ <u, TolITI> dNw)

=S <u, u'>dMu),
UO

and by virtue of (6)
¢,4(ST) <(€,,4(S)+2) [ Tll,

which finishes the proof.

EXAMPLE 2. Let X be a compact Hausdorff space. Then the identity
operator I: C(X)-L(p, q; X, u, C) is (p, q)-integral and

€p D) =(plg) "1 {u(X)} /7.

In fact, by making use of the mapping x— 4, (Dirac measure at x) from X
into C(X)’, X can be embedded into the weakly compact unit ball U° in C(X)'.
On account of this fact, with any ¢ C(U®) we can associate a function ¢y
€C(X) by ¢x(x)=¢(d,). Hence, defining a positive  Radon measure [ on
U° by means of <g¢, i>=<gyx, u>, we get an MeM, (U°; L(p, q; X, p))
and

”SDXHL(p,q;x,u) = ||<P “L(p, PHANE

Therefore
m,, (M) <(p/q)"'/*H{u(X)} 17 =(p/g) " /1{ p(U°)} ' /7.
On the other hand, we have
(pl) ' *{ (X} 1P < T < e (1) <, (M),

and therefore ¢, (I)=(p/q)'/1{u(X)}'/?, as desired.
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Owing to this example we can state the decomposition theorem of (p, q)-
integral operators.

THEOREM 3. T e L(E, F) is (p, q)-integral if and only if T can be decom-
posed in the form T=QIP, where P L(E, C(X)), Q= L(L(p, q; X, p), F) with
[IP]|<1 and ||Q||<1 and I is the operator defined in Example 2.

Proor. Since the sufficiency is obvious by Example 2 and Proposition 12,
we need only to prove that any T €1, (E, F) can be factorized in the above men-
tioned form. To begin with, for any ¢>0 T may be written as

Tu =S St u'>dM(u’) for each u€E,
U

with MeM, (U°; F) such that m, (M)<¢, (T)+e. That is, there exists a posi-
tive Radon measure p on the weakly compact unit ball U°? in E’ such that

[M(p)|| < ”SDHL(p,q;UO,u) for each o € C(U").

According to this, M can be extended to a bounded linear operator Q: L(p, g;
U?O, u, C)—F satisfying ||Q]|<1. Thus, when we put Pu=<u, > and let I:
C(U%—L(p, q; U°, pu, C) be the identity operator, we obtain the decomposition
Tu=QIPu, ||P||<1. This proves the theorem.

We now notice the well known theorem that for the Banach space Ly(X)
there exists a compact Stonian space X such that L?(X) becomes isometrically
isomorphic with C(X) ([14]). We denote by fi the measure on X which is
obtained by transforming pu on X by this isomorphism. Then L(p, q; X, 1) and
L(p, q; X, fi) are isometrically isomorphic. According to this fact the following
example and theorem are easily obtained.

EXAMPLE 2. Let X be a compact Hausdorff space. Then the identity
operator I: LY(X)— L(p, q; X, 1) is (p, q)-integral and ¢, (I)=(p/q)*'*
{uX)}/P.

THEOREM 3. TeL(E, F) is (p, q)-integral if and only if T can be decom-
posed in the form T=QIP where PcL(E, LY(X)) with ||P||<1, QeL(L(p,
q; X, ), F) with ||Q||<1 and I is the operator defined in Example 2'.

REMARK 2. Example 2’ and Theorem 3’ with C(X) replaced by Ly(X)

are useful, as later seen, because L?(X) has the extension property.

4. (p, q9)-quasi-nuclear operators

Similarly to the definition of p-quasi-nuclear operators [11] we shall give
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DEerFINITION 4. TeL(E, F) is said to be a (p, q)-quasi-nuclear operator,
1<p, g< oo, if there exists a sequence {u;}<I(p, q; E’) such that

Q)] ITul|<|l{<u, u;>}llipq  for each ucE.

The inf [|{{[u}||} lip,qy Which is taken over all {u}} satisfying the above condition
is denoted by »¢ (T). The collection of all (p, g)-quasi-nuclear operators is

denoted by N2 (E, F).
In view of (7) the following proposition is clear.

PROPOSITION 13. For any TeNZ (E, F) we have
T <v (T).

We next show the relation between (p, g)-nuclear operators and (p, g)-quasi-
nuclear operators.

PROPOSITION 14. We have
N, (E, F)c N2 (E, F) (resp. N*4(E, F)c N2 (E, F))
and
ve (T)<w, (T) (resp. ¥ (T)<v?4(T))
for each TeN, (E, F) (resp. N> 4(E, F)).

Proor. TeN, (E, F) can be expressed as follows. For any ¢>0 there
exist sequences {u/} C E’ and {v;} C F such that

Tu=3,<u,u,>v; foreachuckE,
i

and

||{”u: “} ”l(p,q) <”p,q(T) +¢,

sup [{<v;, v'>Hip oy <1
.llv'lISl“{ o ">

with 1/p+1/p’=1 and 1l/g+1/q’'=1.
Therefore we have

[Tl

<sup Jl<u, ui>||<v;, v'>|
lerli<1 i

< ”{<u’ u;>}”l(lh¢l)‘"ip"r;1”{<vi’ v’>}”l(p’,q')
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< {<u, ui>}Hip,ayp
which shows TeN¢ (E, F)
and v,?,'q(T) <w, ().
In a similar way it can be easily seen that
N?4E, F)c N2 (E, F)
and v2 (T)<w»4(T) for each TeNP4(E, F).

This completes the proof.
We next show that N2 (E, F) is a quasi-normed space with respect to »2,

).

M
THEOREM 4. Let T,eN? (E, F), k=1,2,.., M. Then ),T,eN? (E, F)
k=1

and
o & 11701 L, 0
V2 (ST <M1 tal(3108 (T)).

Proor. For any &¢>0 there exist sequences

{u;t.i}lsi<uoEI(p’ ‘1§ EI)9 k=1, 2, ceny M

such that

”{Hu;t.i“}Hi,l(p,q)<”g,q(Tk)+e/2k
and ITull < I{ <u, ui,i>}Hiipa for each u€E, k=1,2, ..., M.
Therefore, if we put

0, =3 (T +e/297 M up 4, k=1,2, ..., M,

M M
with 1/g+1/q’ =1, then (kZIT,‘)u =kZ T,u satisfies
= =1
M
(2 Tull
k=1
M
(3 SZl(l*g,q(Tk)+8/2")”“'(Z"“’“I<u, g, >|*)te
k= i

M M
S(WB (T +) e (L Tielr = <u, ), > [*0)11e,
= =11

where * stands for the non-increasing rearrangement of the sequence with respect
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to i. Now, in order to estimate the summation
M ©
o(u)=(2, 2"~ <u, fif,,>[*1)/e
k=1i=1
for each uE, let N be any positive integer and let o5(u) be the summation of
any first N terms in the summation a(u). Putting

g = min | <u, 0f,;>1*,
1<k<M, 1<i<N, | <u,af,;>[*#0

we denote by ., the summation taken over all i such that | <u, 1} ;>|*>¢,,

and we write n(k, i) the index number of the term corresponding to | <u, fi} ;> |*

in the non-increasing rearrangement of {|<u, 4} ;>|* | |<u, i} ;>|*>¢}.

Then, in case q=>p, since n(k, i)>i we have

on(u)

N .
i1 <u, > o) 11a

i=1

ME

II
-

n
Mz

&)

11‘1/1’“|<u, ﬁ;m> |*q)l/q

II
-

z
DX

II M:

1”(k, i)q/p~1 | <u, ;h‘> |*q)1/41

< ||{ <u, 04> Y i <kem, 1<i<ollip, o)+

In case g <p, we have

on(u)
M N
<25 i <u, B > [*9) e
=1
N /i _
(10) <{ 2 B () <, >0
K=1i=1 M ’

M N
= (M T 3 (= DM+ R) I <u, > [*} e,

Here we denote by n'(k, i) the number of the term corresponding to
| <u, i} ;>|* in the non-increasing rearrangement of the sequence {| <u, fi} ;> |¥|
1<k<M, 1<i<N}. Then, noting that the set {(i—1)M+k [1<k<M,
1<i<N}is a permutation of the sequence {1, 2,..., MN} and g <p, by the help
of Lemma 1 the right hand side of (10) is majorized by

Mlla— 1/17(2 Zn (k l)q/ﬁ 1|<u a:">|*q)1/q

k=1i=1
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M
(1) MUy, 3 n(k, )97 <u, i > [*9) e
k=1

KM {<u, B >} 1 <hem, 1<i<wollien, o)
Since N is arbitrary, by (9), (10) and (11) we get
o(u) <max(l, M= 1p) - |[{<u, 0} ;> } 1 <kem, 1<i<ol1p, 0)-
With the aid of this inequality, (8) yields
(12)

M
(S Tull
k=1

M .
Sg‘;vg,q(TkHE)”" ‘max(l, MYe=e)-||{<u, 0} >} 1<kem, 1<i<ollip, a)-

On the other hand, for any positive integer N we denote by o} the I(p, q)-
norm of the first N terms of the non-increasing rearrangement of {{||2,:||*} 1<i<ws
voos {18054, 611*} 1<i<wo}- Let m(k, i) be the index number of the term corresponding
to ||fi; ;||* in the non-increasing rearrangement of the sequence {{||2% ;||*} 1<i<ns
woos {U1fi4s,1l1*} 1<i<n}-  Then, as in the proof of Theorem 1, we can apply Lemma
1 to obtain the following inequalities:

oN?
M N
<2, 2m(k, HUPTtag [
k=1i=1
M LN
= 2,08, o(Tu) +28/2)79/4 Lm(ke, )2/o~" |, | |**
=1 i=

M N
<max(1, MU#=1) 3 H{(¥3 (T) +e/2F)70/0 Fialv=1ug ;||*9}
k=1 i=1

<max(1, M”“’“)'gﬁﬂﬁq(ﬂ)"l‘ﬁ)-
Since N is arbitrary, we have
IH{18%, i1} 1<sp, 10 <c0llicp, 00
<max(l, Ml/"“l/q)-(kg}lvg,q(Tk)+s)1/".

Therefore, combining this with (12) and on account of the fact that ¢ is arbitrary
we have
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M=

T,€N? (E, F)

k

[

1

and
Q o 1 1 o Q
yp,q(kngk)SMl 1= /ql(kglyp,q(Tk))i

which completes the proof.
Since the next proposition can be shown by a reasoning similar to the proof
of Proposition 4, we omit the proof.

ProposITION 15. If TeN$ (E, F) and S€L(F, G), then STENY (E, G)
and

v? (ST)<||S|I-2 (T).
If TEL(E, F) and SeN? (F, G), then STeN? (E, G) and

v (ST) <8 ()-|IT].

5. (p, q)-quasi-integral operators

DEerINITION 5. TeL(E, F) is said to be a (p, q)-quasi-integral operator
if there exists a positive Radon measure yu on the weakly compact unit ball U°
in E’ and the following inequality is satisfied

(13) ITul|<||<u, u'>lLip, g:v0, ) for each uE.

Let ¢2 (T)=(p/q)"/? inf {u(U°)}/? , where the infimum is taken over all pu.
satisfying (13). The collection of (p, g)-quasi-integral operators is denoted by

I¢ (E, F).

REMARK 3. In view of the result established in [13] to the effect that the
notions of p-quasi-integral and p-absolutely summing operators coincide, it might
be well for us to say that a (p, q)-quasi-integral operator is a generalization of p-
absolutely summing operator.

From Definitions 3 and 5 the following proposition is clear.

ProposiTION 16. I, (E, F)cI? (E, F), and for each T <1, (E, F) we have
2 (T)<e, (T).

It is an easy matter to obtain the following propositions corresponding
to Propositions 9, 10, 11 and 12.
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PROPOSITION 17. For each TeI$ (E, F) we have
IT||<e2 (T).

PROPOSITION 18. If 1<py<p,<oo and 1<gq,, q,<co, then I? , (E, F)
CI?:.qI(E’ F).
If1<p<ooand 1<q,<q,<co, then I% ,,(E, F)>I¢, (E, F).

ProPOSITION 19. (i) Let T<I? (E,F) and « be any scalar. Then
«TI? (E, F) and

€8 J(@T)=|x| e ,(T).
(i) Let T, and T,I¢ (E, F). Then T,+T,cI%(E, F) and
‘[?, q(Tl + T2) < C(‘g, q( Tl) + ‘1?, q(T2))
with a constant C>1.

PROPOSITION 20. For TeI? (E, F) and S€L(F, G) we have STeI?,
(E, G) and

2 (ST)IS||-¢2 (T).
If TEL(E, F) and SI? (F, G), then STeI? (E, G) and

2 (ST)<e2 (S)|IT||.

6. Interrelations among N, ,, I, ,, N¢ and I?

We have already seen that
N, (E, F)c N2 (E, F)
and
I, (E, F)cIZ2 (E, F)

in Propositions 14 and 16 respectively. In this section we shall furthermore
investigate the relations between N, ,(E, F) and I, ,(E, F) and between N f,{q
(E, F) and I2 ((E, F).

We shall first show

THEOREM 5. If g=>p, then every (p, q)-nuclear operator T is q-integral and
satisfies
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v, (T)=e,(T).

PrOOF. Letg>p and let T be a (p, g)-nuclear operator from E into F,
that is, for any &>0 there exist two sequences {u}} C E’ and {v;} C F such that

Tu=Zi]<u, ui>v; for each u € E,
with
It 1o,y <®p,o(T) +e
and
||§}1|&1”{<v"’ > e <1.
Here we may assume
luil*=1luill and |luj]| #O0.
We put
i=uifluill, 0i=lluilv;
and
pi=i427H|ug|e,

Let U° be the weakly compact unit ball in E’ and define the mapping M from
C(U®) into Fdy M(¢p)=2¢(#i})d;. Then, for each o € C(U°) we have

Tu=2.<u, 4;>0,=M(<u, ->)

and
M)l =”§}|1,gll;so(ﬁ:-)llu'ill <v;, 0" >|
<IH{e@DNuill} i, a by Lemma 2

< (2P He(ap]9||uil9) /4 by Lemma 1.

On the other hand, by using the counting measure u defined by u(f})=pu;, we
obtain

lllecq, a0 = (2ilp(BDI44/P~ || 2) 2.

Therefore we have
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M) <llellLig qivo,my and  p(U®)=2Ji4/P~Huj||4.
Hence we get
¢.o(T)<my (M) <{u(U°)}'1<p, (T)+e,

which completes the proof.

We here notice that this result can also be shown by making use of
Proposition 3 and the theorem proved in [11] that N,cI, and v ,(T)>¢,(T)
foreach TeN,.

Concerning the relation between N, , and N2,
property, Proposition 14 can be precised as follows.

if F has the extension

PROPOSITION 21. Assume that (A): F has the extension property. Then
any ( p, q)-quasi-nuclear operator T:E—F is (p, q)-nuclear, and

Y, (T)=v2 (T).

PRrOOF. From the definition, for any ¢>0 there exists a sequence {u}}C E’
such that

(14) | Tul| < I1{<u, u;>}|lyp, o for each u€ E
and

”{ Hu: “} ”l(p,q)<ug, q(T)+ L

Let us denote by Q, the operator from the subspace {{ <u, u}>}jusE} of I(p, q)
into F defined by

Qo({ <u, uj> }) =Tu.

Then, taking into account of (14) we have ||Qq||<1. Thus, by the help of the
assumption (A), there exists an extension Q: I(p, q)—F of Q, with ||Q||<1. If
we put

ei=(0:\0?1, 0,...) and Qe;=v;,
then we have
Tu =Zi_“,<u, ui>;
and
I{ <vi v >}l o)

=|l{<e;, Q'v' >} ”l(p‘ ')



130 Ken-ichi M1vazaki

SNQ'V llyp gy <Ilv'll  for each v’ F".
Therefore

su <v;, V' > s o<1
'v,"glll{ i }”l(p q)

and
v, (T)<v? (T)+e.

Owing to Proposition 14 we now obtain the conclusion of the proposition.
We now consider the mapping P: F—B(V°) defined by Pv=<v, -> where

V0 denotes the weakly compact unit ball in F’ and B(V°) denotes the space

of bounded functions on ¥°. Since P is isometric, F may be considered as a

subspace of B(V°).
Taking into account of the fact that B(V°) has the extension property, by
virtue of Proposition 21 we have

CoroLLARY 2. TeL(E, F) is (p, q)-quasi-nuclear if and only if T is
(p, q@)-nuclear when we regard T as an operator from E into B(V?°).

Concerning the inclusion relation between I,, and I?,, Proposition 16
can be precised as follows.

PROPOSITION 22. Under the assumption (A) in Proposition 21, any (p, q)-
quasi-integral operator T is (p, q)-integral and we have

¢, (T)=2¢2 (T).

Proor. By the definition there exists a positive Radon measure p on the
weakly compact unit ball U° in E’ such that

(15) ITul|<||<u, w' > L, gsv0, ) for each ucE,

and
¢2 (T)=(p/q)'/4inf {u(U°)}1/»,

Let Q, be the operator from the subspace {<u, ->|uc E} of L(p, q; U°, p) into
F, defined by Q¢(<u, *>)=Tu. Then, in view of (15) and the assumption (A),
Q, may be extended to an operator Q: L(p, q; U®, p)—F with ||Q||<1. There-
fore there exists an F-valued measure M: C(U°)—F such that M(<u, ->)=Tu
and ||Tu||<||<u, u'>||L(p, q;vo,uy- This shows that Tel, (E, F) and ¢, (T)
<2 «T). By virtue of this fact and Proposition 16 we get

o (T)=22 (D).
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This completes the proof.

ReEMARK 4. By this proposition we obtain an example of a (2, 1)-integral
but not 1-integral operator. In fact, as shown in [11], the identity operator I:
I*—12 is 1-quasi-integral. Hence, by Proposition 18 I is (2, 1)-quasi-integral and
furthermore by Proposition 22 I is (2, 1)-integral. But I is not 1l-integral as
shown in [11].

In the same way as Corollary of Proposition 21 we obtain

CoroLLARY 3. TeL(E, F) is (p, q)-quasi-integral if and only if T is (p,
q)-integral when we regard it as an operator from E into B(V°).

In the last of this section we shall observe the relation between (p, g)-quasi-
nuclear operators and (p, q)-quasi-integral operators.

THEOREM 6. If q=>p, then we have N2 (E,F)CI2(E, F) and for each
TeN¢ (E, F)

v¢ (T)=c&(T).

PRroOF. As in Corollary of Proposition 21, let P be the isometric embedding
from Finto B(V°). On account of the fact that B(¥°) has the property (A4)
([9]), we have

v¢ (T)=»¢ (PT)=v, (PT) by Proposition 21.
On the other hand, by Theorem 5 it holds that
v, (PT)>¢,(PT).
Furthermore, by Proposition 22 we have
¢, (PT)=¢2(PT)=cX(T).
Thus we obtain
v2 (T)=eX(T).

This completes the proof.
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