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Recently, investigations have been made on the various generalizations of
nuclear operators on the basis of the theory of locally convex topological vector
spaces and the classes of operators in them ([2], [12], [13], [11], [8]). Among
other things, p-absolutely summing operators due to A. Pietsch ([13]) and p-
nuclear, p-integral, p-quasi-nuclear and /?-quasi-integral operators due to A.
Persson and A. Pietsch ([11]), l<p<oo9 have played an important role in
the study of classes of operators in connection with the classes of nuclear and
integral operators in Banach spaces. Not only these operators were defined by
making use of the norms of spaces LP and lp, but also their associated domains
and ranges were closely related with spaces LP and lp ([13], [10], [11], [7], [8]).
For instance, these operators were characterized with the aid of operators in
LP and lp as follows ([11], [13]). A bounded linear operator T from a Banach
space E to a Banach space F is p-nuclear (resp. ^-integral, resp. p-absolutely sum-
ming) if and only if Tcan be factorized in the form T=QίDP1 where P x eJL(£, Z00)
with H P J ^ I , Q^L{lp, F) with l l β j ^ l and D is a multiplication operator
by a sequence in lp, (resp. if and only if Tcan be factorized in the form T=Q2IP2

where P2<=L(E, L00) with | |P 2 | |<1, Q2^L(Lp, F) with | |Q 2 | |<1 and I is the
identity operator in L(L°°, Lp), resp. if and only if there exists a positive Radon
measure μ on the weakly compact unit ball U° in E' such that ||Tw||<p{\

<u9u'>\pdμ(u')ylp for each M G £ and with a positive constant p). With these
in mind, by making use of Lorentz spaces Lp'q and lp*q instead of LP and lp, the
definitions and investigations of new classes of operators will be expected to be
made. In the present paper, using the Lorentz spaces we shall introduce the
four distinct types of operators, namely, the(p, g)-nuclear, (/?, g)-integral, (p, q)-
quasi-nuclear and (p, g)-quasi-integral operators, 1 <,p, q < oo, which, in case p = q,
coincide with the p-nuclear, p-integral, p-quasi-nuclear and p-quasi-integral opera-
tors respectively. The main purpose of this paper is to investigate these operators
and to obtain their properties, their characterizations and the relationships among
them. We also study the properties of the spaces of these operators with adequate
quasi-norms. In these processes we shall be often concerned with Lorentz spaces
LP>q, lp>q, where the notion and general properties of rearrangements of functions
and of sequences are frequently used. Such utilizations of Lorentz spaces are of
interest in themselves.

Section 1 is devoted to the preliminary remarks. We shall recall the defini-
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tions and the fundamental properties related to Lorentz spaces in view of rearrange-
ment in one way and by making use of the theory of interpolation between Banach
spaces in another way. Especially, a result concerning the rearrangement of a
sequence due to Hardy, Littlewood and Pόlya (Lemma 1), and a generalized Hol-
der's inequality (Lemma 2) will be frequently used in the subsequent sections.
In Sections 2, 3, 4 and 5, we deal with (p, g)-nuclear, (jp, #)-integral, (jp, ^-quasi-
nuclear and (p, g)-quasi-integral operators respectively. In these sections we
consider the spaces of these operators and introduce the quasi-norms into
them. We also give there a characterization of the operator of each class by
making use of a special operator of the same kind in /*»«, Lp>q. In Section 6
we show that there are intimate connections among these classes of operators.

The author would like to thank Professors S. Togo and F-Y. Maeda for
their valuable comments in preparing this paper.

1. Preliminaries

Let E and F be Banach spaces. We shall denote by L(E, F) the space of
bounded linear operators T from E to F with the usual operator norm

||T| |=sup| |7iι | | .
IM|£i

We denote by L0(E9 F) and K(E9 F) the subspaces of operators of finite rank
and compact operators respectively.

A Banach space F is said to have the extension property if each operator
T O G I ( £ O 5 F), EO being any linear subspace of an arbitrary Banach space E, can
be extended to a TeL(£, F) preserving its norm ([9]). It is well known that the
Banach space L00 has the extension property ([14], [9]).

We next summarize the notations and properties concerning Lorentz spaces
which will be repeatedly used in the following sections (cf. [1], [6], [4], [15]).
The letter X is used for a locally compact Hausdorff space and μ denotes a positive
Radon measure on X. Let LPμ(X, E), 1 < p< oo, be the Banach space of (classes
of)£-valued μ-measurable functions / on X such that

\\f\\LP(X,E) =

vess sup ||/(x)|| <oo

The distribution function of / is defined by

λf(y)=μ({χ<=X\ ||/(x)||>j>}), y>0,

and the non-increasing rearrangement of/ onto (0, oo) is defined by
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/*(ί)=inf{j;>0 I λf(y)<ή9 0 < ί < o o .

The Lorentz space Lp

μ'
q(X9 E) or L(p9 q\ X, μ, E)9 l<p9 q<°°, is the collection

of all / such that \\f\\L(p,q;x,μ,E)<oo> where

L(p,q;X,μ,E)z

G
sup
f>0

ί/q
ifl< jp<oo,

ifl<p<oo, q =

In particular, if £ is a scalar space C or if E is understood, we write L(p9 q\ X9 μ),

L(p9 q; X) or L(p9 q) shortly instead of L(p9 q\ X9 μ, E).

We notice some results concerning Lorentz spaces which will be utilized

hereafter ([6]).

By a scalar valued simple function we mean a function /(x) which can be wri-
n

tten in the formf(x) = Σ ckχAk(x)9 where cί9 c2, ..., cn are complex numbers and

Aί9 Al9 ..., An are pairwise disjoint sets of finite measure and χA(x) denotes the

characteristic function of the set A. For such a function, let cf >c%>•••>

c*>0 be a non-increasing rearrangement of \ct\9 | c 2 | , ..., \cn\9 and let ̂ 4f be the

set At corresponding to cf with cf = |c f | . Then we have

{Σ

where αj= Σ μ(AJ), j = l, 2, ..., n and α o = 0 .
fc=l

For a fixed r :0<r<l , we put

sup \(llμ(A))\ \\f(xWdμ(x)Y/r iΐO<t<μ(X)9

r ϊΐt>μ{x).

Then, by making use of this function, the norm of the Lorentz space L(p9 q X,

μ, E) is seen to be equivalent to

1/q

ifl<Jp<oo, l^ g<oo,

iίl<p<oo, q=oo.

In this case, it is to be noticed for our later purpose that /**(ί) has the property
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The third equivalent norm of Lorentz spaces is given from the point of view

of the interpolation theory ([1], [4]). We consider a couple (Eθ9 E^) of Banach

spaces which are both continuously embedded in a HausdorfF topological vector

space «f. For O < 0 < 1 , 1 < < ? < O O , the space

(JE0,

with the norm

is called an interpolation space between Eo and Eu where

K(t,a)= inf (||αolk + ί||α,||£l)
a=a o+a i»a teEi, i= 0, 1

Then, in the particular case E0=Ljι9 Eί=L™, we get

= ^ f*(s)ds, 0<*<oo,
Jo

for each

and we have L(p, q; X, μ)~(^μ, ^jOi-i/p, q >

where ^ means that both sides coincide algebraically and their norms are equi-

valent. Therefore, by the interpolation theory of spaces, it is noted that if X is

a compact Hausdorff space, the norms of L(p, q; X) are monotonically increasing

(resp. decreasing) with respect to p (resp. q). Namely, if 1 <po<Pι<°°> 1

5, then we have

^ P i . ί O for e a c h / e L ( p l 5 q^ X9 μ),

and if l < p < o o , l < ^ 0 < ^ f 1 < o o 5 then we have

, ί 0 ) for each/eLQ?, qo; X, μ).

Since Lorentz spaces for the case of sequences are frequently used later,

we notice some of their results. Let lp(E) be the collection of sequences {a

such that

<oo
Γ

The Lorentz space / p > 9 (£), l(p, q\ E) or shortly l(p, q), l ^ p , q<°°, is the
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collection of all sequences {αJec o (Έ) such that \\{a^\\ι{p>q E)<oo. Here, de-

noting by {Hflfll*} the non-increasing rearrangement of {||α, ||}, we put

ΣV^WaiW*9)1'* if

[sup i^'Hα,!!*

The following inequalities show that this norm is defined. When we calculate

\\f\\up,q ,i,μ,E) with/(i) = fli, ί e I, the set of positive integers, and with the counting

measure μ on /, we have

<(resp. ^XΣ^-'Ikll*4}1^

for l<p<q<oo (resp. l<q<p<oo)

and

l l/(0llL(p,oo;/,,,E)P

for l</?<oo, q — oo.

If it is necessary to specify the suffix of a sequence in the norm, we write \\{at}

\\i,i(p,q)> The interpolation theoretical description of Lorentz spaces l(p, q\ E)

is

According to this, by the result of interpolation theory it is noted that the norms

of l(p9 q E) are monotonically decreasing with respect to both p and q. Namely,

if 1 < / ? O < J P I < 0 0 » l^tfo> 4ι<oo> then we have

ll«lli(i»i,«i)^ll"lli(Po.«o) for each ut=l(p0, qo; E),

and if l < p < o o , 1 < ^ 0 < ^ 1 < O O , then we have

N I K P . * ! ) ^ \\U\\I(P,<IO) f o r each M G / (/7, qo; E).

We shall notice the following two lemmas which are the fundamental tools

of our subsequent discussions.

LEMMA 1. (Hardy, Littlewood and Pόlya [3]). Let {cf} and {*cj be

respectively the non-increasing and non-decreasing rearrangements of a finite
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sequence {cf}i<^,, of positive numbers. Then for two sequences {αji^^,, and

°f positive numbers we have

Generalizing the usual Holder's inequality, R. Hunt proved the next

LEMMA 2 (Hunt [6]). Suppose l < p , q, p', <?', p", q'; <oo, l/p + l/p' =

1/p" and llq + \lq' = \lq«. Then for any f <=L(p, q; X9 μ) and g(=L(p',q';

X, μ) we have fg<=L(p\ q" X, μ) and

1.1/'0 \\L(P", q",X,μ) ^ C\\f \\L(P, q,X,μ) \\G IIL(P', q' ,X,μ)

with a constant C>\. In particular when p" —q" = 1 , we have

The case of sequences is as follows: If {aι}^l(p, q) and {b^^l(p'9 q')

then {aibJςΞlip", q") and

Throughout this paper, unless otherwise stated, E' stands for the dual space

of E, and U° denotes the weakly compact unit ball in Er. We denote by || | | £

the norm in E, and briefly by || || if there is no confusion.

Throughout this paper, for brevity, we only deal with p, q:l<p, q<oo

unless otherwise stated and we denote by p', q' the conjugate exponents of p, q: \jp

+ 1/p' = 1, \\q + 1/q' = 1 respectively. Concerning the general properties of inter-

polation spaces and Lorentz spaces we may refer to [1], [4], [6] and [15].

2. (p9 g)-nuclear operators

We shall first define (p, g)-nuclear operators as follows.

DEFINITION 1. Γ G I ( £ , F) is said to be a left (p, q)-nuclear or simply (p, q)-

nuclear (resp. right (p, q)-nuclear) operator, 1 </?, #<oo, if T can be written

in the form

(1) 7tt = Σ<w>wί>^ for each w ε £

with {u\} c E', {vt} c F such that

and

sup | |{ |<»,,»'> I}!!,(,,,,.)< oo
II v II < , 1
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(resp. sup | |{ |<M, fi{>|}||/(^fqΊ<oo
| | M | | ^ 1

and ll{ll»ιll}lli(M)<~).

The collection of (p, #)-nuclear (resp. right (p, #)-nuclear) operators is denoted
by NPΛ{E, F) (resp. ΛΓP «(£, F)). The quasi-norm (as proved later) is defined by

M ) sup ||{|<»(, V>\}\\lip.ιqΊ)
llo'li^i

(resp. pp-(T) =inf(sup ||{| <«
\\u\\<,ί

where the infimum is taken over all representations (1) of T.

REMARK 1. In ςase of p = q, a (/?, #)-nuclear (resp. right (/?, #)-nuclear)
operator coincides with a /7-nuclear operator (resp. of type Np) introduced in
[11] (resp. [10]).

For T^NPtq(E, F) and for each u^E, the series (1) is convergent. In
fact, for any finite set / of natural numbers and for each M G £ we have

\ \ Σ i i \ \ sup

Applying Lemma 2 to the right hand side of this inequality, if q>p (resp. q<

p), with ||w'.|| = ||*4(olΓ (resp. \<υh υ'>\ = \<vn(i)9 v'>\*) we have

ieJ

<\\u\\ (Σm(i)^-ι\\u'mii)\\*-y/"- sup | |{<» l t V>}\\np.,qΊ
ieJ ||v' \\<.l

(resp. < Hull ||{||«ί||} ||,(p, ί? sup (Σ«(0 f ' " ' "Ί < υ a W , V > | «')>/•'),
which shows the convergence of the series (1). A similar fact is valid for

TZENP>«(E,F).

From these considerations we obtain the following

PROPOSITION 1. Let T<=NPtq(E, F) {resp. T(=Nt>>*(E, F)).
Then

\\T\\<vPtq(T) (resp.\\T\\<vP>«(T)).

Concerning the connection between Np§q and 2V**« we have

PROPOSITION 2. If T<=NPiq(E, F), then its adjoint T belongs to NP^(F
Ef) and it satisfies

Furthermore assume E and F are reflexive. Then, if T'^Np>q(F', E')
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we have

TtΞNPtq(E,F)

and

PROOF. If T^Npq(E, F), then for any ε>0 it can be written as

<Tu, υf> = Σ < w , u\> <vh v'>
i

for each M G £ and υ ' e f , with

Hence we have

and (2) shows

ι>p>«(T')<vPtq(T).

When E, F are reflexive, in the same way T'^NP'q(F', E') implies

and

Thus

This completes the proof.
We shall next show that NPΛ(E9 F) (resp. iV* «(£, F)) turns out to be a quasi-

normed space ([12]) with respect to vPtq{') (resp. vp>q(')).

THEOREM 1. Let Tk^Npq{E, F) for k = l, 2, . . . ,M, M being a positive

integer. Then Σ Tk e iV_ _(£, F) and
fc= 1 ^>y

4̂ similar statement holds for elements of NP>q(E, F).

PROOF. For any ε>0T f t can be written in the form



(p, q)-Nuclear and (p, q)-Integral Operators 107

Tku = Σ<u> u'k i>vki9 fc = l, 2, . . . , M
i

such that

and

2k, /c = l, 2, ..., M.sup

In order to calculate the l(p, #)-norm σ of the countable set

{I|w2,ill*}i<;i<oo> ..., { I|«M, i II*} I^KOO}, let N be any positive integer and let σN be the

Z(p, ^)-norm of the first AT terms of the non-increasing rearrangement of {{\\u\ti ||*}

î i<oo» {ll"2,ilΓ}i^i<oo, ..., {l|wM,ill*}i^Koo} Next, rearranging {{||w'i,i|l*}i^^N,

{ll«2,ill*}i^^N» ~ > {l|wM,ill*}i^^iv} in non-increasing order we denote by n(k, i)

the number corresponding to the term | | t4 t i | | * . Then, on account of Lemma 1

and the fact that {n(k, i)\l<i<N, 1 <k<M) is a permutation of {1, 2, ..., MN}

we obtain

<Σ Σn(k,i)<ΊP-ί\\u>k>i\\*'
k= 1 ί = 1

I Σ Σi'l'-ΊuίJ*' ifq<P
k=l i=ί
Σ Σ

k=l i=ί

<max(l , AT*/*"1)- Σ Σί β / / >"ΊI«* ilΓ*
fc=l t = l
Σ Σ

fc=l t = l

<max(l,

Since N is arbitrary, this shows

lΣ

In the same way, in order to estimate the l(p', g ' )~ n ° r m σ'(υ') of the sequence

{{\<vi,i> »'>Γ}i^ι<-, •••> {\<vM,i9 V> |*}i^,<4, for each fixed υ'\ \\υ'\\<U let

σ'N(v') be the l(p', ^ 0 - n o r m of the first N terms of the non-increasing rearrangement

of {{\<OUi,O'>\*}1£i<oo,...9{\<vMti9O
f>\*}1<:i<oo}. When we rearrange the

sequence {{I <ι; l t ί , v
f>\*}1^i^N, .-.,{\<vMfi9v'>\*}ί<Li<LN}m non-increasing order,

we denote by m(k, i) the number corresponding to the term \<υkti9 ι/>|*.
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Then we have

k=ii=i

<max(l,

which shows

Therefore

M M

k=ί k=ίi^Ί

and this satisfies

»P,q(ΣTk)<σ' sup σ'iv'XM^/P-Vil'iΣVp^iTJ + ε).

Since ε is arbitrary, this completes the proof.
For some special parameters p, q, we have the following inclusion relations

between the spaces NPtq.

PROPOSITION3. (i) // l<p<ρl9 l ^ g < # i , Pιq<pqι and l/q — llqι<
I/P-I/Pi, then

NPtq(E,F)c:Npuqί(E9F)

and vpuqi{T)<CvpΛ(T) for each Tt=Np>q(E, F), with some positive constant C.
(ii) Ifl<p<Pι<q,then

NPfq(E, F)aNpuq(E9 F)

and

v P l , g (Γ)<C^(Γ) for each T<=NPtq(E, F).

PROOF, (i) For T^NPtq(E, F) and for any ε>0 we may write

= Σ<u,u'i>vi for each

with



(p, q)-Nuclear and (p, q)-Integral Operators 109

and

II f '

where

llp + llp'=l and

Here we may assume ||w;||* = ||w ||, w ^O. We put

and

with l/qi + lls = llq. Then, since by the assumptions we have ql(pqι)-^lp1<0
and

we have

i

On the other hand, by Lemma 2 we have

with l/iΊ + l/r = l/p, 1/iΊ + l/pί =1, l/ql + llq'1=l and with a constant C>0.
Furthermore, since s/r—1>0, by Lemma 1 we have

Hence we have

and

which shows

and »PίΛί(T)£CppJiT).
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(ii) Let l<p<Pί<q9 l/

l/<2' = 1 and let T e iVp#β(E, F). Then for any ε > 0 Tw may be written as

Tu = Σ<u,u'i>Vi for each « ε £ ,
i

with IKIIwίlDlkp,,)^!

and sup ||{<»<, V>}\\l(p,>qΊ<pPfq(T) + ε.
\\υ'\\£l

Here we may assume ||n{||* =

Putting

and ϋ — i^Pt

as in (i) we have

Tu=Σ<u9ύi>6t9

by Lemma 1

and

<C| |{/ 1 /'"- 1 /' '} | | / ( r ) 0 0 ) | | {< t ) / , ϋ '>} | | , ( p . , 4 . ) by Lemma 2

with some positive constant C. This completes the proof.

PROPOSITION 4. Let E, F and G be Banach spaces. IfTeNpq(E,F)and

St=L(F,G),thenST^NPΛ(E,G)

and

vp,q(ST)<\\S\\ pPtq(T).

If Γ e i ( £ , F) and S<=NPι9(F, G), then ST<ΞNPΛ(E, G)

and

»p,q(ST)£pp>q(S)-\\T\\.

The analogues for the operators ofNp>q are valid.
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PROOF. For each M G £ , by the assumption that T^Npq(E, F) and

(F, G) we have

for each M G £ ,
i

with

and

||wsupj|{<5^, w^}!!^^)

^| |S |^supJ{<ι; l J|S| |- 1 S^>}| | W i r )

^\\S\\^SUpJ{<Vi9V
f>}\\l(p^qΊ9

where 5' denotes the adjoint of S. This implies ST<=NPfq(E, G)

and

»P,q(ST)<\\S\\-vp>q(T).

If T^L(E, F) and S(=NPtq(F, G), then we observe

foreach

and

Hence

ST^Np>q(E, G)

and

This completes the proof.

PROPOSITION 5. L0(E, F) is dense in NPtq(E, F) and in NP>«(E, F).

PROOF. Let Tt=Np>q(E, F). Then Tw = Σ < w , u\>Όt for each u<=E,
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with

i = l

and

sup Σiq'/P'~ί\<vhv>\*«'<oo9

where * stands for the non-increasing rearrangement of sequences with respect

to i. Putting

we obtain

Tk<=L0(E,F)

and

(T-Tk)u = Σ<u9u'k+i>vk+i.

Assume first q>p. In order to estimate the l(p, #)-norm (resp. l(p'9 q')~

norm) of the sequence {||w£+ill}i£Kco (resp. {\<vk+i, vf>\}^i<a0)9 rearranging

{llwΛ + ίll}i^κoo (resp. {\<vk+i9 vf>\}ί^i<O0) in non-increasing order we denote the

rearrangement by {IK*ll**}i<;i<oo (resp. {|<i;fciί, t?'>Γ*}i^<«). Let m(k, i)

(resp. n(k, i)) be the number corresponding to the term | |«ί f I | |** (resp.

|<t; f c f i, v'>\**) in the non-increasing rearrangement {||«'il|*}i<;,<<» (resp. { |<^,

^>Γ}i^κoo) of {IIMJIIJ^KOO (resp. {|<t>ι, ι>'>|} l 2 ς ι < 0 0). Since m(k, ί)^i, we

have

i= 1 i = 1

where the right hand side tends to 0 as /c-»oo because

Σ and m(fc, ΐ ) - * 0 0 as /c->oo.

On the other hand, taking in mind that \<vkti9 υf>\**£\<υi9 υ'>\*9 i = l, 2, ...,

we have

sup 2/β'/j»'-i|<17

I^ΊI^ii=i

<sup ΣiqΊp'~1\
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Next, in case q<p {qf>p')> we similarly have

wτq
h

i= 1

and

sup ΣiqΊp'~~ι\<Vkt,i>'>\**9'
| | » ' | £ l i = l

< sup Σn(k9i)
qt^'1\<υki9v

f>
\\v'\\£li=l

-•0 as

Hence we have

**r

1 \\u'k ιlΓ*β)1 / β sup (Σiq'/p'-

-•0(as fe->oo),

as desired.

In the same way we can show that L0(E, F) is dense in Np>q(E, F) and the

proof is complete.

By making use of Propositions 1 and 5 the following corollary is readily shown.

COROLLARY 1. NPtq(E9 F) c K(E, F) and W> «(E, F) c K(E, F).

EXAMPLE 1. Let {^.}e/(p, q) and Dt be the operator from /°° into l(p, q)

defined by

= {<W for each {a,} e= /°°.

Then

and

i

In fact, let ̂ { ( C ^ o Γ l , 0, ...} in l(p9 q), and define u'^Q™)' by <w, u\>

iai for each M = {α i}e/00. Then
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and

sup | |{<e,,»'>}| | / (^^ ) = l

which shows

Dt ε 2VPiί(/°°, l(p, q)) and v M (0,) C

On the other hand for e = {ί, 1, ...}e/°° we get

Hence

In a similar way we obtain

EXAMPLE 1'. Lei {(5J be the same one as in Example 1, and D 2

: '(P'» ̂ 0
defined as

D2({bi}) = {δibi} for each {b^ltf, q>).

Then

q')9μ) and ^«(D 2 )

These examples illustrate the fact stated in Proposition 2.
By making use of these examples, a (p, g)-nuclear (or right (p, ̂ )-nuclear)

operator is characterized in the following decomposition theorems.

THEOREM 2. Γ G L ( £ , F) is (p9 q)-nuclear if and only if T can be
factorized in the form T=QίD1Pί:

where P^IfE, l«>) with \\Pt\\£l9 Q^L{l{p9 q\ F) with HβJiSl and Dt is
the operator in Example 1.

PROOF. The sufficiency is evident by Proposition 4 and Example 1. The
necessity is proved by virtue of the definition of T^Npq(E, F) and the following
natural decomposition of T. Since
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with

and

sup ||{<i;i, V>}\\l(p,tqΊ<l,
II v' \\<.ί

we can get the decomposition of T:

E

defined by

Pιu={<u9 Mj/llii'J^Je/00 for each u^E,

^ i ( W ) = {ll«ίl|fli}e/(p, q) for each {αjE,

and

It is easy to verify that ||1M|<1 and | | β i | | ^ l .
Repeating the same procedure with the aid of Proposition 4 and Example

V we get

THEOREM 2'. T^L(E, F) is right (p, q)-nuclear if and only if T can
be written in the form T=Q2D2P2''

where

P2eL(E, l(p', q'))with \\P2\\<\, Q2^L{1\ F)with

and D2 is the operator in Example V.

3. (p9 g)-integral operators

Before introducing (p9 g)-integral operators, we shall begin with the definition
of (p, #)-majorizable measures.

DEFINITION 2. Let X be a compact Hausdorff space and denote by C(X) the
set of continuous functions on X. If M^L(C(X), F) satisfies the following
condition, M is said to be a (p, q)-majorizable measure on X, l<p, q<oo:
There exists a positive Radon measure μ on X such that
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(3) \Mφ)\\<\\φ\\LiPtq.,x,μ) for each ^

M(φ) is described symbolically as \ ω(x)dM(x).
Jx

The collection of (p, #)-majorizable measures is denoted by Mpq(X; F) and
mpq(M) is defined as

where the inίimum is taken over all μ satisfying (3).

PROPOSITION 6. / / l < p 0 < i ? i < o o > l<^o> ^i<°° ? then Mpoqo(X; F)aM

If l<p<oo9 I<q0<qί<oo9 then

,(I; F).

PROOF. This is easily shown by the definition of Mpq and the monoto-
nicities of norms with respect to p and q in L(p, q X, μ, F) mentioned in Section 1.

PROPOSITION 7. Let M&Mpq(X; F). Then for any scalar α

and

PROOF. By the assumption we have M G I ( C ( I ) , F) and there is a positive
Radon measure μ on X such that

\\M(φ)\\<\\φ\\Lip,q ,x,μ) for each

Therefore

where the last equation is obtained by the definition of the norm of L(p9 q X9 μ)
in Section 1. This shows ocM^Mpq(X; F) and

This completes the proof.

PROPOSITION 8. Let M± and M2 be in MPtq(X; F). Then

Mί+M2^MPtq(X;F)
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and

mp§q(Mt + M2) < dm^MJ + mP)q(M2))

with a positive constant C.

PROOF. By the assumption, for every ε>0 and k = 1, 2 there exists a positive
Radon measure μk on X such that

\\Mk(φ)\\<\\φ\\L(p,q.,x,μk) for each φ<ΞC(X)

and

(plq)i/q{μk(X)}ί/p<™P,q(Mk) + s/2.

If we put vk = {mpq(Mk) + ε/2}ί~pμk, /i = v1-fv2 and M=Mi+M2, then we have

whence

On the other hand, for each ψ G C(X) we have

(p/q) i l*{μ(X)} i /P < ( |m M (M f c ) + ε) i /P.

K ^ M j + β / i } 1 - 1 ^ ^ ! !Σ
k=ί

where the last inequality is obtained by the same calculation as in the proof of
Proposition 7. Furthermore, by Holder's inequality the right hand side of the
above inequality is majorized by

(Σ\\

with l//?-f 1//?' = 1. We here denote by φ*(t) and <p*(t) the non-increasing
rearrangements of φ with respect to the measures vk and μ respectively. Then,
by the definitions of the non-increasing rearrangement and the norm of Lorentz
spaces, taking into account of the fact φ*(t)<φ*(f) we obtain

Σ

From the above discussions we have
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Since ε>0 is arbitrary it follows that

M = M 1 + M 2 G M M ( I ; F )

and

This completes the proof.
By the aid of (p, g)-majorizable measures we shall define (p, g)-integral

operators.

DEFINITION 3. T^L(E9F) is called a (p, q)-integral operator, 1 </?,
q< oo, if there exists an M ε I M ( l / ° ; F) such that

(4) Γw = \ <w, M' >dM(u') for each M G £ ,
Jl/o

where U° is the weakly compact unit ball in Ef.
Let tp,q(T) be inf {mp 9(M)}, where the infimum is taken over all M satisfying

(4). The collection of (p, g)-integral operators is denoted by IPtq(E, F).
By the definition and by Proposition 6 respectively, the following two pro-

positions are immediately obtained.

PROPOSITION 9. For any T<=Tpq(E, F)

\\T\\<cPtq(T).

PROPOSITION 10. // 1 < p o < P i < ° ° , l<4o> 4i<°°, then Ipo,qo(E, F ) c

If Kp<cx>, Kqo<qi<cx>9 then Ip,qo(E, F)z>IPtqi(E, F).
By making use of Propositions 7, 8 and by Definition 3 we also have

PROPOSITION 11. (i) Let T^Ipq(E, F) and α be any scalar. Then
<xT€Ξlp>q(E9F) and

(ii) Let T, and T2^IPtq(E,F). Then Γx + Γ2eJp >,(£, F) and

with the constant C in Proposition 8.

PROPOSITION 12, For TeίIPιq(E,F) and 5eL(F, G), we have ST<=Ipq
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(E9G) and cp,q(ST)<\\S\\ cp,q(T).
When T<=L(E, F) and S<=Ip>q(F, G), we have ST^IPtq(E, G) and cPtq{ST)

<h,q(sy\\τ\\.

PROOF. Let T^IPf(l(E9 F). Then for any ε > 0 there exists an

(U° F), U° being the weakly compact unit ball in E', such that

Tu=[ <u,u'>dM(u')

and mPfq(M)<cp,q(T) + ε.

Putting N = SM with SεL(F, G), we have iVεlf^l/ 0; G),

STu = { <u,u'>dN(u')
Jί/o

and mpq(N)< | |S| | mp>g(M) as in the proof of Proposition 7. This shows

JP i β(B, G) and

Next, we assume that T<=L(E9 F) and S^Ip>q(F, G). Then for any ε > 0

there exists an N^MPfq(V° G), F° being the weakly compact unit ball in F'9 such

that

Sv = \ <v9v'>dN(v')

and

p q G) means that there exists a positive Radon measure v on V° such

that

I|N(IA)||<||IAIIL(P,,;KO,V) for each (A

and

We now define M(φ), that is,\ φ{u')dM(uf) by

(5) M(rt = | |T| |^o 9>(ΓΊ;'/ | |7Ί|)rf^(i; ') for each

where (7° is the weakly compact unit ball in E' and T ' : F'-*E' is the adjoint of T.

Then we have
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and

M G M M ( [ / ° ; G ) ,

that is,

(6) rnPtq(M)<\\T\\iplqyt«{v(V<>

Consequently we obtain by virtue of (5)

STu = [ <Tu,v'>dN(V)
JV0'

= \ <u, u'>dM(u%
Ju°

and by virtue of (6)

which finishes the proof.

EXAMPLE 2. Let X be a compact Hausdorff space. Then the identity
operator I: C(X)^L(p9 q\ X, μ, C) is (p, q)-integral and

In fact, by making use of the mapping x-+δx (Dirac measure at x) from X
into C(X)', X can be embedded into the weakly compact unit ball U° in C(X)'.
On account of this fact, with any φ^C(U°) we can associate a function ψx

G C ( I ) by φχ(x)=φ(δx). Hence, defining a positive Radon measure μ on
U° by means of <φ, μ> =<φx, μ > , we get an MeM p q(U°; L(p, q; X9 μ))
and

Therefore

On the other hand, we have

(plq) i **{μ(X)} ί/p<\\I\\< cp>q

and therefore cp,q(I)=(plqy/q{μ(X)}ί/p, as desired.
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Owing to this example we can state the decomposition theorem of (p, q)-

integral operators.

THEOREM 3. T^L(E, F) is (p, q)-ίntegral if and only if T can be decom-

posed in the form T=QIP, where P<=L(E, C(X))9 Q(=L(L(p, q; X, μ\ F) with

| | P | | < 1 and | | Q | | < 1 and I is the operator defined in Example 2.

PROOF. Since the sufficiency is obvious by Example 2 and Proposition 12,

we need only to prove that any T^Ipq(E, F) can be factorized in the above men-

tioned form. To begin with, for any ε > 0 Γmay be wrkten as

Tu = \ <u,u'>dM(uf) for each M G £ ,

with MeM P f q (U° F) such that mPyq(M) < cp,q(T) + ε. That is, there exists a posi-

tive Radon measure μ on the weakly compact unit ball U° in E' such that

\\M(φ)\\<\\φ\\L(p,q;Uo,μ) for each P e C ( l / ° ) .

According to this, M can be extended to a bounded linear operator Q: L(p, q

U°,μ,C)-+F satisfying | | β | | < l . Thus, when we put Pu = <u9-> and let /:

C(ί/°)->L(p, q; U°, μ, C) be the identity operator, we obtain the decomposition

Tu=QIPu9 | | P | | < 1 . This proves the theorem.

We now notice the well known theorem that for the Banach space L™(X)

there exists a compact Stonian space % such that L™(X) becomes isometrically

isomorphic with C(X) ([14]). We denote by μ the measure on Jt which is

obtained by transforming μ on X by this isomorphism. Then L(p, q; X, μ) and

L(p9 q ^ , μ) are isometrically isomorphic. According to this fact the following

example and theorem are easily obtained.

EXAMPLE 2'. Let X be a compact Hausdorjf space. Then the identity

operator I: L"(X)-+ L(p, q\ X, μ) is (p, q)-integral and ^ i β ( / )

THEOREM 3'. Γ G L ( £ , F) is (/?, q)-ίntegral if and only if T can be decom-

posed in the form T=QIP where PEΞL(E, L™(X)) with | | P | | < 1 , Q<ΞL(L(P,

q; X, μ), F) with | |Q | |<1 and I is the operator defined in Example 2'.

REMARK 2. Example 2' and Theorem 3' with C(X) replaced by L™(X)

are useful, as later seen, because L™(X) has the extension property.

4. (p, g)-quasi-nuclear operators

Similarly to the definition of p-quasi-nuclear operators [11] we shall give
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DEFINITION 4. TeL(£, F) is said to be a (p, q)-quasi-nuclear operator,
l<p, q<oo, if there exists a sequence {uί}e/(p, g; £') such that

(7) l |Ώί| |^ll{<^«ί>}lli(M ) for each

The inf ||{||tι|||}||ί(Pϊq) which is taken over all {w'J satisfying the above condition

is denoted by vfq(T). The collection of all (/?, g)-quasi-nuclear operators is

denoted by N%q{E9F).
In view of (7) the following proposition is clear.

PROPOSITION 13. For any T^N$tq(E, F) we have

We next show the relation between (p, #)-nuclear operators and (p, g)-quasi-
nuclear operators.

PROPOSITION 14. We have

NPtq(E, F) c Nl q(E9 F) (resp. N' «(£, F) c N% q(E, F))

and

v%q(T) <»pJJ) (resp. v% q(T) < v*> «(T))

for each T^NPtq(E, F) (resp. #*•«(£, F)).

PROOF. T<=NPiq(E9 F) can be expressed as follows. For any ε>0 there
exist sequences {wj}ci£' and {v^aF such that

Tu = Yi<u, u\>Vi for each weE,
i

and

sup

with llp+l/p' = l and
Therefore we have

< sup Σ | < M , I I ' ^
| | t ; ' | | ^ l i

<\\{<u, «ί>}| |«M ) sup
||u'||S



(p, q)-Nuclear and (p, q)-Integral Operators 123

<\\{<u9u\>}\\l(Ptq),

which shows T e N%t q(E, F)

and vi,(T)<vPtq{T).

In a similar way it can be easily seen that

and v%q{T)<vP>«(T) for each Γ e I V *(£, F).

This completes the proof.

We next show that ΛΓ£ q(E9 F) is a quasi-normed space with respect to pftq

THEOREM 4. Lei Tk^N^q(E, F\ fc = l, 2,..., M. Γ/ien ΣTk^N^tq(E9 F)
k= 1

PROOF. For any ε>0 there exist sequences

{t4,ίWoo<Ξ/Q>, g; £0, fc = l, 2, ..., M

such that

and ||7;«ll^ll{<«, «*,»>}llι.i(,Λ) foreachuefi, fc = l, 2, ...,M.

Therefore, if we put

2"r1"''u'k,ι, k = ί, 2, .... M,

with llq + l/q' = ί, then (Σ7i)« = ΣTfcu satisfies
t= 1 t= 1

Σ

(8) ^ Σ
fc= 1

Σ ? , 3 ( , ) ) ( Σ Σ
fc= 1 fc= 1 ί

where * stands for the non-increasing rearrangement of the sequence with respect
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to i. Now, in order to estimate the summation

σ(u) = (Σ Σ ^ " Ί < « , f̂c ,>Γ«) 1 / β

k= ίi=ί

for each M G £ , let N be any positive integer aild let σN(u) be the summation of

any first N terms in the summation σ(u). Putting

εί= min \<u, ύ'k f > | * ,
l<k<M l<i<N | < £ > | * * 0

we denote by Σι the summation taken over all i such that | <w, βfc,i>

and we write n(k, ί) the index number of the term corresponding to \<u,ύ'kti>\*

in the non-increasing rearrangement of {\<u, ύ'kti>\* | | <u, ^fc,£>|*>ε1}.

Then, in case q>p, since n(/c, ι ) > ι we have

σN(u)

<(Σ Σ'
k=ί i=ί

(9) ^ ( Σ Σ i f
k=ί

k=ί

< l l { < « , Ki>}ί<>k<.M,l<Li<oo\\l(p,Q)'

In case q<p,v/e have

(Σ Σ
k= 1 ί = 1

(-0) *

Here we denote by nf(k, ί) the number of the term corresponding to

| < M , 6 k t l >|* in the non-increasing rearrangement of the sequence {\<u9 ώ k > i >|* |

l</c<M, l<i<N}. Then, noting that the set {( ΐ- l)M + /c | l < f c ^ M ,

1 <i<N} is a permutation of the sequence {1, 2,..., MN} and q<p, by the help

of Lemma 1 the right hand side of (10) is majorized by

Λf tf
Y Yn'(k i)^^~ι\ < u ύ', ^l* 4^ 1/^

Λ = 1 £ = 1
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(11) ί
k=l

Since N is arbitrary, by (9), (10) and (11) we get

σ ( ι / ) < m a x ( l , M*l*-V*y\\{<u, ^ . ^ . U P , * )

With the aid of this inequality, (8) yields

(12)

\\φτk)u\\

On the other hand, for any positive integer N we denote by σ'N the l(p, q)-

norm of the first N terms of the non-increasing rearrangement of {{||ώ'i, ill*} i«ςκ«»

•••> {II^M,ill*} i^κoo} Let m(/c, ί) be the index number of the term corresponding
t o Pί . i l l* m t n e non-increasing rearrangement of the sequence {{||#Ί,il|*}i<^jv,

•••5 {II^M,ill*} î ί̂ ^v} Then, as in the proof of Theorem 1, we can apply Lemma

1 to obtain the following inequalities:

M N

Σ Σ
=l i = l

k

M

M

Σ{

k=l

M
<max( l ,

Since JV is arbitrary, we have

,l£i<oo\\l(p,q)

•(Σvc

k=l P

Therefore, combining this with (12) and on account of the fact that ε is arbitrary

we have
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Σ

and

which completes the proof.
Since the next proposition can be shown by a reasoning similar to the proof

of Proposition 4, we omit the proof.

PROPOSITION 15. // T^N%q(E9 F) and S^L(F, G), then ST(=N%q(E, G)
and

v%q(ST)<\\S\\ p%q(T).

If T<=L(E,F) and S<=N°q(F9 G), then STt=N%q(E9 G) and

5 (p9 g)-quasi-integral operators

DEFINITION 5. T^L(E, F) is said to be a (p9 q)-quasί-integral operator
if there exists a positive Radon measure μ on the weakly compact unit ball U°
in E' and the following inequality is satisfied

(13) ||7w||< ||<ii, ιι'> \\L(p,q;v°,μ,c) for each M G £ .

Let cf,q(T)=(plq)1/q inf{//(C/0)}1^ , where the infimum is taken over all μ
satisfying (13). The collection of (/?, g)-quasi-integral operators is denoted by

REMARK 3. In view of the result established in [13] to the effect that the
notions of /?-quasi-integral and /^-absolutely summing operators coincide, it might
be well for us to say that a (p9 #)-quasi-integral operator is a generalization of p-
absolutely summing operator.

From Definitions 3 and 5 the following proposition is clear.

PROPOSITION 16. Ip>q(E9 F)aI%q(E9 F)9 and for each T<=IPtq(E9 F) we have

eftQ(T)<cPtq(T).

It is an easy matter to obtain the following propositions corresponding
to Propositions 9, 10, 11 and 12.
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PROPOSITION 17. For each TeIfq(E, F) we have

PROPOSITION 18. // ί<p0<pi<oo and l<q0, qγ<°°, then /^ O j ϊ o (£, F)

β .„(£, F).

If \<p< oo and 1 <q0 <q, < oo, ίΛe« /£,„(£, F) ̂ lf,9ι(E, F).

PROPOSITION 19. (i) Lei TeIft(E,F) and α be απ>» scalar. Then

«?. f(aΓ)=|a| *β,(Γ).

(ii) Lei 7\ and Γ 2 e l g , ( £ , f ) Then Tx + Γ2 £/«,(£, F)

a constant C>:1.

PROPOSITION 20. For T<=I%q(E,F) and S<=L(F,G) we have ST<=I%
(E, G)

// TeL(£, F) flMίi S<El%q(F, G), ίften ST^I%q{E, G) and

6. Interrelations among iyP f β, I P ι β , N%q and Jg^

We have already seen that

NPtq(E9F)aN°q(EiF)

and

IPtq(E,F)czlQq(E,F)

in Propositions 14 and 16 respectively. In this section we shall furthermore

investigate the relations between NPtq(E9 F) and Ip,q(E, F) and between ΛΓ£β

(£,F) and/£,(£, F).

We shall first show

THEOREM 5. Ifq>p, then every (p, q)-nuclear operator T is q-integral and
satisfies
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PROOF. Let q>p and let T be a (p, #)-nuclear operator from E into F,

that is, for any ε > 0 there exist two sequences {w<} czE' and {ι?J cFsuch that

Tu = Σ<u, u'i>Vi for each

with

and

Here we may assume

||tt{ir = ||n{|| and

We put

and

Let C/° be the weakly compact unit ball in E' and define the mapping M from

C(£/°) into Fdy M{ψ) = Σφ(ύi)ϋi. Then, for each φ e C(ί/°) we have

and

| | M ( ) | | = su Σ
*

<\\{<p(muϊ\\}\\i(p,q) by Lemma 2

l^llwίll3)1^ by Lemma 1.

On the other hand, by using the counting measure μ defined by μ(ύ'i) = μi, we

obtain

Therefore we have
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(^) | |< | |^ | | L U , β ; £ / o, μ ) and

Hence we get

which completes the proof.

We here notice that this result can also be shown by making use of

Proposition 3 and the theorem pi oved in [11] that Nqalq and vq(T)>cq(T)

for each T^Nq.

Concerning the relation between Npq and N^tq9 if F has the extension

property, Proposition 14 can be precised as follows.

PROPOSITION 21. Assume that {A): F has the extension property. Then

any (/?, q)-quasi-nuclear operator T\E-+F is (/?, q)-nuclear, and

PROOF. From the definition, for any ε > 0 there exists a sequence {«{}c.E'

such that

(14) | | Γ « | | < ; | | { < « , « i > } | | , ( p , f ) f

and

Let us denote by Qo the operator from the subspace {{<w, «;>} |Me£} of Z(p, q)

into F defined by

Qo({<w, iι{>}) = 71ι.

Then, taking into account of (14) we have | |QO | |^1 Thus, by the help of the
assumption (A), there exists an extension Q: l(p, q)-+F of Qo with | |Q| |^1. If
we put

^ ( O Γ ^ Γ Ϊ U , 0, ...) and Qet=Όi9

then we have

TM = Σ < U , ιι{>ι?f

i

and
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£\\Q'v'\\ι(P-,qΊ<\\v'\\ for each υ'sF'.

Therefore

and

Owing to Proposition 14 we now obtain the conclusion of the proposition.
We now consider the mapping P: F-+B(V°) defined by Pv=<v, •> where

V° denotes the weakly compact unit ball in F' and B(V°) denotes the space
of bounded functions on VΌ. Since P is isometric, F may be considered as a
subspace of B(V°).

Taking into account of the fact that B(V°) has the extension property, by
virtue of Proposition 21 we have

COROLLARY 2. T G I ( £ , F) is (p, q)-quasi-nuclear if and only if T is
(p, q)-nuclear when we regard T as an operator from E into B(V°).

Concerning the inclusion relation between Ipq and I®tq9 Proposition 16
can be precised as follows.

PROPOSITION 22. Under the assumption (A) in Proposition 21, any(p,q)-
quasi-integral operator T is (p, q)-integral and we have

PROOF. By the definition there exists a positive Radon measure μ on the
weakly compact unit ball U° in E' such that

(15) \\Tu\\<\\<u,W>\\Lip>q;Uotμ) foreachweE,

and

Let βo t>e t n e operator from the subspace {<u, > | u e £ } of L(p, q; U°9μ) into
F, defined by Q0(<u9 ->) — Tu. Then, in view of (15) and the assumption (A),
βo may be extended to an operator Q: L(p, q; U°, μ)-+F with | |Q| |<1. There-
fore there exists an F-valued measure M: C(U°)-+F such thatM(<«, >) = Tu
and | |7iι | |^ | |<tt, tt^lL^β ϋo.μ). This shows that T€=Ipq(E,F) and cPtq(T)
<;*£β(T). By virtue of this fact and Proposition 16 we get
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This completes the proof.

REMARK 4. By this proposition we obtain an example of a (2, l)-integral
but not 1-integral operator. In fact, as shown in [11], the identity operator I:
ί1-*/2 is 1-quasi-integral. Hence, by Proposition 18 / is (2, l)-quasi-integral and
furthermore by Proposition 22 / is (2, l)-integral. But / is not 1-integral as
shown in [11].

In the same way as Corollary of Proposition 21 we obtain

COROLLARY 3. TeL(£, F) is (p, q)-quasi-integral if and only if T is (p9

q)-integral when we regard it as an operator from E into B(V°).
In the last of this section we shall observe the relation between (p, ^-quasi-

nuclear operators and (p, g)-quasi-integral operators.

THEOREM 6. If q>p, then we have N%q(E9 F)aI%(E, F) and for each

PROOF. AS in Corollary of Proposition 21, let P be the isometric embedding
from .Finto B(V°). On account of the fact that B(V°) has the property {A)
([9]), we have

by Proposition 21.

On the other hand, by Theorem 5 it holds that

»p,q(PT)>ιq(PT).

Furthermore, by Proposition 22 we have

Thus we obtain

This completes the proof.
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