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1. Introduction

Let us consider the initial value problem for a linear hyperbolic system

ou ou
(1.1) —— =2 A= (—0o<x;<00,0ZtT),
ot =150 70x J

1.2) u(x, 0)=uo(x),

where u is an N-vector function of the real variables x=(x,, x,,..., x,) and ¢,
Ai(j=1, 2,..., n) are real constant N x N matrices, and uy(x) is a vector function
belonging to L,. It is assumed that the solution to this initial value problem
exists and is unique.

For the numerical solution of this problem we use the finite-difference schemes
of Lax-Wendroff type. Several sufficient conditions for their stability in the sense
of Lax-Richtmyer [4]" are obtained when (1.1) is a symmetric hyperbolic system
[4, 3, 2] and when it is a strictly hyperbolic system [5]. The object of this paper
is to obtain some sufficient conditions for stability when (1.1) is a strongly hyper-
bolic system.

2. Notations and preliminaries

We denote by |y| the Euclidean norm of the vector y=(y,, y,,..., ¥n), also
denote by |A| the spectral norm of the matrix 4 and put

@D AG)=Tiady,  AW=4A(7) 20

In the sequel we assume that the eigenvalues of Ay(y) are all real for any real
y#0 and that there exist a non-singular matrix T(y) and a constant C, independent
of y such that

2.2 T(Y) AW T() ! =Do(y),

1) Numbers in square brackets refer to the references listed at the end of this paper.
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23) ITWISCy,  ITW)EC,

where Dy(y) is a diagonal matrix. Such a system (1.1) is called a strongly hyper-
bolic system. The system (1.1) is called strictly hyperbolic if the eigenvalues of
Ao(y) are all real and distinct for any real y#0.

We consider a mesh imposed on the (x, t)-space with a spacing of h>0
in each x-direction (j=1, 2,..., n) and a spacing of k>0 in the t-direction. The
ratio A=k/h is to be kept constant as h varies. We wish to approximate (1.1)
and (1.2) by the finite-difference scheme of the form

2.9) v(x, t+k)=S,v(x, 1),

2.5) v(x, 0)=uy(x),

where

(2.6) S,=2.C, T4 T%2---T%n, o0=(0l1, Olpseees &)

T; is a translation operator defined by
2.7 TEW(X 1, Xg5eeey X)) =0(Xg500ey Xjo gy X570, Xji1seees Xn) s

C,s are constant N x N matrices and the summation extends over a finite

number of terms.
To study the stability of the finite-difference scheme (2.4), we consider the

amplification matrix

(2.8) C(w)=2,C,e!™,
where
29) @ )= o,  o=ht,

E=(&,, &,,..., &,) is the variable vector dual to x in the Fourier transform. Let
Aj=2,b,T} be a finite-difference operator that approximates the differential
operator k0/0x; and put }},b,exp (ilw;)=is; (). Then we assume that s)(w) is a
sufficiently smooth real-valued periodic function of w; with period 2z and that for
some positive integer r it can be written as follows:

(2.10) s{w)=w;+0(lw;|"**) (lojl=m; j=1,2,...,n).
Put
2.11) s(w)=(5,(®), sp(w),..., s,(w)).

Then the amplification matrix corresponding to the operator

(2.12) Py=225=14;4;
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can be expressed as ilA(s(w)).

We denote by A* the conjugate transpose of the matrix 4 and denote by
A{A4) (j=1,2,..., N) the eigenvalues of 4. For hermitian matrices A and B
we use the notation A=B when A— B is positive semidefinite.

We shall make use of the following

LEmMMA 1. Let X and Y be Nx N matrices and assume that all linear
combinations with real coefficients of X and Y have only real eigenvalues.
Let 0=0,+i0, be any eigenvalue of the matrix X +iY, where o, and o, are
real numbers. Then

M(X)2o 2Ax(X),  A(Y)20,24x(Y),

where 1,(X) and Ax(X) are the largest and the smallest eigenvalues of X re-
spectively.
This lemma follows from Lax’s theorem on hyperbolic matrices [1, 6].

3. Schemes of Lax-Wendroff type

We are concerned with the case where the amplification matrix C(w) can be
written as follows:

3.1) Clw) =1+ Doy~ [iAA(s(@))/ = 22"R(w, 1)
where

(3.2) R(@, 1) =0(t())+ 0(|1(@)),

3.3) rzam (mz21),

(3.4) 00)=51%10,7;,

R(w, 2) is continuous in w and 4, Q; (j=1, 2,..., n) are real constant NxN
matrices, H(w)=(t,(w), t,(w),..., t,(w)), and t(w) is a sufficiently smooth real-
valued periodic function of w; with period 2n. For w such that #(w)#0 put

(3.5 Qo(w) =0(H(w)/|{w)]) .

Let S be the set of all points @ such that |w;|<n (j=1, 2,..., n) and decom-
pose S into the following three subsets:

Si={weS: s(w)#0}, S,={weS: s(w)=0, Hw)#0},
S;={weS: s(w)=0, t{w)=0}.

In the sequel we assume that s(w) does not vanish in S except for a finite
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number of points and that there exists a constant C, such that
(3.6) Is(@)I"*' < Cylt(w)]
where

1 if r is odd,

3.7 1=
2 if ris even .

Since S, and S; are finite sets, we can write them as follows:

3.8) S, ={oD), 0?,..., 0}, Sy ={wt*D,.., o®}.
Put

(3.9 p=Als(w)l, o=*"(w),

(3.10) e(w; ) =1 —m?x [2(C(w))]?.

For we S, put

(3.11) T(s(@))=T(®), Do(s(w))=Do(®), |s(w)|Do(w)=D(w),
(3.12) Dy(w) =diag (d (@), d5(®),..., dy(w)),

(3.13) T(@)Qo(@) T ()™ =0o(w),

(3.14) T(@)C(@)T(w)™ =C(w) .

Then C(w) can be written as follows:
(3.15) (@) =1+ e _JIT [iAD(w)]i —o[0o(w) +0(A)] .

Now we shall show the following

THEOREM 1. Suppose that there exist positive numbers 6 and Ay such that
(3.16) [A(C(@)|£1—6a for A<, (j=1,2,...,N).
Then the scheme (2.4) is stable for A< 2.

Proor. We consider first the case where we S;. When r is odd, since by
3.6)

pr+1 = Art1 |S((I))|r+1 §C21r+1 lt(w)l = C21r+1—-2m0-

and r+1-2m=1 by (3.3), C(w) can be written as follows:
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(3.17) C(w)=exp (ipDo(@)) — a[Jo(®) + O(A)] .
When r is even, since
pr+2 =Art2 |S(CU) I r+2 é C21r+2 [t(a)) | - C21r+2—2m0-

and r+2—2m=2, we can write C(w) as follows:

(3.18)  C(w)=exp (ipDo(@) =5y (P Do(@))™') ~0[Go(@) + O] .
In both cases we have
(3.19) &) C() =1 —o{0o(@)* +Jo(@)+ O]

There exists a unitary matrix U(w) by which C(w) is transformed into an
upper triangular matrix, namely,

C'(w)=UC(w)U*=K+R,
where
K=diag(4,, 4;,..., 4y), 4;=4(C(w)) (j=1,2,...,N),
R=(ryp, ry=0 (@(2)).
Since by (3.16) and (3.19)
C'(w)*C'(w)=K*K+K*R+R*K+R*R,
K*K =I+0(0), C'(0)*C'(w)=UC(0)*C(w)U*=1+0(0),
it follows that
K*R+R*K+R*R=0(0).

From this it can be shown that r;;=0(o) (i<j). Hence |R|<po for some
constant f. Put

do=y,  y=max(l, (B/&)""1).

Then since
|(K+R?|ST4er (P)IKI7IRI,  g=min (p, N=1),
we have
|(K+R)?| S Tes (5 ) 1= 0798y 18)I <y Des (B ) 1= 97 2pi 5y

Next we consider the case where w e S,. Since
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C@P)=I+0(s)), o=@ D)  (j=1,2....5),

there exist unitary matrices U; and constants §; (j=1, 2,..., s) such that

Cl@W)=U,;C@MU*=K,;+R;,  |R}|<Bo; (j=1,2,

.y 5),

where K;and R; (j=1, 2,..., s) are diagonal and strictly upper triangular matrices

respectively. Put
y;=max(1, (B;/H)N"1) (=12,..,9).
Then it can be shown as before that
[(K;+R)P|<y; (j=12,...,59).

In the case where w € S;, since C(w)=1, we put C'(w)=1I.
Now put

U(w)T(w) if weS,,
To(w)= | U, if o= (j=1,2,.,5),
I if weS;.
Then we can choose a constant C, such that
| To(w)| = Co, [To(w) | =Co,
and it follows that

|C(@)?| =|To(@)™ ! C'(@)? To(w)| = Cfyo

for all p such that pk<T, where y,=max (1, y, Y1, ¥25-.-» ¥s)- This implies the

stability of the scheme (2.4).

In the following we shall give some sufficient conditions under which (3.16)

is valid.
We consider the following two conditions.

ConpiTioN (I) :  There is a positive number p such that
2{(Qo(w))2p forall wesS, (j=1,2,...,N).
ConpiTioN (II):  There is a positive number p such that
Qo(@)* + Qo(w)=2pI for all weSs,.
Then we have the following

LEMMA 2. Suppose that the condition (I) or (II) is satisfied.
exists a positive number pu, such that

Then there
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.

(3.20) e(w; )=po for A=<pu, andforall weS,.

Proor. We put for simplicity o®=w, (1£k=<s) and A2"|{(w,)|=0,.
Then

Clwo) =I—0,[Qo(wo) +O0(1)] .
In the case where the condition (II) is satisfied, since
C(@0)*C(wo) =1 — o[ Qo(wo)* + Qo(wo) + O(A)] ,
there is a positive number p) such that
ICw)2<1—poy  for AZpi,
and it follows that
e(wo; )Z1—|C(wg)|?Zpa,  for AZpy.

Next we consider the case where the condition (II) is satisfied. There is a
unitary matrix U such that UQy(wo)U*=K+ R, where K is a diagonal matrix
and

R=(r)), "ij=0 @izj.
Let g be a positive number and put
G =diag(yg, g2,..., g"), V=GU.
Then we have
VQo(wo)V "' =K +R, R=GRG '=(F;),
where
Fi=rygt=d (i<)), F;=0 (@(iz)).
Hence we can choose g so that
[Fi;| £ p/(2N) @i<j).
Then since K = pl, by Gerschgorin’s theorem
2K+R*+R=(3p/2)I .
Put C'(wy)=VC(we)V~1. Then since
C'(wo)*C'(wo) =1 —6o(2K + R*+ R)+ O(ay) ,

for some constant p >0
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[2(C(wo)|*<1—=pa,  for Asp;  (j=1,2,..,N).
From this it follows that
e(wo; A)zpo,  for A=spi.

Since S, is a finite set, we can choose a positive number u; so that (3.20)
is valid. This completes the proof of lemma 2.
By continuity of eigenvalues, we have the following

COROLLARY. Suppose that the condition (I) or (II) is satisfied. Then, for
each o® e S, (1<kZX5s), there exist a neighborhood N(w™) of w™ and a positive
number u, independent of k such that

(3.21) e(w; )=po/2 for AZpu, and weN(w®).

We have the following stability criterion in terms of the symmetric part of

Qo(w)-
THEOREM 2. Assume that there exists a positive number q such that
(3.22) Oo(@)*+Qo(w) 2291

and that the condition (I) or (I1) is satisfied. Then the scheme (2.4) is stable for
sufficiently small .

Proor. By (3.22) and (3.19) we can choose a constant 4> 0 such that
e(w; A)=qo for ASpuy and weSs,.

By lemma 2 we have a constant pu, such that (3.20) is valid for we S,. When
w € S3, it is clear that p=0 and 1(C(w))=1 (j=1, 2,..., N). Hence there exist
positive numbers é and 4, such that

e(w; A)=260 for AZ4,.
From this it follows that
A (C(w) £1—d0 for A4, (j=1,2,...,N)

and the scheme (2.4) is stable for A< 4, by theorem 1.
We now introduce the following two assumptions.

AsSUMPTION (A): For each o™ € S, (s+1=k=1), there exists a neighbor-
hood V(w™) of o® satisfying the following conditions:

(i) s(w)#0 in V(w®) except for o =w®;



On the Stability of Finite-difference Schemes of Lax-Wendroff Type 365

(ii) there exists a constant C; such that
(3.23) [t(w)] £ C5s(w)| for weV(w®);
(iii) y=s(w) has the inverse function o =f(y) in V(w®).
AssuMmPTION (B): For each w® e S; (s+1=k<t), there exists a neighbor-

hood V(w®) of w® satisfying the conditions (i) and (ii).
Then we have the following stability criterion in terms of Jy(w).

THEOREM 3. Under the assumption (A), suppose that there exists a positive
number q such that all the eigenvalues of any principal submatrix of Qy(w)
are not less than q. Suppose also that the condition (I) or (II) is satisfied.
Then the scheme (2.4) is stable for sufficiently small A.

Proor. Put for simplicity w®*) =w,. By the assumption there is a positive
number y, such that

f(eV(wg)  for |y[<yo.
Let S*~! be the unit spherical surface in the real n-space and define N(w,) by
N(wo)={w: o=f(yl), 0<y<y,, l€S* 1} .
Then N(w,) is a neighborhood of w,.

A~

For any fixed le S" !, put & =f(yl) (0<y<?y,). Then since s(®)=y! and
[s(@)] =y, Do(®) does not depend on y. Lete; (j=1, 2, ., p) be all the distinct
eigenvalues of Do(®) and let m; (j=1, 2, .., p) be their multiplicities respectively.
Without loss of generality we may assume that Dy(®) is of the form

e, o
Do(®)= el |

(0] e,l,

where I is the unit matrix of order m,. Corresponding to this form, we partition
0o(®) as follows:

Qll le le
Qo(‘?’)= e 2
Qpl Qp2 Qpp

where Q;(®) is an m;x m; matrix.
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There is a unitary matrix U (®) (1< < p) such that
U(@)*Q; @)U (d)=K{(®)+R(d),

where the matrices K (@) and Ry(®) are diagonal and strictly upper triangular
respectively. Making use of these, we construct the following matrices:

U =diag(U,, U,,..., U)p),
E =diag(K;+R;, K,+R,,..., K,+R,), F=(Fy),

where
F(®)=(e,—e) ' Qu@)U@d)  (j#k),
F;(®)=0 (U, k=1,2,...,p).
Put
pR=pU+idF,
where

p=~y,  G=A"ud)l.
Then it follows that
(ipDo—GQ00)pR=pR(ipDoy—GE)+0(5?).

|F(@)| is bounded because J,(®) is bounded in norm. Since by (3.23)
|t(@)] = C5y, for some constant p;>0

[p~18U*F| <1 for A=Zus.
For such A, R~! exists and we have
R 1(ipDy—600)R=ipDy—GE+O(p~162).

Since R(@) (1<j<p) is bounded in norm, there is a positive number g;
such that

[FP1<q/@my)  (k<D),
where
R;(®)=G;R;(®)G7'=(F{}), G,;=diag (g, g%..., g") .
Put

G =diag(G,, G,,...,G,), GR™'=V, C(@)=VC(@)V1!,
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E=diag(K,+R,, K,+R,,..., K,+R,).

Then we have
C'(@)=I+ Z;=17.l!—(i/1D(c?)))f—6‘E+0(A&) ,

and so

C'(®)*C'(@)=I-6(E*+E)+0(15) .

Since K;=2ql; (j=1, 2,..., p) by the assumption, it follows that
E*+Ez(3q/21,
and for some constant u3 >0
e(d; ))=q0  for AZpy.

By continuity of e(w; 1), there exist a positive number Z; and a neighborhood
U(l) of I on S"! such that

e(w; A)2q0/2 for o=f(y) and A<,

where 1e U(/) and 0<y<y,. Then by the Heine-Borel theorem we can cover
S»=1 by a finite number of such neighborhoods. Hence we can choose a posi-
tive number u such that for w € N(w,) (o # wg)

(3.24) e(w; A)=qa/2 for A=Zpu.

By continuity of eigenvalues, (3.24) holds for all w € N(w,).
Since S; is a finite set, there exist a positive number u; and neighborhoods
N(o®) of w® (k=s+1, s+2,..., t) such that

e(w; ))=qa/2 for A=Zu; and we N(w®) (k=s+1,..,1).
Put
Q=S—Ui N@W), e=inf [s@)], a=sup ().
weN weN
Let w, be any point belonging to 2, e; (j =1, 2,..., p) be all the distinct eigen-
values of Dy(wy) and m; (j=1,2,..., p) be their multiplicities respectively.
Replacing @, p and 6 by w,, po=Als(we)| and 6, =A2"|t(w,)| respectively, we

define the matrices U, E, F and R analogously. Since pglo,<A2™ la/e, we can
find a constant uj >0 such that

lpoloU*F|<1 for A=u,.

Then R~ exists for such A and there holds
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e(wg; A)=qo, for A=y .

By continuity of eigenvalues there exist a positive number puJ; and a neighborhood
N(w,) of wq such that

e(w; A)=qa/2 for A=y, and we N(w,).

By the Heine-Borel theorem we can cover Q by a finite number of such neighbor-
hoods, and so for some constant u, >0

e(w; A)=qo6/2 for A=Zu, and weQ.
If we put
/10 =min (Ilz, #3, Il4)a 45=m1n (p’ q) ’

then (3.16) is satisfied and the theorem has been proved.
We have the following stability criterion for a strictly hyperbolic system in
terms of the diagonal elements of J(w).

THEOREM 4. For a strictly hyperbolic system (1.1), under the assumption
(B), suppose that there exists a positive number q such that the diagonal ele-
ments of Jo(w) are all not less than q. Suppose also that the condition (I) or
(I1) is satisfied. Then the scheme (2.4) is stable for sufficiently small A.

ProoF. By the assumption there is a constant f§ such that
(3.25) l[d{@)—d(w)|Z2B>0  (j#k;j, k=1,2,..,N).
Put

E(w) =diag(q;,(®), 4;2(@),.., qny(@))
pR=pl+ioP, Q,=S—UsS=N),
where
Oo(@)=(qu(®),  P=(pp),
pi=4qul(d—dy) (j#k),  p;;=0 (j, k=1,2,..,N).
Then by (3.25) we have
(iAD—06Q,)pR =pR(iAD —cE)+0(c?),

because |P| is bounded. Since [t(w)|/|s(w)| is bounded in , N S, R™! exists for
sufficiently small 4 and

R~ (iAD—0Qy)R =iAD—6E+O0(p~'0?).
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If we put C'(w) =R~ 'C(w)R, then
C'(w)=1I+ Z§=1%—(iAD)f—aE+ 0(Jo),

so that
C'(w)*C'(w)=1-26E+0()0o).
Since E = gl by the assumption, there is a positive number us such that
e(w; A)=qo for AZus and wel,nS;.
By continuity of e(w; 1) this result is valid also for w e S;. Thus if we choose
Ao=min(uz, ps),  26=min(p/2, q),

then (3.16) is satisfied and the theorem has been proved.
Now we shall show the following

THEOREM 5. Suppose that all linear combinations with real coefficients
of A(s(w)) and Q(t(w)) have only real eigenvalues and that there exists a posi-
tive number q such that the eigenvalues of Qo(w) are all not less than q. Then
the scheme (2.4) is stable for sufficiently small A.

Proor. Put
M(w) =ipDo(w)— 50 o(w)
and let —o;+ip; (j=1, 2,..., N) be the eigenvalues of M(w). Then since
T(0)™ ' M()T(w) =ilA(s(w)) — 22" Q(H(w)) ,
by lemma 1 we have
6,240 (j=1,2,..,N).
By Gerschgorin’s theorem we can find a suffix k(j) such that
pj=pdy;,+0(0), 0;=0(0).
There exists a unitary matrix U(w) such that UMU* =K + R, where
K =diag(—o,+ip;,..., —ox+ipy), R=(ry), r;=0 @izj).
Put
UQo,U*=L,+E,+R,,

pUDoU* =pE+GE2+L2+L3 )
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where the matrices L, and L, are strictly lower triangular, R, is strictly upper
triangular, E,, E, and E are diagonal matrices and they are all bounded in norm.
Then it follows that iL,=¢L,. Hence

(3.26) ipUDyU*=ipE+o(Ly+iE,—L¥),
K=ipE+icE,—6E,, R=0S, S=—-L%Y—R,.
There are positive numbers g and C, such that
VMV-t=K+068, §=GSG 1=(5;), 5;1<q/(4N) (i<)),
VI=Cy  [VTHEC,,
where
V=GU, G =diag(yg, g2,..., g").

We consider first the case where r is odd. By (3.17) C(w) can be written as
follows:

C(w) =exp (M(w))+ O(Ao) .
Since
C'(0)=VC(w)V~! =exp(K +08)+0(10),
it follows that
C'(w)*C'(w) =exp (K* + K) + a(5* 4+ 8) + 0(10) .

By Gerschgorin’s theorem the eigenvalues of exp (K*+ K)+a(5*+8) are not
greater than

maxexp(—20;)+qa/4.
J

Since
exp(—20;)+qo/4=1—(20;—qo/4)+0(c?), 20;—q0c/427q0/4,

we have e(w; A1) = qo for sufficiently small .. The condition (I) is satisfied by the
assumption and e(w; A)=0=0 for we S;. Hence there exist constants 1, and o
such that (3.16) is satisfied and the scheme (2.4) is stable for A< 4,.

Next we consider the case where r is even. Put

1

WUPDO(CO))’H .

M (0)=M(w)—

Then by (3.26) we have
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U(ipDo) 1 U* =(ipE)y™*1 + Ao W,

where |W| is bounded. Hence

1

-1 = [ —
VMV =K

(ipE)*' ' —aS+ oW,

W=GWG 1=(W,).
Put

1

Wi'Er+l =diag (el, €3..uy eN)

and let —a+if be any eigenvalue of M,(w). Then by Gerschgorin’s theorem we
can find a suffix k such that

|—0k+i(Pk"P'+lek)+°‘_iB|éo[zl}':ku |§kj|+'1’ I}’=1|ij!] .
Since
Zl}l=k+1|§kj|§q/4

and o,=¢, for sufficiently small A we have |a—o0,|<q06/2 and a=qo/2. Hence
there is a positive number us such that

aqua/2 for Aéﬂs (j=13 2:---9 N)9

where —a;+if; (j=1, 2,..., N) are the eigenvalues of M,(w). By (3.18) C(w)
can be written as follows:

C(w)=exp (M (w))+0(io) .
The stability of the scheme (2.4) can be shown as in the previous case.

ExampLE. Consider the Lax-Wendroff scheme for the system (1.1) with
n=2, N=3 and

3.00 21 4
Ai=101 0|, A,=(1 20
0°0 1 002
Then r=2, m=1 and

sw)=sinw;, tjw)=sin*(w;/2) (j=1,2),

Clw)=I+irA(s(w)) — %lZA(s(w))z —220(t(w))
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where
3142y ¥, 4y,
A(y)= Y2 nt2y; 0 ,
0 0 Yi+2y;
18y,+10y, 8y, 32y,
Q) =2Aty,+A3y,) = 8y, 2y, +10y, 8y,
0 0 2y, +8y,

If we choose

1 —-p 0
T(w)= [p 1 -4,
0 0 1
then
9 prq 4pq
T(w)™'= [—pq q 44 |,
0 0 1
IT(w)=5  |T(w =5,
di(w)=2(sy+s2)+sgn(sy),  dy(@)=2sy+s3)—sgn(sh),
di(w) =54 +2s4,
where

si=sj(@)/|s(w)| (j=1,2), p=sgn(sy)sz/(1+[s1]),
1 if x=0

g=1/(1+p?), sgn(x)= , .
-1 if x<O

Hence this system is strongly hyperbolic but not strictly hyperbolic.
dition (3.6) is satisfied because

[s(w)|* <32/ 2 |((w)| .
Since Q(y) has only real eigenvalues for any real y and

r(4hHzl, A(4hHz1  (j=1,2,3),

The con-
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by Lax’s concavity theorem for hyperbolic matrices [1]

21 Qo(@)22(ty () + (@) [(w)[ 22 (j=1,2,3),

and the condition (I) is satisfied. It is easily verified that the conditions of theo-
rems 2, 3 and 5 are all satisfied. It can be shown that, when w, =0 and w,=m,
|C(w)|>1 for sufficiently small A.

4. Examples of the schemes

We shall present examples of the schemes that satisfy the conditions (3.2),
(3.3)and (3.6). For this end we introduce the following finite-difference operators:

Py=2%a1d;b )y Pr=3514;00,
Q1 =27-1A4iD2;+ X jar A A8 A
Q,=2" 1 AIDP + 3 ;1A 4, 0P ALY,

03=21-1 43D+ L jurd; AP A2

where
A= (Tj=T7"),  Dyy=T;=20+T5'  (j=1,2,.,),
1 1
A§2)=Aj<1_—6—D2j>’ D2.,)=?(4D21—Af)’
Dgsj)g%(moz,-—mf).
Put

a;=sinw;, X;=sin?(w;/2) (j=1,2,...,n),
pr=2"=14;0;, p2=Z;!=lAjaj(l+%Xj>s ry=2"1-144;X;,
3
4= D31 413 = 8X,—4XD) + T jod i) 5 (X + X0+ X, X, |,
q2= 251 43X32+ X)),  q3=25-147XF(1+X))?,
4y A2X( 1+ LX)+ 2, .04,4 1+2x,)(1+2x
ra=4 =1 dj A\ 1 +54; jred el L+ =45 ) 1+ 54 ).

Then we obtain the following scheme with accuracy of order 3:
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Sy=T+1Py+ 37205+ 22 P,0; ,

Clw)=I+ Z?= (zlpz)f——12q3+ 23(3"1P2+2P1‘11)

We have also the following scheme with accuracy of order 4:

1 1
Sh=1+2.P2+712Q2(I+‘%“ AP2+—1712Q2),

[1]
[2]
[31]
[4]
[51
[6]

Clw)=1+ Z?:l%(ilpz)j—%ph ll qu2+ 14(,”2‘124“12’2)
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