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1. Introduction

The oscillatory behavior of differential equations with retarded arguments

has drawn increasing attention in the last few years. There are two main direc-

tions in the investigation of the subject. The first direction is to generalize to

retarded differential equations oscillation results already known for ordinary

differential equations without delay. In the case of higher-order equations, this

was done, for example, in [4-8, 13-17, 19, 21, 22]. The second direction is to

establish results regarding the oscillation which is generated by the retarded

arguments and which does not always occur for the corresponding ordinary differ-

ential equations. Efforts in this direction were undertaken in [3, 9-12, 18, 20, 23].

The purpose of this paper is to proceed in both directions to establish some

oscillation and nonoscillation theorems for the retarded differential equations of

the form

(*) x^(t) + q(t)f(x(go(t)))φ(x'(gi(t)),..., x*"-1*^-,(())) =0

an important particular case of which is the "sublinear" equation

χ(»Kt) + q(t)\x(g(t))\«sgnx(g(t))=O,

It is tacitly assumed that under the initial condition

i=0, l,...,n

equation (*) has a solution which can be continued to [ί0, oo). We restrict atten-

tion to solutions x(t) of (*) which exist on some ray [Tx, oo) and are nontrivial

for all large t. A solution x(t) is called oscillatory if there is a sequence {ίfc}fcLi

such that lim ίΛ = oo and x(tk)=0 for all k. Otherwise, a solution is called
fc->oo

nonoscillatory.

In Section 2 we consider equation (*) in which q(t) is nonpositive and present

results regarding oscillation and asymptotic behavior of its solutions. Our main

concern is to extend some of the basic results of Kiguradze [2] for ordinary

differential equations.

In Section 3 we study the effect of the delay on the oscillatory and asymptotic
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character of equation (*) in which q(t) is nonnegative if n is odd and nonpositive

if n is even. The results in this section are closely related to those recently obtained

by Koplatadze [3] for second order equations and by Sficas and Staikos [20]

for higher order equations.

In Section 4 we state a further oscillation theorem which can be obtained by

combining results of Section 3 with those of Section 2 and of our previous paper

[5].

2. Asymptotic Behavior and Oscillation

Let us consider the retarded differential equation

(A) x^(t)-pit)f(x(go(t)))φ(x'(gi(t)),..., χ(»-1)(0Λ_1(O))=O

where the following assumptions are assumed to hold:

(a) peC[£0, <x>), K], p(t)Z0, p(t)ψθ;

(b) fe C[R, K], yof(yo) > 0 for y0 Φ 0, f(y0) is nondecreasing

(c) φeCtR»-\Rl ψ(y1,...,Λ_1)>0;

(d) 0,eC[[O, oo), Λ], g{t)£t, lim^(ί) = oo, i=0, 1,..., n-\.

We shall need the following lemmas due to Kiguradze ([1], [2]).

LEMMA 1. // u(t) is a function such that it and all its derivatives up to

order (n — 1) inclusive are absolutely continuous and of constant sign in the

interval {_tί9 oo), and u(t)u(n)(t)^O, then there is an integer /, Og/^n —1,

which is odd if n is even and even if n is odd, such that for t^tx

ιι(ί)n<l>(0^0, ί = 0 , 1 I,

and i//>0,

(1)

LEMMA 2. // u{t) is a function such that it and all its derivatives up to

order (n — 1) inclusive are absolutely continuous and of constant sign in the

interval [tu oo) and w(ί)M(w)(ί)^0» then either

i=0, l,..,n,

or there is an integer l,0^l^n — 2, which is even if n is even, and odd ifn is odd,
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such that for t^tλ

1 = 0 , 1 , . . . , / ,

and inequality (1) holds.

THEOREM 1. Let assumptions (a)-(d) hold. A necessary and sufficient

condition in order that:

(i) for n even, there exist a bounded nonoscillatory solution of (A) such

that lim
t

(ii) for n odd, there exist a bounded nonoscillatory solution of (A),

is that

(2)

PROOF. (Necessity) Let x(t) be a bounded nonoscillatory solution of (A)

with the property as described in the theorem. We may assume without loss of

generality that x(t)>0 for ίΞ>ί0. Since lim go(t) = oo9 there is tt^t0 such that

x(go(t)) > 0 for t ̂  t!. From (A) we have

(3) x (" )(0

for t^tχ. By Lemma 2 and the boundedness of x(t) it follows that

limx(ί) = c o > 0 , limx< ί )(ί)=0, i = l n —1 .
ί->oo ί-*oo

Since/and φ are continuous, there is t2^ztι such that

(4) /(*(0o(O))<K*'(0i(O),..., χ^-λ\gn-,(t)))^f{c0)Φ(^..., 0)

for ί^ί2- Integrating (3) n times from t to oo, we obtain

(5) x{t) = co + -10i^(s-ty-^

where we have put

Using (4) in (5), we obtain
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Since x(t) is bounded, the above inequality yields

{C°(s-t)n-ίp(s)ds<oD

which implies (2).

(Sufficiency) It suffices to show that under condition (2) there exists a bound-

ed continuous solution, defined for all sufficiently large t, of the integral equation

where c0 is an arbitrary but fixed nonzero constant. This can be done with the

use of the fixed point technique as developed in [7]. We omit the details.

COROLLARY 1. Let assumptions (a)-(d) hold. A necessary and sufficient

condition in order that:

(i ) for n even, every bounded solution of (A) either oscillate or tend mono-

tonically to zero together with its first n — \ derivatives,

(ii) for n odd, every bounded solution of (A) oscillate,

is that

(6)

THEOREM 2. In addition to (a), (c), (d) assume that

(e)

(f) there exist positive constants γ, Γ such that

for all yl9..., yn.1 .

A necessary and sufficient condition for (A) to have an unbounded nonoscillatory

solution such that lim x(n~1)(t) = bφ0 is that
t-*oo

(7)

PROOF. (Necessity) Let x(t) be a nonoscillatory solution of (A) with the

property lim xin~1)(t) = b^0. We may suppose that b>0. Since, by L'Hospi-
t-*oo

taPs rule, lim x(t)/tn~ι = bj(n - 1 ) ! , there are positive numbers h, k and t0 such that
t-*σo

(8) htn~1<x(t)<ktn-1 for t^t0.

Taking tt ^ t0 so large that go(t)^.to for t^tl9 integrating (A) from t± to t and using

(8), we obtain
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X(»- υ ( ί l ) = f' p
Jtl

which gives (7) in the limit as ί->oo.

(Sufficiency) Assume that (7) holds. Let x(t) be a solution of (A) satisfying

the initial condition

(9) x(t)=χ'(t) = . . =χ(»-2)(ί) = o, χ(n-V(t) = K>09 t^to.

By our hypothesis such a solution exists on [ί 0, oo). It is easy to verify that

^ 0 , ί = 0 , l , . . . , n - l , and

(10) x(0^( ί-Ό) w ~ 1 x ( ' I ~ 1 ) (0 for ί ^ ί o .

From (10) and the increasing character of x ( n~1 )(ί) we find

(11) x(0o(O)^[0o(O] r t-1x ( ' I-1 )W for t*t0.

Integrating (A) from t0 to •/• arid using (9), (11), we get

to

Therefore, if K is sufficiently large, then we obtain

to

which shows that x(n~l)(t) remains bounded as ί-^oo. Since x*"" 1 ^) is nonde-

creasing, it follows that the nonzero limit lim x*"'1^*) exists.
ί-+oo

THEOREM 3. Assume that the hypotheses of Theorem 2 are satisfied. A

necessary and sufficient condition in order that:

(i) for n even, every solution of (A) either oscillate or else tend monotonical-

ly to zero or infinity as t-+co together with its first n —1 derivatives,

(ii) for n odd, every solution of (A) either oscillate or else tend monotonical-

ly to infinity as ί-»oo together with its first n — 1 derivatives,

is that

(12)
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PROOF. The necessity follows from Theorem 2. To prove the sufficiency,

let x(ί) be a nonoscillatory solution of (A). We may suppose that x(go(t))>0

for t^tί. In view of (A), x ( w ) (ί )^0 for t^tu so that from Lemma 2 it follows

that either

(13) χ( f )(0^0 for t^tl9 i=0, 1,..., n - 1 ,

or there is an integer /, 0 ^ l^ n — 2, which is even if n is even and odd if n is odd,

such that for t^tt

(14) x<'>(0^0, i=0, 1,...,/,

andif/>0

(15) x(/) = ̂ ^ 7 /

Suppose that (13) holds. Then, for some c > 0 and ^ ^ ^ I * w e

(16) xίO^cί""1 for

We choose t3^t2 so that go(t)^t2 for ί = ί3, integrate (A) from t3 to ί and use
(16) to obtain

which, by (12), implies that lim x ( f I " 1 ) (0 = oo, and consequently,
r-+oo

l i m χ ( < > ( ί ) = o o , Ϊ = 0 , 1 , . . . , n - 1 .
ί-*oo

Suppose now that both (14) and (15) hold. Then, from (15) we have

x(0^v4ί"-1 |>x<''-1>(0] for t^t4=2t1,

where A =2(l~n+ί)l(n — 1)...(n — Z), and we can choose t5 ̂  ί4 such that

(17) x(9o(t))*A[go(t)γ-*l-χl*-iKm for t*t5.

Combining (A) with (17), we have

(18) x ( n ) ( 0 ^ 7 ^ α

J P ( 0 [ ^ o ( 0 ] α ( l l " 1 ) [ - x ( ' I " 1 ) W ] α .

Dividing both sides of (18) by [_ — x^n"ί)(t)']a and integrating from t5 to t we obtain

[-χC-^a)]i-_E-χ(γυ(0 ]t-. n [ ί o ( , ) ] . ( B - 1 ) j , ( , ) Λ f

1—α 1—α Jί5

which implies \ [^o(0]α ( Λ~1 )P(0^ί<°o> a contradiction. Thus, we must have
Jt5
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/=0. (We observe that this can happen only when n is even.) In this case x(t)

decreases to a finite limit c o ^ 0 as t grows to infinity. We claim that c o = 0 . In

fact, if c 0 > 0, then from (A) we find

(19) x(n)(t)^ycaop(t) for ί ^ ί 5 .

Multiplying both sides of (19) by tn~ι and integrating from t5 to t we obtain

(20) p(0-P(ί 5 ) + (~l)«-i(n-l) ![x(0-x(ί 5 )]^κsΓ s*-*p(s)ds,

where

P(t) = *Σ (-iy-1(n-ϊ)(n-2). (n--i + i)t*-ίx<"-i>(t)
i=ί

which is nonpositive on account of (14). Since x(t) is bounded, from (20) we
r oo

conclude that \ tn~1p(t)dt<oo, which clearly contradicts (12).
Jt5

REMARK 1. When 0f(f)==f, ΐ = 0 , 1,..., n — 1 , Theorems 2 and 3 reduce to

the analogues of Lemma 5 and Theorem 2 of Kiguradze [2], respectively.

3. Effect of the Delay

In this section, motivated by a recent paper by Koplatadze [3], we investigate

the effect of the delay on the oscillatory and asymptotic behavior of the retarded

differential equation

(B) X<">(0 + ( - 1 ) " + 1 1 < 0 / ( * ^ ^

THEOREM 4. In addition to (a)-(d) assume that:

(g) \f(yz)\^\f(y)f(z)\ for all y, z;

(h) \ r / . <oo, \ / <oo for some a>0.
J+o f(y) J-of(y)

If

(21)

then, every solution of (B) is either oscillatory or tending monotonically to

infinity as ί-»oo.

PROOF. Let x(t) be a nonoscillatory solution of (B) such that x(go(t))>Q

for t^ti From (A) we see that x ( w )(i)^0 if n is even and x ( n )(ί)^0 if nis odd.
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If n is even, then from Lemma 2 it follows that either

(22) x^iή^O for t^tu i=0, 1,..., n-X,

or there exists an even integer /, 0:g l^n — 2, such that for ί — ^

(23)

If n is odd, then, by Lemma 1, there exists an even integer m, O ^ m ^ n —1, such

that for

(24) x ( ί ) (0^0, i=0, l,...,m, (- l ) f x ( ί ) (0^0, i = m + l,..., n - l .

It is easy to see that if (22) holds or /<0 [or m>0], then x(t) tends to infinity

as t-+oo. Therefore, it remains to examine the case where 1=0 [or m=0].

In this case, by (23) [or (24)], we have

(25) (-l)'x<O(0 = 0 for t*tl9 i=0, 1,..., n-ί ,

from which we conclude that x(t) is decreasing as ί->oo and

(26) lim χ( f)(0=0, i = l , . . . , n - l .
f-»oo

Applying Taylor's theorem to the function x(s) about the point t we obtain

(27)

where τ is a point between s and ί. In view of (25) we get from (27)

(28) x(^(-l) r l4^i(/-ί) r l for•

Since go(t)^t and lim #o(0 = o°, it follows from (28) that there exists ί2 = *i
f->oo

such that

(29) ^(^o(^))^(~l) π + 1 -τ ?γf t -^oW]"" 1 ^ t^h .

Choosing ί2 sufficiently large, if necessary, and using (26) and (d), we find

(30) φ(x'(gί(t)),..., χ(n~ί)(gn_1(t)))'^—φ(0,...,

2

Substituting (29), (30) in (B) and using (g), we obtain

(31) (— l)nx^n\t)^.kp(t)f((— I)n~1x< n~

for fet2, where k = 0(0,..., 0)/(l/(n-l)!)/2. Dividing(31) by/((-l)"-^^-1^))
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and integrating from t2 to t, we obtain

which in view of (26), (h) produces a contradiction to (21). Thus, under the

assumptions of the theorem, a nonoscillatory solution of (B) must tend to infinity

as t-*oo. This completes the proof.

COROLLARY 2. Consider the equation

(C) χ(-)(ί) + ( -1)«+ ̂ ( O W0o(O)lαsgn xfoo(O) = 0 ,

w/iere 0<α< 1, and p(ί) and ao(0 satisfy (a) and (d), respectively.

If

(32)

solution of (C) is eiί/ϊβr oscillatory or tending monotonically to

infinity as ί-»oo.

REMARK 2. Theorem 4 is closely related to a recent result of Sficas and

Staikos [20] for the sublinear delay equation (B) with 0 = 1 but with less restrictive

assumption on/.

We shall give some generalizations of Theorem 4. Namely, let us consider

the retarded differential equation

(B') x

where

The following vector notation will be used. Rd denotes the real d dimensional

space of vectors ξ—(ξ1,...,ξd). The zero vector in Rd is denoted by O. In-

equality between vectors | and 7}=(ηi9...,ηd) is defined as

equivalent to ξj^ηj lζj>ηj] for 7 = 1,..., d.

With regard to (B') we make the following assumptions:

(a') peC[[0,oo),/q, K0 = 0, p(t)φθ;

(b') feClRmo,Rlf(y0)>0for yo>O,f(yo)<0 for y0<0 9

for y0^z0^OJ(y0)^f(z0) for y0^z
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(c') 0

(d') gu e C[[0, oo), Λ], 0 , / ί ) ^ ί, lim ^ ( ί ) = oo ,
ί-»oo

7 = 1, .., mb ί=0, 1,..., n - 1 .

A generalization of Theorem 4 is given in the following

THEOREM 5. In addition to (a')-(d') assume that:

(g') 1/(̂ 1̂ 1,•• >3
;moZmo)l = 1/(̂ 1 v. . ,^ 0 )/(^l, . . . ,^ l 0 ) | ;

(h') Γ* ^ — - < o o , ("fl .. ^ v — - < o o for some a>0;

solution of (Bf) either oscillates or tends monotonically to infinity
as ί->oo.

This theorem can be proved by an argument similar to that in the proof of
Theorem 4. So, we omit the details.

COROLLARY 3. Consider the equation

(C) x<"'(ί)+(-l)"+ 1p(ί)Π |x(0o/O)hsgn x(goι(t))=O,
l

where CCJ>0, ccι H f-αmo < 1 αnrf /?(ί) αnt/ gOj(t) satisfy (a ;) αntί (d'), respectively.

If

(33)

then every solution of (C) either oscillates or tends monotonically to infinity
as ί->oo.

PROOF. We need only to observe that the function

/Oi, , ymo)= Π \yj\'Jsgnyι

satisfies conditions (b ;), (g') and (hr) of Theorem 5 provided α,- > 0, ocί H h αm o <ί 1.
The following corollary can easily be proved with the aid of the result of

Corollary 3.

COROLLARY 4, Consider the equation
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(D) x

where FeC[[0, oo)xR N , R], N = mo + m1 + + m l l_1, and condition (d')

is satisfied. Assume that there exist functions p(t) and φ{yu..., yn-ι) satisfying

(a') and (c'), respectively, and positive constants α, with <xί-\ h α m o < l ,

such that

F(t, y0, Pi,—, ί n - i ) s g n y O ί ^ p ( t ) Π \yoj\*JΦ(Pi,.», Pn-

for all (ί, y0, y 1 , . . . ,y M _ 1 )e[0, oo)xi?N, where yo=(yol9..., JΌmo)

(33) is a sufficient condition that every solution of (D) be either oscillatory or
tending monotonically to infinity as f-»oo.

REMARK 3. Corollary 4 is an extension of a recent result of Koplatadze

[3, Corollary to Theorem 1] for the second order equation

χ"(t)+F(t, χ(gί(ή),..., χ(gm(t% χ'(gi(t)),...9 χ'(gJίt)))=0.

4. Concluding Remarks

Let us further consider equation (B) for which assumptions (a), (c)-(f) are

satisfied. Suppose that n is even. Combining Theorem 3 with Theorem 4, we

see that if both (12) and (32) hold, then every solution of (B) either oscillates or

tends monotonically to infinity as ί->oo together with its first n — 1 derivatives.

Suppose now that n is odd. We have recently shown in [5] that (12) is a necessary

and sufficient condition for every solution of (B) to oscillate or tend monotonically

to zero as ί-*oo together with its first n — 1 derivatives. From this and Theorem

4 it follows that if both (12) and (32) hold, then all solutions of (B) are oscillatory.

We summarize these facts in the following theorem.

THEOREM 6. Consider equation (B) for which (a), (c)-(f) are satisfied.

Assume that both (12) and (32) hold.

(i) If n is even, then every solution of(B) either oscillates or tends monoto-

nically to infinity as t->co together with its first n — \ derivatives.

(ii) // n is odd, then every solution of (B) is oscillatory.

We observe that if g(t) is such that

and if

(34)

0<liminf SML ^\im SUp
ί-+oo t t-*oo
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then both (12) and (32) are satisfied.
It would be of interest to compare this theorem with Theorem 3 of Kiguradze

[2] to the effect that the ordinary differential equation (B) with g^ή^t, i=0,
l,...,n — 1, has nontrivial solutions which tend monotonically to zero as ί->oo
provided n ^ 3 and (12) [i.e. (34)] holds. We then conclude that the absence of
such solutions in the statement of Theorem 6 is caused by (32), that is, the effect
of the delay t-go(i).

References
dm u

[ 1 ] I. T. Kiguradze, On the oscillation of solutions of the equation , m -\-a(t) \u\n sign u

=0, Mat. Sb. 65 (1964), 172-187. (Russian)
[ 2 ] I. T. Kiguradze, The problem of oscillation of solutions of nonlinear differential

equations, DifferenciaFnye Uravnenija 1 (1965), 995-1006. (Russian) = Differential
Equations 1 (1965), 773-782.

[ 3 ] R. G. Koplatadze, On the existence of oscillatory solutions of second order nonlinear
differential equations with retarded argument, Dokl. Akad. Nauk SSSR 210 (1973),
260-262. (Russian)

[ 4 ] T. Kusano and H. Onose, Oscillation of solutions of nonlinear differential delay equa-
tions of arbitrary order, Hiroshima Math. J. 2 (1972), 1-13.

[ 5 ] T. Kusano and H. Onose, Nonlinear oscillation of a sublinear delay equation of arbi-
trary order, Proc. Amer. Math. Soc. 40 (1973), 219-224.

[ 6 ] T. Kusano and H. Onose, Oscillations of functional differential equations with retarded
argument, J. Differential Equations 15 (1974), 269-277.

[ 7 ] T. Kusano and H. Onose, Nonoscillatory solutions of differential equations with retard-
ed arguments, Submitted for publication.

[ 8 ] G. Ladas, Oscillation and asymptotic behavior of solutions of differential equations with
retarded argument, J. Differential Equations 10 (1971), 281-290.

[ 9 ] G. Ladas and V. Lakshmikantham, Oscillations caused by retarded actions, Appli-
cable Anal, (to appear).

[10] G. Ladas, G. Ladde and J. S. Papadakis, Oscillations of functional-differential equa-
tions generated by delays, J. Differential Equations 12 (1972), 385-395.

[11] G. Ladas, V. Lakshmikantham and J. S. Papadakis, Oscillations of higher-order re-
tarded differential equations generated by the retarded argument, "Delay and Functional
Differential Equations and Their Applications" (K. Schmitt, Ed.), pp. 219-231,
Academic Press, New York, 1972.

[12] G. S. Ladde, Oscillations of nonlinear functional differential equations generated
by retarded actions, "Delay and Functional Differential Equations and Their Applica-
tions" (K. Schmitt, Ed.), pp. 355-365, Academic Press, New York, 1972.

[13] H. Onose, Some oscillation criteria for n-th order nonlinear delay-differential equa
tions, Hiroshima Math. J. 1(1971), 171-176.

[14] H. Onose, Oscillation and asymptotic behavior of solutions of retarded differential
equations of arbitrary order, Hiroshima Math. J. 3 (1973), 333-360.

[15] V. N. Sevelo and N. V. Vareh, On the oscillation of solutions of higher order linear

differential equations with retarded argument, Ukrain. Mat. Z. 24 (1972), 513-520.

(Russian)



Oscillatory and Asymptotic Behavior of Sublinear Retarded Differential Equations 355

[16] V. N. Sevelo and N. V. Vareh, On some properties of solutions of differential equa-

tions with delay, Ukrain. Mat. Z. 24 (1972), 807-813. (Russian)
[17] Y. G. Sficas, On oscillation and asymptotic behavior of a certain class of differential

equations with retarded argument, Utilitas Mathematica 3 (1973), 239-249.
[18] Y. G. Sficas, The effect of the delay on the oscillatory and asymptotic behavior of w-th

order retarded differential equations, University of Ioannina, Technical Report No. 10,
October, 1973.

[19] Y. G. Sficas and V. A. Staikos, Oscillation of retarded differential equations, Proc.
Cambridge Philos. Soc. 75 (1974), 95-101.

[20] Y. G. Sficas and V. A. Staikos, The effect of retarded actions on nonlinear oscillations,
Proc. Amer. Math. Soc. (to appear)

[21] V. A. Staikos and Y. G. Sficas, Oscillatory and asymptotic behavior of functional
differential equations, J. Differential Equations 12 (1972), 426-437.

[22] V. A. Staikos and Y. G. Sficas, Oscillatory and asymptotic properties of differential
equations with retarded arguments, Applicable Anal, (to appear).

[23] J. S. W. Wong, Second order oscillation with retarded arguments, "Ordinary Differ-
ential Equations" (L. Weiss, Ed.), pp. 581-596, Academic Press, New York, 1972.

Department of Mathematics,

Faculty of Science,

Hiroshima University

and

Department of Mathematics,

College of General Education,

Ibarakί University, Mίto






