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1. Introduction

Let G be a connected semisimple Lie group with finite center and K a maximal
compact subgroup of G. Let G = KΛN be a fixed Iwasawa decomposition and
M the centralizer of A in K. In a series of his papers Harish-Chandra introduced
the Schwartz space #(G), in analogy to the space £f(Rn), of rapidly decreasing
functions on the real euclidean space Λπ([10]), and also as one of the family of
the whole spaces C€P{G). It is a problem to know whether one can carry out
a Fourier analysis of the member of ^P(G) and know the image of #P(G) by the
Fourier transform, when possible.

After Harish-Chandra, Eguchi-Okamoto [3] introduced the Schwartz space
&(G/K) on the symmetric space G/K, which is a subspace of the space ^(G),
and characterized the image of it by the Fourier transform. In this paper we
consider the Fourier transform of the subspaces ^P(G/K) (0<p<2; ^2(G/K)
= #(G/K)) consisting of functions in #P(G) which are invariant under right K
action.

Let 0<p<2. Then the space ^P(G/K) is contained in V(G/K) and so, for
any fe ^P(G/K) its Fourier transform / is defined. For a general element /
e ^(G/K),/ is a C°° function on α* x KjM with a growth condition and a property
of symmetry; but if /is an element of ^p{GjK), / extends analytically to the in-
terior of a tubular domain with respect to the first component. We denote the
tubular domain by Fp. The main theorem of this paper is that the space 2£(FP

xK/M) consisting of these functions which have holomorphic extension to
IntFp and such symmetry and growth, is the just image of the Fourier transform
of ^P(G/K) in real rank one case.

A brief sketch of the proof of surjectivity is as follows: Let K° be the set
of the equivalence classes of unitary representations of K which are class 1 with
respect to M. Let φ be a function in &(FP x KjM) and / be the Fourier inverse
image of φ. Applying the theorem for the Fourier transform of smooth functions
on K/M (Sugiura [11]), we obtain a family of functions φδ(δeK°) with values
in endomorphisms of the representation space of δ. Then φδ has a growth with
respect to <5. From this and the fact that / is the sum of trace of inverse image
fδ of φδ, it follows that fe &P(G/K). In order to show that fδ satisfies the
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growth condition, we employ the usual manner which Helgason uses in his papers

[9(c), (d)]. For this we need Harish-Chandra's theorem for the asymptotic

expansion of Eisenstein integrals ([7(d)], also [14, Chap. IV]), some results

about C functions in [9 (d)] and an estimate for the coefficients Γμ of expansion

of Eisenstein integrals by Hashizume [8]. This results in shifting the integral on

α* towards the boundary of the tubic domain. This method is similar to the proof

of the theorem for P(G) by Helgason [9(c)].

The spaces /P(G), consisting of all functions in ^P(G/K) which are also

invariant under left IC-action, were studied by Ehrenpreis-Mautner [4] in the

case G = SL(2, R), by Helgason [9(c)] for the case when G is either complex

or of real rank one and p = l. Trombi [12] and Trombi and Varadarajan [13]

determined the image of P(G) for 0<p<2, the former for the case of real rank

one and the latter for general case respectively. Moreover, in the case p = 2,

Harish-Chandra [7 (a)] characterized the spherical Fourier transform of /(G).

Arthur [1 (a)] and Eguchi [2 (a)] obtain the corresponding results for #(G),

the former when G is of real rank one and the latter when G has only one conjugate

class of Cartan subgroups. Recently Arthur [1 (b)] proved the theorem for the

general case and Eguchi [2 (b)] characterized the image of Fourier transform of

^(E τ ), the Schwartz space on the vector bundle on GjK which is associated to

a unitary representation τ of K on a finite dimensional vector space.

The first author is indebted to S. Helgason for his advice and stimulating

conversations. Also he would like to record his gratitude to the authorities of

the Institute for Advanced Study at Princeton, New Jersey for their hospitality

during 1974-1976.

2. Notation and Preliminaries

As usual let Z, R, C denote the ring of integers, the field of real numbers

and the field of complex numbers respectively; Z+ denotes the set of non-negative

integers. If T is a topological space and S a subset of T, Int S and Cl(S) denote

the interior of S and the closure of S in T, respectively. For a vector space V

over R9 Vc denotes the complexification of V.

Let G be a connected semisimple Lie group with finite center, g its Lie algebra

and < , > the Killing form of gc. Let θ be a Cartan involution of g and g

= ϊ + p the corresponding Cartan decomposition. Let K be the analytic sub-

group with Lie algebra !. Let o c p be a maximal abelian subspace, α* its dual

and F = α*. For a root λ of (g, α) let mλ be the multiplicity of λ. If λ, μeF

let Hλeac be determined by λ(H)= <Hλ9 H> (Hea) and put <λ, μ> = <Hλ,

Hμ>. If λea* and Xep' put | λ | = <λ, λ>1/2, \X\= <X, X> J / 2 . Fix a

Weyl chamber α+czα and let af denote its preimage in A* under the mapA->HΛ.

Let Σ+ denote the set of positive roots and put p = ( l / 2 ) Σ α e Σ + m α α a n d n =
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Σ α e Σ + g α , where gα is the root space for oceΣ+. By the usual manner we get

an Iwasawa decomposition G = KAN; g = f-hα + n. Let ^4 + =expα + . Then

G = KCl(A+)K. Any g e G can be written g = κ(g)expH(g)n(g) = kιak2, where

κ(g) E K, n(g) e N, H(g) e α, aeA + are unique. Put log a = H(a) (aeA). Let

M (resp. M') denote the centralizer (resp. normalizer) of A in K, W=M'/M the

Weyl group, which acts as a group of linear transformations on α and F. Let

ω denote the order of Wand put / = dimα.

The Killing form induces euclidean measures on A and α* multiplying these

by the factor (2π)~ ( 1 / 2 ) / we obtain invariant measures da and dλ on A and

α* respectively, such that for each/e ^(,4), the following equalities

(2.1) f*(λ) = [ f(a)εxp{-iλ(loga)}da (λea*),
JA

(2.2) f(a) = [ f*(λ)exp{/A(loga)}dλ {aeA),

hold without any multiplicative constants, where i denotes a square root of — 1 .

We normalize the Haar measures dk and dm on the compact groups K and M

respectively so that the total measures are one respectively. The Haar measures

of the nilpotent groups N and N = Θ(N) are normalized so that

θ(dn) = dn, [_ exp { - 2p(H(ή))}dn - 1.

The Haar measure dx on G can be normalized so that

dx = Qxp{2p(\oga)}dkdadn (x = kaή) and dx = A(a)dkίdadk2 (x = kιak2),
where the function A on A+ is defined by A(a) = cY\ιχeΣ+ (sinhα(logα))m« for a

suitable constant c. Let φλ (λeF) be the elementary spherical functions ([7 (a)])

and put Ξ = φ0. For x = kexpX (keK, X ep) put σ(x) = \X\ (xe G). Then
σ is a spherical function on G. It is known that there exist positive numbers c,

d and e such that

(2.3) Ξ(a) S cexp{-p(logfl)}(l

(2.4)

(See [7 (c), p. 16, 17]).

For any element υ of the symmetric algebra S(ac) over αc let d(v) denote the

corresponding differential operator on α, then S(ac) (resp. S(F)) can be regarded

as the algebra of all differential operators with constant coefficients on α (resp. F).

Let T be a maximal torus of K and t be the corresponding Lie subalgebra of

ϊ. If μ is a pure imaginary valued linear function on t we can select a unique

element hμei such that μ(H)=-i<hμ,H> for all Het Let Γ be the set of
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all Heί with e x p # = l . Let Γ be the set of all Heί suh that <H, X> elπZ

for all X e Γ, then f is the dual lattice of Γ. Let D be the subset of all μ e Γ

such that <μ, α f > 5̂ 0 (1 ̂ ι:gZ), where α ^ . . . , ^ are the set of all simple roots

with respect to a lexicographic order in the set of nonzero roots of (f, t). Then

there is a bijective mapμ->σ(μ) from D onto K9 the set of all unitary equivalence

classes of irreducible representations of K. We put

|σ| = -<μ, μ> .

3. The Fourier transform of <<fp (GjK)

Let 0<p<2 and let <£P(G/K) denote the set of C 0 0 functions / on G which

satisfy the following conditions: (i) f(xk) =f(x) for any xeG and keK; (ii)

For any r e Z+ and g, gf

(3.1) *?.,.*'(/) = s uPl/(#; *; ^0|S(x)-2^(l + σ(x))' < oo.
xeG

The seminorms τΐtg;g> convert ^p(GjK) into a Frechet space. By definition of

and the property of the spherical function Ξ, it is clear that

if 0 < p ^ g ^ 2 , where @(GjK) denotes the space of all C00 functions on G with

compact support which are invariant under the right X-action. @(GjK) is dense

in cβp(G\K)\ this is obtained by a similar proof to the one for the case p = 2

(cf. [7(c), §13]). Moreover, since the function Ξ satisfies

Ξ(x)2(\+σ(x))-'dx < oo
G

for a number r^O, we see easily that ^p(G/K)czLp(G/K).

For each p let Fp be the set of all linear functional λ on αc such that |Im sλ(H)\

<Lερ(H) for any He α+ and seW, where ε = 2jp—\ and Im denotes the imaginary

part. For any continuous function φ on Int Fp x K/M we define a function φ

on I n t P x G by

(3.2) φ(λ: x) = { φ(λ: κ(xk)M)exp{(iλ-p)(H(xk))}dk.

Now let £?(FP x K/M) denote the space consisting of all C00 functions φ

on α* xKjM which satisfy the following conditions: (i) For fixed keK the

function λ-+φ(λ: kM) extends to I n t F p as a holomorphic function; (ii) φ(sλ: x)

= φ(λ: x) for any λ e Int Fp, seW and xeG; (iii) For any q, reZ+ and u e S(F)

(3.3) C;.r,«(φ) = sup |φ(A; 3(iι): ^M; ωϊ)l(l + |λ|)« < oo,
I F P K / M
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where ωk denotes the Casimir operator for K. The seminorms C£,r,M convert

%P(F x K/M) into a Frechet space.

For any function / in ^p{GjK) its Fourier transform is defined by

(3.4) J(λ: kM) = (^f)(λ: kM) = { f(kan)exp{(-iλ + p)Qoga)}dadn.
JAN

By formula (2.3) it is easy to check that the above expression is equal to

\ f(x)exV{(iλ-p)(H(χ-ik))dx.
JG

THEOREM 3.1. The Fourier transform ίF is a continuous mapping of

^P(G\K) into &(FpxK/M). In the special case, when the real rank of G

equals one, & is a linear topological isomorphism of ^p{GjK) onto £?p(FpxK/

M).

In order to prove this theorem we need some lemmas.

4. The proof of injectivity

LEMMA 4.1. Let feCp(G/K). For each λe!ntFp and keK the integral

(4.1) J(λ: kM) = [ f(kan)exp{(-U + p)(loga)}dadn
JAN

is uniformly convergent for λelntFp, and for any fixed keK the function

: kM) is holomorphic on IntF p .

PROOF. Let α l 9 . . ., at be all simple restricted roots and εί9...9ει be the ele-

ments in F such that <α f , εj> =A/ Then {β/}i^j^/ is a basis for F. We

introduce a global coordinate on F by λ = Σι^ijύιλjεj. Then we have for any

(4.2) f(kan)-~jj— exp {( —U + p)(log a)}

g \f(kan) I |ε, (log a) | exp {07 + p)(log α)} ,

where λ = ξ + iη (ξ9 η e α*). Since we can find a constant eg; 1 such that

(4.3) 14-σ(a) ^ c(l + σ(αn)) (a e A9 n e N)

(see [7(c), p. 106]), we have

(4.4) |ε/log a)\ ̂  c\sj\(l + σ(an)) (aeA9neN).
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Let d be the constant in (2.3). Then from (2.4) we can choose r > 0 such that

(4.5) [ Ξ(x)2(l + σ(x))2(1+dyp+1-d-'dx < oo.
JG

Since fe ^p(GjK), for this r we can choose a constant c > 0 such that

\f(kan)\ ^ c(l + σ(an)Y2^-rΞ(an)2^

for all keK, aeΛ and neN. Therefore, the expression (4.2) is bounded by

where c is a positive constant. If this expression is integrable on AN, then

(4.6) (
JA

(
JAN

= [ (1 + σ(a)Y2 IP^ x -rΞ(a)2lP exp {(η - p) (H(ak)}A(a)dadk.
JA+K

Since it is known that

{ Qxp{(η-p)(H(ak))}dkSe^lo^^Ξ(a) (aeA+)
)κ

([12, p. 282]), from (2.3) it follows that (4.6) is bounded by

(4.7) c[ Ξ(a)2(\ + σ(a))-oA(a) exp {(η - εp) (log ά)}da,
JA +

where c is a positive constant and q = r + d— 1 — 2(1 +d)p. If λe\ntFp, \sη(H)\

^εp(H) (H ea+, se W). So the above expression is bounded by

c[ Ξ(a)2(\ +σ(a))-«A(a)da= c[ Ξ(x)2(l+σ(x))-<*dx.
)A+ JG

This proves that (4.6) is absolutely convergent. Hence the integral

\ f(kan)^y— exp {( — iλ + p)(loga)}dadn
JAN

 CAj

converges uniformly for λelntFp. More generally, iterating the above dis-

cussion we see that for each polynomial P in / variables the integral

) exp {(-iλ +p) (log a)} dadn
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converges uniformly for λe\ntFp. Therefore formula (4.1) can be differentiated
under the integral. So, the function λ-*f(λ: kM) is holomorphic on lntFp for
any fixed k e K. This completes the proof of the lemma.

LEMMA 4.2. For any p, reZ+ and ueS(F) we can select qeZ+, finite
elements g0, gί,...9 gse®> and a positive number c such that

sup \J(λ;d(u):kM;ωΐ)\(l + \λ\Y
\ntF»*KIM

ύ cΣ!^ s sup |/(g 0 x; g,)\Ξ(x)-*»(l + σ(x))*.
xeG

PROOF. Let {#/}i^j^ be an orthonormal basis of α and consider an ele-
ment of s# (the subalgebra of © generated by 1 and αc) defined by

Put

ψλ(a) = exp {(- iλ + p) (log a)} (aeA).

Then, by simple calculation we have

Let neZ+ and u e S(F). Then we see that

(4.8) (|A|2 + |p|2)"uA(co|-)k( f(kan)exp{(-iλ + p)(loga)}dadn
JAN

*'< kan)Pu(a)φλ(a; h»)dadn,

where Pu is a polynomial which is determined by w;
^ ^ I , (aeA),

- v v fJLV1 ( 8 V'

here ah...h are constants. We put f(k: a: n)=f(kan) (keK9 aeA, neN).
If if eα,

( f(k;ωί:a: n)Pu(a)ψλ(a H)dadn
JAN

= \ /(ωί ;k:a;-H: n)Pu(a)φλ(a)dadn
J AN

f(ωr

k\ kan)Pu(a; -H)φλ(a)dadn.
AN
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Since for a good function φ on AN

\ φ(na)dn = exp {2p(log a)} \ φ(an)dn (aeA),
JN JN

the first term is equal to

\ f(ωί (kan)Pu(a)ψλ(a)dadn-2p(-H)\ f(ω'k tkan)Pu(a)ψλ(a)dadn.
JAN JAN

Iterating the above discussion, we can choose finite elements go = ωr

k, gι,.-.9gs

e(S, &!,..., bseSΆ and c l 5 . . . , cseR so that formula (4.8) equals

(4.9) Σi*j*fj\ f(9o\ kan; gj)PJia; bj
J ANAN

Now for each j (i^j^r) we can choose dj^.0 and SJEZ+ such that

\Pu(a bj)\ ̂  dj(l + |log α|)" = d/1 + σ(α))^ (as A).

The absolute value of the integral in (4.9) is bounded by

cdr sup {\f(go\ x\ 0;)|£(x)~2/p(l + σ(x))s >+ί} *
jceG

Ξ(an)2 lp(\ + σ{aή))~t exp {(̂ / + p) (log a)}dadn,
AN

here we use the relation (4.3). By the same discussion as in the proof of Lemma
4.1, for a sufficiently large t>0 the last integral is finite if A e Int Fp. This proves
our lemma.

LEMMA 4.3. Let fe^p{GjK). Then / satisfies the following functional
equation with respect to the Weyl group W;

(?Ysλ = (/)! (λ e Int f , 5 G WO.

PROOF. By definition of the Fourier transform & and the dual Radon
transform V we have

= ( f(9) exp {(iλ - p) (H(g~ * κ(xfc))+H(xk))}dgdk.
JK*G

Since H(g-ίxk) = H(g-ίκ(xk)) + H(xk), the last integral equals

f(g)exp{(iλ-pHH(g-*xk))}dgdk =fxφλ(x),
G
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where φλ is the elementary spherical function and x denotes the convolution.

So φλ = φsλ implies that ( / ) I = (/)JΛ (λe!ntFp, se W). This proves our lemma.

Since ^p(G/K)ciL2(G/K), now PlanchereΓs theorem ([9(c), p. 15]), Lemmas

4.1, 4.2 and 4.3 complete the proof of the injectivity and the continuity of the

Fourier transform &: tfp(G/K)-+&(FP x K/M).

5. The proof of surjectivity

In this section we assume the real rank of G to be one.

Let ψ e ££(FP x K/M). Then its Fourier inversion is given by

(5.1) / ( x ) = ω

where c is Harish-Chandra's c-function. (See [3] and [9(c)]). In order to

prove that fe y>p(G/K), we use a theorem of Fourier analysis on the compact

group K.

Let K° denote the set of equivalence classes of irreducible unitary represen-

tations of K of class 1 with respect to M. Let δ be such a representation of K

and Vδ be the representation space of dimension d(δ). For F e C^ίG/K) we put

(5.2) Fδ(x) = d(δ)[ F(kx)δ(k-1)dk.
JK

Then Fδ is a C00 function on G with values in Hom(Fό, Vδ), the space of endomor-

phism of Vδ, and satisfies

(5.3) Fδ(kx) = δ(k)Fδ(x).

For δ E K° we derive from (5.1)

(5.4) f*(x) = ω - ^ ^ e x p ί - ί ί λ + p X / ^

where

(5.5) ψδ(λ: kM) = d(δ)\ ψ(λ: kίkM)δ(k~ί

i)dkί = δ(k)ψδ(λ: eM),
J K

ψδ(λ) = φ\λ: eM).

From the theorem of the Fourier transform of smooth functions on the

compact group K ([11]) it follows that for each r, seZ+ and u e S(F)

(5.6) sup \\ψ*(λ; 3(iι))||(l + \δ\Y(ί + \λ\Y < oo,
IntF^x^0

where ||^4|| denotes the Hubert-Schmidt norm of the endomorphism A. We
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also denote the trace of A by TrA.

LEMMA 5.1. Let {ψδ}όe£o be a family of C00 functions φδ from a*xK/M

to Hom(Fδ, Vδ) which satisfy the following conditions: (i) For each keK

the function λ\-^ψδ(λ: kM) extends to a holomorphίc function on IntFp; (ii)

(ψ*γsλ = (ψ*yλ for any λelnt Fp and se W; (iii) For each r, seZ+ and ue S(F),

φδ satisfies the relation (5.6); (iv) ψ\λ: kM) = δ(k)φ\λ: eM). Then the

functions Fδ(x) (δeK°) from G/K to Hom(Kδ, Vδ) defined by

(φδy(λ: x)\c(λ)\~2dλ

are infinitely differentiate and satisfy that for each q, reZ+ and g, gr e (δ

(5.7) sup \ΊvFδ(g; χ; g')\Ξ(x)-2'p(l+σ(xMl + \δ\Y < oo.
G*K°

We shall prove the lemma in following sections. Now we assume this

lemma. By the lemma it is clear that the sum

is absolutely convergent for each g e (5. So we have

(5.8) f(g;x; g') = Σ^oTr/%; x; g')

Take a sufficiently large reZ+ so that

is convergent. Then for each q e Z + and g, g' e (5, we have obviously

sup/(<5r; x; g')\Ξ(x)-2lP{Y + σ{x))" < oo.
G
p

xeG

This shows that fe tfp(G/K). As is well-known, since a continuous and bijec-

tive mapping from a Frechet space onto a Freche space is a topological isomor-

phism, we obtain Theorem 3.1.

It is left only to prove Lemma 5.1.

6. Harish-Chandra's C function and an estimate for Γ μ

Let σ = (σ1, σ2) be a double unitary representation on a finite dimensional

Hubert space V, σγ and σ2 acting on the left and right respectively. Let λ e F

and consider the function

φ(x)v = { σi(κ(xk))vσ2(k-ί)exp{(iλ-p)(H(xk))}dk
J K
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(x eG, ve V), then the function φ is a σ-spherical function. Let

yM = { ϋ e Vlσ^tΐήυ = vσ2(tn) for all m e M } .

Harish-Chandra gives the following series expansion.

Let α l 5 . . . , OLt be the simple restricted roots, L the set of integral linear com-

binations n ^ H hnjαj ( π ί e Z + ) and L' = L— {0}.

LEMMA 6.1. There exist certain meromorphic functions Cs(seW) on

F and rational functions Γμ(μeL) on F all with values in Hom(K^, V*f)

such that for a e A+, v e V™

exp{p(logα)}( σί(κ(ak))vσ2(k-ί)exp{(iλ-p)(H(ak)}dk = ΣSewΦ(sλ: a)C8(λ)v,
JK

where

Φ(λ: a) = exp{Woga)}ΣueLΓμ(λ)exp{-μ(loga)}.

Here λ varies in a certain open dense subset *Ff of F, the functions Fμ are given

by certain explicit recursion formulas, depending on σ (see [14, Chap. IX]).

Just for the case σ2

 = identity representation we shall need this theorem and

an estimate of Γμ, which Hashizume [8] obtained by a generalization of Gangolli's

method [5]. Let

R = {λeF\ImλeCl(at)}.

If μeL, μ=Σi^£^ί m i α ; (^i^O), then the number m(μ)=Σi^i^/mi i s called
the level of μ.

LEMMA 6.2 ([8]). We can choose positive numbers a, b such that

\\Γμ(λ)\\ ̂ a(l + m(μ)b)

for all λeR.

Recall the universal enveloping algebra (5 of gc. Let λ be the canonical

symmetrization from the symmetric algebra S(gc) ober gc onto (5. Let q be the

orthogonal complement of (the Lie subalgebra corresponding to M) in f. Put

λ(S(qc)) = £ί. Let $ί, ft be the subalgebras of (5 generated by 1 and α, 1 and

f, respectively. For α e Σ+, let us write

/±(α) = (expα(logα)±l)- 1 .(aeA')9

where A' denotes the set of all aeA such that α(logα)#0 for all α e l + . Let

F o denote the algebra generated over C by / * (α e Σ+). Then for any g e ©

there exist finite sets {^}<=F0, {^JczQ, {fcf}c:9I and {df}c:ft(l<£i<;Z) such

that
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D^ΣifMqf'h^ (aeAf).

(See [7(a)], also [14, Chap. IX].) We use this fact in the following section.

7. The proof of the lemma

In this section we assume the real rank of G to be one. Let {ψδ}δeRo be a
family of C00 functions ψδ from FpxK/M to End(J^, Vδ) which satisfy the con-
ditions (i), (ii), (iii) and (iv) in Lemma 5.1, that is; (i) For each δeK° and
keK the function λ^ψδ(λ: kM) extends to a holomorphic function in IntF p ;
(ϋ) (VYsλ = (VYλ for any ΛeIntFp and seW; (iii) For each r,seZ+ and
ueS(F)

sup \\ψ\λ;d(u))\\([ + \δ\y(ί + \λ\y < oo

(iv) φδ(λ: kM) = δ(k)φδ(λ: eM).

For simplicity we write ψδ(λ) = ψδ(λ: eM). Put

(7.1) φ\x) = ω-if ^{ ψδ(λ: /c(x/c))exp{(d

which is equal to the expression (5.4) and
ω"' \aί\κδ(κ{xk)) CXP {(ίλ " P) {H{xk))} dk)

Using Harish-Chandra's asymptotic expansion theorem for the Eisenstein integral

[ δ(κ(xk)) exp {(iλ - p) {H{xk))}dK

we have for x = k1ak2 (ku k2eK, aeA+)

A ψδ(λ)Σsewexp{isλ(\oga)}
J *

) exp { -

Transforming 2 as —s~1λ, we see that the last expression equals

here we use the relation \c(λ)\2 = c(sλ)c( — sλ), (λea*, se W). By means of



On the Fourier Transform of Rapidly Decreasing Functions of L p Type 155

the relation ([9 (d), p. 465])

we obtain that the last expression equals

(7.2) ω-1exp{-p(logα)}5(fc1)Σse»τ( exp {- U(loga)}

• Σ.eLexp {-μ(log a

ψδ(-λ)dλ.

We know then that the braces are equal to one ([9 (d), p. 465]). By Cauchy's
theorem to shift the integration from α* to α* — iεp, we claim that the last ex-
pression equals

exp { - (ε + l)p(log αM/q) \ exp { - ΐλ(log a)} Σ μ e L exp { - μ(log a)}
Ja*

• Γμ(iεp-λ)c(λ- iεpYιφδ(-λ + ίεp)dλ.

This shift is permissible because if 0<ε'<ε, the integral is a holomorphic function
of λ on the closed strip bounded by α* and α* — iε'p and the integral behaves suita-
bly at oo because of the rapid decrease of φδ and the mentioned estimates in the
previous section for C-function and Γμ. Let ε'-»ε, the claimed relation follows.

By the results of the previous section, there exist positive numbers c, d such
that for μ e L and — λ e R

(7.3) \\rμ(-λ)\\ ^c(l + m(μY).

In particular, this inequality remains valid for λ = ξ — iη (ξ, f/eα*) in a strip
around the line η = εp. So we can use Cauchy's formula to estimate the derivatives
of the function λ-+Γμ( — λ) for points on the line; for each neZ+ there exists
a number cn such that

(7.4) d<
-3ξrΓμ(iep-ξ)

The functions c(λ) i and c(λ—iεp) ι are products of Gamma factors Γ(a + iλ)j
Γ(b + iλ) where a, b > 0 ([7 (a)] or [6]), so by [9 (b), p. 574] c(X)~1 and c{λ - tεp)~1

have each derivative bounded by a polynomial in |1 | . Hence, for each μeL
the function

ΓH(- U)exp {- iλ(logα)}

is integrable and since
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< oo,

the interchange of summation and integration in formula (7.2) is legitimate. We

have

(7.5)

= £(fci)ΣμeLexp{-μ(logα)}\ exp {- iλ(log a)}
Ja*

• Γμ(iεp - λ)c(λ - iεp)~ι φδ(iεp - λ)dλ.

For any positive integer q we can choose a differential operator u e S(F) and a

polynomial Pu, depending on u9 such that

wA(exp { - iλ(log a)}) = Pu(log a) exp { - iλ(log a)}

and

α|)«/|PM(logα)| < oo.

Since the last integral is the euclidean Fourier transform, by means of integration

by parts and (2.3) and the estimates which we state above, we know that for

any q, reZ+ and H e$l there exist a positive constant c and n' eZ+ and a finite

number of differential operators M 1 9 . . . , ua in S(F) such that

(7.6)

for k^eK, aeA+. Since δ{kΐ) is a unitary matrix of order d{δ) the Hilbert-

Schmidt norm of δ{kλ) is equal to d(δ)i/2. From WeyΓs dimension formula it

follows that we can choose r'eZ+ and a positive constant c', independent of

δ, such that

(k.eK).

Therefore the expression (7.6) is bounded by

' Σ ^ sup ||^(A;
I F P K 0

where 5 and n are sufficiently large positive integers. Now any g e (£> can be

written in the form

9 = ΣjfWQy'Hj (mod (51) (α e 4 ' ) ,

where /,- e F o , Qj e Q, iί^ e S2( and the sum is finite, so we have
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Since we are in the real rank one case and F o is generated by the function H

-*(exp{2<x.(H)}±ί)~1

9 each/j is bounded except near the origin. From (7.6),

the fact that 1 ̂ Ξ(a)exp{p(\oga)} ([7(c), p. 17]) and [7(c), Lemma 17] it

follows that for any q, reZ+ and g, g' e (S, we can choose teZ+ and a finite

number of elements ul9...9 uι of S(F) such that the inequality (5.7) holds. This

completes the proof of the Lemma 5.1.
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